Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions For Class 12 Maths Chapter 4 Determinants

ffImage
banner
widget title icon
Latest Updates

Detailed Vedantu's Class 12 Maths Determinants Miscellaneous Exercise Solutions

NCERT Solution for Miscellaneous Exercise Class 12 Chapter 4 Determinants includes solutions to all Miscellaneous Exercise problems. Determinants Class 12 NCERT Solutions Miscellaneous Exercises are based on the ideas presented in Maths Chapter 4. This activity is crucial for both the CBSE Board examinations and competitive tests. To perform well on the board exam, download the NCERT Solutions for Class 12 Maths Determinants Miscellaneous Exercise in PDF format and practice them offline. Students can download the revised Class 12 Maths NCERT Solutions from our page which is prepared so that you can understand it easily.


The Class 12 Maths Chapter 4 Miscellaneous Solutions are aligned with the updated CBSE guidelines for Class 12, ensuring students are well-prepared for exams. Access the Class 12 Maths Syllabus here.

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Master Vedantu's Class 12 Maths Determinants Miscellaneous Exercise Solutions

Miscellaneous Exercise

1. Prove that the determinant \[\mathbf{\left| \begin{matrix} x & \sin \theta  & \cos \theta   \\ -\sin \theta  & -x & 1  \\ \cos \theta  & 1 & x  \\ \end{matrix} \right|}\] is independent of \[\mathbf{\theta} \].

Ans: Let \[\Delta =\left| \begin{matrix} x & \sin \theta  & \cos \theta   \\ -\sin \theta  & -x & 1  \\ \cos \theta  & 1 & x  \\ \end{matrix} \right|\]

To solve it, we have:

\[\Rightarrow \Delta =x\left( {{x}^{2}}-1 \right)-\sin \theta \left( -x\sin \theta -\cos \theta  \right)+\cos \theta \left( -\sin \theta +x\cos \theta  \right)\]

\[\Rightarrow \Delta ={{x}^{3}}-x+x{{\sin }^{2}}\theta +\sin \theta \cos \theta -\sin \theta \cos \theta +x{{\cos }^{2}}\theta \]

\[\Rightarrow \Delta ={{x}^{3}}-x+x\left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta  \right)\]

\[\Rightarrow \Delta \text{=}{{\text{x}}^{\text{3}}}\text{-x+x}\]

\[\therefore \Delta \text{=}{{\text{x}}^{\text{3}}}\]

Hence, \[\text{ }\!\!\Delta\!\!\text{ }\] is independent of \[\theta \] .


2. Evaluate \[\mathbf{\left| \begin{matrix} \cos \alpha \cos \beta  & \cos \alpha \sin \beta  & -\sin \alpha   \\ -\sin \beta  & \cos \beta  & 0  \\ \sin \alpha \cos \beta  & \sin \alpha \sin \beta  & \cos \alpha   \\ \end{matrix} \right|}\]

Ans: Let \[\Delta =\left| \begin{matrix} \cos \alpha \cos \beta  & \cos \alpha \sin \beta  & -\sin \alpha   \\ -\sin \beta  & \cos \beta  & 0  \\ \sin \alpha \cos \beta  & \sin \alpha \sin \beta  & \cos \alpha   \\ \end{matrix} \right|\]

Expanding along column \[{{\text{C}}_{3}}\]

\[\Rightarrow \Delta =-\sin \alpha \left( -\sin \alpha {{\sin }^{2}}\beta +{{\cos }^{2}}\beta \sin \alpha  \right)+\cos \alpha \left( \cos \alpha {{\cos }^{2}}\beta +\cos \alpha {{\sin }^{2}}\beta  \right)\]

\[\Rightarrow \Delta ={{\sin }^{2}}\alpha \left( s{{\sin }^{2}}\beta +{{\cos }^{2}}\beta  \right)+{{\cos }^{2}}\alpha \left( {{\cos }^{2}}\beta +{{\sin }^{2}}\beta  \right)\]

\[\Rightarrow \Delta ={{\sin }^{2}}\alpha \left( 1 \right)+{{\cos }^{2}}\alpha \left( 1 \right)\]

\[\therefore \Delta \text{=1}\]


3. If $\mathbf{{{\mathbf{A}}^{-1}}=\left[ \begin{matrix} 3 & -1 & 1  \\ -15 & 6 & -5  \\ 5 & -2 & 2  \\ \end{matrix} \right]$ and $B=\left[ \begin{matrix} 1 & 2 & -2  \\ -1 & 3 & 0  \\ 0 & -2 & 1  \\ \end{matrix} \right]$, find ${{\left( AB \right)}^{-1}}}$.

Ans: The below result will be used for simplification,

${{\left( AB \right)}^{-1}}={{B}^{-1}}{{A}^{-1}}$

Finding the inverse of matrix B. So, the determinant is

$\left| B \right|=1\left( 3-0 \right)-2\left( -1-0 \right)-2\left( 2-0 \right)$

$\Rightarrow \left| B \right|=3+2-4$

$\therefore \left| B \right|=1$

Now finding the cofactors,

${{B}_{11}}={{(-1)}^{1+1}}\left| \begin{matrix} 3 & 0  \\ -2 & 1  \\ \end{matrix} \right|\Rightarrow {{B}_{11}}=3$

${{B}_{12}}={{(-1)}^{1+2}}\left| \begin{matrix} -1 & 0  \\ 0 & 1  \\ \end{matrix} \right|\Rightarrow {{B}_{12}}=1$

${{B}_{13}}={{(-1)}^{1+3}}\left| \begin{matrix} -1 & 3  \\ 0 & -2  \\ \end{matrix} \right|\Rightarrow {{B}_{13}}=2$

${{B}_{21}}={{(-1)}^{2+1}}\left| \begin{matrix} 2 & -2  \\ -2 & 1  \\ \end{matrix} \right|\Rightarrow {{B}_{21}}=-\left( 2-4 \right)=2$

${{B}_{22}}={{(-1)}^{2+2}}\left| \begin{matrix} 1 & -2  \\ 0 & 1  \\ \end{matrix} \right|\Rightarrow {{B}_{22}}=1$

${{B}_{23}}={{(-1)}^{2+3}}\left| \begin{matrix} 1 & 2  \\ 0 & -2  \\ \end{matrix} \right|\Rightarrow {{B}_{23}}=2$

${{B}_{31}}={{(-1)}^{3+1}}\left| \begin{matrix} 2 & -2  \\ 3 & 0  \\ \end{matrix} \right|\Rightarrow {{B}_{31}}=6$

${{B}_{32}}={{(-1)}^{3+2}}\left| \begin{matrix} 1 & -2  \\ -1 & 0  \\ \end{matrix} \right|\Rightarrow {{B}_{32}}=2$

${{B}_{33}}={{(-1)}^{3+3}}\left| \begin{matrix} 1 & 2  \\ -1 & 3  \\ \end{matrix} \right|\Rightarrow {{B}_{33}}=\left( 3+2 \right)=5$

The cofactor matrix is $\left[ \begin{matrix} 3 & 1 & 2  \\ 2 & 1 & 2  \\ 6 & 2 & 5  \\ \end{matrix} \right]$. The adjoint will be the transpose of the cofactor matrix.

$adj\left( B \right)=\left[ \begin{matrix} 3 & 2 & 6  \\ 1 & 1 & 2  \\ 2 & 2 & 5  \\ \end{matrix} \right]$

The inverse is given by ${{B}^{-1}}=\frac{adj\left( B \right)}{\left| B \right|}$. So,

${{B}^{-1}}=\left[ \begin{matrix} 3 & 2 & 6  \\ 1 & 1 & 2  \\ 2 & 2 & 5  \\ \end{matrix} \right]$

Now, it is already given that ${{A}^{-1}}=\left[ \begin{matrix} 3 & -1 & 1  \\ -15 & 6 & -5  \\ 5 & -2 & 2  \\ \end{matrix} \right]$.

So, we can compute ${{\left( AB \right)}^{-1}}={{B}^{-1}}{{A}^{-1}}$ as below,

${{\left( AB \right)}^{-1}}=\left[ \begin{matrix} 3 & 2 & 6  \\ 1 & 1 & 2  \\ 2 & 2 & 5  \\ \end{matrix} \right]\left[ \begin{matrix} 3 & -1 & 1  \\ -15 & 6 & -5  \\ 5 & -2 & 2  \\ \end{matrix} \right]$

$\Rightarrow {{\left( AB \right)}^{-1}}=\left[ \begin{matrix} 9-30+30 & -3+12-12 & 3-10+12  \\ 3-15+10 & -1+6-4 & 1-5+4  \\ 6-30+25 & -2+12-10 & 2-10+10  \\ \end{matrix} \right]$

$\therefore {{\left( AB \right)}^{-1}}=\left[ \begin{matrix} 9 & -3 & 5  \\ -2 & 1 & 0  \\ 1 & 0 & 2  \\ \end{matrix} \right]$


4. Let \[\mathbf{\text{A=}\left[ \begin{matrix} \text{1} & \text{2} & \text{1}  \\ \text{2} & \text{3} & \text{1}  \\ \text{1} & \text{1} & \text{5}  \\ \end{matrix} \right]}\] verify that

(i) \[\mathbf{{{\left[ \text{adjA} \right]}^{\text{-1}}}\text{=adj}\left( {{\text{A}}^{\text{-1}}} \right)}\]

Ans: Given, \[\text{A=}\left[ \begin{matrix} \text{1} & \text{2} & \text{1}  \\ \text{2} & \text{3} & \text{1}  \\ \text{1} & \text{1} & \text{5}  \\ \end{matrix} \right]\]

\[\Rightarrow \left| \text{A} \right|\text{=1}\left( \text{15-1} \right)\text{-2}\left( \text{10-1} \right)\text{+1}\left( \text{2-3} \right)\]

\[\Rightarrow \left| A \right|\text{=14-18-1}\]

\[\therefore \left| A \right|\text{=}-5\]

Thus,

\[\Rightarrow {{\text{A}}_{11}}\text{=}{{\left( \text{-1} \right)}^{1+1}}{{\text{M}}_{11}}={{\left( \text{-1} \right)}^{2}}{{\text{M}}_{11}}\]

\[\Rightarrow {{A}_{11}}\text{=14}\]

\[\Rightarrow {{\text{A}}_{12}}\text{=}{{\left( \text{-1} \right)}^{1+2}}{{\text{M}}_{12}}={{\left( \text{-1} \right)}^{3}}{{\text{M}}_{12}}\]

\[\Rightarrow {{A}_{12}}=-9\]

\[\Rightarrow {{\text{A}}_{13}}\text{=}{{\left( \text{-1} \right)}^{1+3}}{{\text{M}}_{13}}={{\left( \text{-1} \right)}^{4}}{{\text{M}}_{13}}\]

\[\Rightarrow {{A}_{13}}=-1\]

Similarly,

\[\Rightarrow {{\text{A}}_{21}}\text{=}{{\left( \text{-1} \right)}^{2+1}}{{\text{M}}_{21}}={{\left( \text{-1} \right)}^{3}}{{\text{M}}_{21}}\]

\[\Rightarrow {{\text{A}}_{21}}\text{=-9}\]

\[\Rightarrow {{\text{A}}_{22}}\text{=}{{\left( \text{-1} \right)}^{2+2}}{{\text{M}}_{22}}={{\left( \text{-1} \right)}^{4}}{{\text{M}}_{22}}\]

\[\Rightarrow {{\text{A}}_{22}}=4\]

\[\Rightarrow {{\text{A}}_{23}}\text{=}{{\left( \text{-1} \right)}^{2+3}}{{\text{M}}_{23}}={{\left( \text{-1} \right)}^{5}}{{\text{M}}_{23}}\]

\[\Rightarrow {{\text{A}}_{23}}\text{=1}\]

And

\[\Rightarrow {{\text{A}}_{31}}\text{=}{{\left( \text{-1} \right)}^{3+1}}{{\text{M}}_{31}}={{\left( \text{-1} \right)}^{4}}{{\text{M}}_{31}}\]

\[\Rightarrow {{\text{A}}_{31}}=-1\]

\[\Rightarrow {{\text{A}}_{32}}\text{=}{{\left( \text{-1} \right)}^{3+2}}{{\text{M}}_{32}}={{\left( \text{-1} \right)}^{5}}{{\text{M}}_{32}}\]

\[\Rightarrow {{\text{A}}_{32}}=1\]

\[\Rightarrow {{\text{A}}_{33}}\text{=}{{\left( \text{-1} \right)}^{3+3}}{{\text{M}}_{33}}={{\left( \text{-1} \right)}^{6}}{{\text{M}}_{33}}\]

\[\Rightarrow {{\text{A}}_{33}}=-1\].

Cofactor matrix is \[\left[ \begin{matrix} 14 & -9 & -1  \\ -9 & 4 & 1  \\ -1 & 1 & -1  \\ \end{matrix} \right]\].

We know that the adjoint of a matrix is the transpose of its cofactor matrix.

\[\Rightarrow adjA={{\left[ \begin{matrix} 14 & -9 & -1  \\ -9 & 4 & 1  \\ -1 & 1 & -1  \\ \end{matrix} \right]}^{T}}\] \[\therefore \text{adjA=}\left[ \begin{matrix} 14 & -9 & -1  \\ -9 & 4 & 1  \\ -1 & 1 & -1  \\ \end{matrix} \right]\]

Let us denote the adjoint of A as B. So, \[B\text{=}\left[ \begin{matrix} 14 & -9 & -1  \\ -9 & 4 & 1  \\ -1 & 1 & -1  \\ \end{matrix} \right]\].

The inverse of A is given by

\[{{\text{A}}^{\text{-1}}}\text{=}\dfrac{\text{1}}{\left| \text{A} \right|}\left( \text{adjA} \right)\]

\[\Rightarrow {{\text{A}}^{\text{-1}}}\text{=-}\dfrac{\text{1}}{5}\left[ \begin{matrix} 14 & -9 & -1  \\ -9 & 4 & 1  \\ -1 & 1 & -1  \\ \end{matrix} \right]\]

\[\therefore {{A}^{\text{-1}}}\text{=}\dfrac{\text{1}}{5}\left[ \begin{matrix} -14 & 9 & 1  \\ 9 & -4 & -1  \\ 1 & -1 & 1  \\ \end{matrix} \right]\]

Now, we have to verify \[{{\left[ \text{adjA} \right]}^{\text{-1}}}\text{=adj}\left( {{\text{A}}^{\text{-1}}} \right)\].

Let us compute the RHS first, i.e. the adjoint of \[{{A}^{\text{-1}}}\text{=}\dfrac{\text{1}}{5}\left[ \begin{matrix} -14 & 9 & 1  \\ 9 & -4 & -1  \\ 1 & -1 & 1  \\ \end{matrix} \right]\] or \[{{A}^{\text{-1}}}\text{=}\left[ \begin{matrix} -\dfrac{14}{5} & \dfrac{9}{5} & \dfrac{\text{1}}{5}  \\ \dfrac{9}{5} & -\dfrac{4}{5} & -\dfrac{\text{1}}{5}  \\ \dfrac{\text{1}}{5} & -\dfrac{\text{1}}{5} & \dfrac{\text{1}}{5}  \\ \end{matrix} \right]\].

Thus,

\[\Rightarrow {{\text{A}}_{11}}\text{=}{{\left( \text{-1} \right)}^{1+1}}{{\text{M}}_{11}}={{\left( \text{-1} \right)}^{2}}{{\text{M}}_{11}}\]

\[\Rightarrow {{A}_{11}}\text{=-}\dfrac{\text{1}}{5}\]

\[\Rightarrow {{\text{A}}_{12}}\text{=}{{\left( \text{-1} \right)}^{1+2}}{{\text{M}}_{12}}={{\left( \text{-1} \right)}^{3}}{{\text{M}}_{12}}\]

\[\Rightarrow {{A}_{12}}=-\dfrac{2}{5}\]

\[\Rightarrow {{\text{A}}_{13}}\text{=}{{\left( \text{-1} \right)}^{1+3}}{{\text{M}}_{13}}={{\left( \text{-1} \right)}^{4}}{{\text{M}}_{13}}\]

\[\Rightarrow {{A}_{13}}=-\dfrac{\text{1}}{5}\]

Similarly,

\[\Rightarrow {{\text{A}}_{21}}\text{=}{{\left( \text{-1} \right)}^{2+1}}{{\text{M}}_{21}}={{\left( \text{-1} \right)}^{3}}{{\text{M}}_{21}}\]

\[\Rightarrow {{\text{A}}_{21}}\text{=-}\dfrac{2}{5}\]

\[\Rightarrow {{\text{A}}_{22}}\text{=}{{\left( \text{-1} \right)}^{2+2}}{{\text{M}}_{22}}={{\left( \text{-1} \right)}^{4}}{{\text{M}}_{22}}\]

\[\Rightarrow {{\text{A}}_{22}}=-\dfrac{3}{5}\]

\[\Rightarrow {{\text{A}}_{23}}\text{=}{{\left( \text{-1} \right)}^{2+3}}{{\text{M}}_{23}}={{\left( \text{-1} \right)}^{5}}{{\text{M}}_{23}}\]

\[\Rightarrow {{\text{A}}_{23}}\text{=-}\dfrac{\text{1}}{5}\]

And

\[\Rightarrow {{\text{A}}_{31}}\text{=}{{\left( \text{-1} \right)}^{3+1}}{{\text{M}}_{31}}={{\left( \text{-1} \right)}^{4}}{{\text{M}}_{31}}\]

\[\Rightarrow {{\text{A}}_{31}}=-\dfrac{\text{1}}{5}\]

\[\Rightarrow {{\text{A}}_{32}}\text{=}{{\left( \text{-1} \right)}^{3+2}}{{\text{M}}_{32}}={{\left( \text{-1} \right)}^{5}}{{\text{M}}_{32}}\]

\[\Rightarrow {{\text{A}}_{32}}=-\dfrac{\text{1}}{5}\]

\[\Rightarrow {{\text{A}}_{33}}\text{=}{{\left( \text{-1} \right)}^{3+3}}{{\text{M}}_{33}}={{\left( \text{-1} \right)}^{6}}{{\text{M}}_{33}}\]

\[\Rightarrow {{\text{A}}_{33}}=-1\].

Cofactor matrix is \[\left[ \begin{matrix} -\dfrac{\text{1}}{5} & -\dfrac{2}{5} & -\dfrac{\text{1}}{5}  \\ -\dfrac{2}{5} & -\dfrac{3}{5} & -\dfrac{\text{1}}{5}  \\ -\dfrac{\text{1}}{5} & -\dfrac{\text{1}}{5} & -1  \\ \end{matrix} \right]\].  We know that adjoint of a matrix is the transpose of its cofactor matrix.

\[\Rightarrow adj{{A}^{-1}}={{\left[ \begin{matrix} -\dfrac{\text{1}}{5} & -\dfrac{2}{5} & -\dfrac{\text{1}}{5}  \\ -\dfrac{2}{5} & -\dfrac{3}{5} & -\dfrac{\text{1}}{5}  \\ -\dfrac{\text{1}}{5} & -\dfrac{\text{1}}{5} & -1  \\ \end{matrix} \right]}^{T}}\]

\[\therefore \text{adj}{{A}^{-1}}\text{=}\left[ \begin{matrix} -\dfrac{\text{1}}{5} & -\dfrac{2}{5} & -\dfrac{\text{1}}{5}  \\ -\dfrac{2}{5} & -\dfrac{3}{5} & -\dfrac{\text{1}}{5}  \\ -\dfrac{\text{1}}{5} & -\dfrac{\text{1}}{5} & -1  \\ \end{matrix} \right]\]

Next, moving to the LHS, i.e. the inverse of the adjoint of A. We have an adjoint of A as matrix B,

\[B\text{=}\left[ \begin{matrix} 14 & -9 & -1  \\ -9 & 4 & 1  \\ -1 & 1 & -1  \\ \end{matrix} \right]\]

The Determinant of B is

$\left| B \right|=\left[ 14\left( -4-1 \right)+9\left( 9+1 \right)-1\left( -9+4 \right) \right]$

$\Rightarrow \left| B \right|=\left[ -70+90+5 \right]$

$\therefore \left| B \right|=25$

Now the cofactors,

Thus,

\[\Rightarrow {{B}_{11}}\text{=}{{\left( \text{-1} \right)}^{1+1}}{{\text{M}}_{11}}={{\left( \text{-1} \right)}^{2}}{{\text{M}}_{11}}\]

\[\Rightarrow {{B}_{11}}\text{=-5}\]

\[\Rightarrow {{B}_{12}}\text{=}{{\left( \text{-1} \right)}^{1+2}}{{\text{M}}_{12}}={{\left( \text{-1} \right)}^{3}}{{\text{M}}_{12}}\]

\[\Rightarrow {{B}_{12}}=-10\]

\[\Rightarrow {{B}_{13}}\text{=}{{\left( \text{-1} \right)}^{1+3}}{{\text{M}}_{13}}={{\left( \text{-1} \right)}^{4}}{{\text{M}}_{13}}\]

\[\Rightarrow {{B}_{13}}=-5\]

Similarly,

\[\Rightarrow {{B}_{21}}\text{=}{{\left( \text{-1} \right)}^{2+1}}{{\text{M}}_{21}}={{\left( \text{-1} \right)}^{3}}{{\text{M}}_{21}}\]

\[\Rightarrow {{B}_{21}}\text{=-10}\]

\[\Rightarrow {{B}_{22}}\text{=}{{\left( \text{-1} \right)}^{2+2}}{{\text{M}}_{22}}={{\left( \text{-1} \right)}^{4}}{{\text{M}}_{22}}\]

\[\Rightarrow {{B}_{22}}=-15\]

\[\Rightarrow {{B}_{23}}\text{=}{{\left( \text{-1} \right)}^{2+3}}{{\text{M}}_{23}}={{\left( \text{-1} \right)}^{5}}{{\text{M}}_{23}}\]

\[\Rightarrow {{B}_{23}}\text{=-5}\]

And

\[\Rightarrow {{B}_{31}}\text{=}{{\left( \text{-1} \right)}^{3+1}}{{\text{M}}_{31}}={{\left( \text{-1} \right)}^{4}}{{\text{M}}_{31}}\]

\[\Rightarrow {{B}_{31}}=-5\]

\[\Rightarrow {{B}_{32}}\text{=}{{\left( \text{-1} \right)}^{3+2}}{{\text{M}}_{32}}={{\left( \text{-1} \right)}^{5}}{{\text{M}}_{32}}\]

\[\Rightarrow {{B}_{32}}=-5\]

\[\Rightarrow {{B}_{33}}\text{=}{{\left( \text{-1} \right)}^{3+3}}{{\text{M}}_{33}}={{\left( \text{-1} \right)}^{6}}{{\text{M}}_{33}}\]

\[\Rightarrow {{B}_{33}}=-25\].

Cofactor matrix is \[\left[ \begin{matrix} -5 & -10 & -5  \\ -10 & -15 & -5  \\ -5 & -5 & -25  \\ \end{matrix} \right]\].

We know that adjoint of a matrix is the transpose of its cofactor matrix.

\[\Rightarrow adjB={{\left[ \begin{matrix} -5 & -10 & -5  \\ -10 & -15 & -5  \\ -5 & -5 & -25  \\ \end{matrix} \right]}^{T}}\]

\[\therefore \text{adjB=}\left[ \begin{matrix} -5 & -10 & -5  \\ -10 & -15 & -5  \\ -5 & -5 & -25  \\ \end{matrix} \right]\]

Now the inverse is found as

\[{{B}^{\text{-1}}}\text{=}\dfrac{\text{1}}{\left| B \right|}\left( \text{adjB} \right)\]

\[\Rightarrow {{B}^{\text{-1}}}\text{=}\dfrac{\text{1}}{25}\left[ \begin{matrix} -5 & -10 & -5  \\ -10 & -15 & -5  \\ -5 & -5 & -25  \\ \end{matrix} \right]\]

\[\therefore {{B}^{\text{-1}}}\text{=}\left[ \begin{matrix} -\dfrac{\text{1}}{5} & -\dfrac{2}{5} & -\dfrac{\text{1}}{5}  \\ -\dfrac{2}{5} & -\dfrac{3}{5} & -\dfrac{\text{1}}{5}  \\ -\dfrac{\text{1}}{5} & -\dfrac{\text{1}}{5} & -1  \\ \end{matrix} \right]\]

So, LHS is \[{{\left[ \text{adjA} \right]}^{\text{-1}}}\text{=}\left[ \begin{matrix} -\dfrac{\text{1}}{5} & -\dfrac{2}{5} & -\dfrac{\text{1}}{5}  \\ -\dfrac{2}{5} & -\dfrac{3}{5} & -\dfrac{\text{1}}{5}  \\ -\dfrac{\text{1}}{5} & -\dfrac{\text{1}}{5} & -1  \\ \end{matrix} \right]\]. 

Since LHS=RHS, it is verified that \[{{\left[ \text{adjA} \right]}^{\text{-1}}}\text{=adj}\left( {{\text{A}}^{\text{-1}}} \right)\].


(ii) \[\mathbf{{{\left( {{\text{A}}^{\text{-1}}} \right)}^{\text{-1}}}\text{=A}}\]

Ans: Since \[{{A}^{\text{-1}}}\text{=}\left[ \begin{matrix} -\dfrac{14}{5} & \dfrac{9}{5} & \dfrac{\text{1}}{5}  \\ \dfrac{9}{5} & -\dfrac{4}{5} & -\dfrac{\text{1}}{5}  \\ \dfrac{\text{1}}{5} & -\dfrac{\text{1}}{5} & \dfrac{\text{1}}{5}  \\ \end{matrix} \right]\]  and \[\text{adj}{{A}^{-1}}\text{=}\left[ \begin{matrix} -\dfrac{\text{1}}{5} & -\dfrac{2}{5} & -\dfrac{\text{1}}{5}  \\ -\dfrac{2}{5} & -\dfrac{3}{5} & -\dfrac{\text{1}}{5}  \\ -\dfrac{\text{1}}{5} & -\dfrac{\text{1}}{5} & -1  \\ \end{matrix} \right]\], thus,

\[\Rightarrow \left| {{\text{A}}^{\text{-1}}} \right|\text{=}\left[ -\dfrac{14}{5}\left( -\dfrac{4}{25}-\dfrac{1}{25} \right)-\dfrac{9}{5}\left( \dfrac{9}{25}+\dfrac{1}{25} \right)+\dfrac{1}{5}\left( -\dfrac{9}{25}+\dfrac{4}{25} \right) \right]\]

\[\Rightarrow \left| {{\text{A}}^{\text{-1}}} \right|\text{=}\left[ \dfrac{70}{125}-\dfrac{90}{125}-\dfrac{5}{125} \right]\]

\[\therefore \left| {{\text{A}}^{\text{-1}}} \right|\text{=-}\dfrac{1}{5}\]

Also, we know that an inverse of a matrix is given by:

\[\Rightarrow {{\left( {{\text{A}}^{\text{-1}}} \right)}^{-1}}\text{=}\dfrac{\text{adj}{{\text{A}}^{\text{-1}}}}{\left| \text{A} \right|}\]

\[\Rightarrow {{\left( {{\text{A}}^{\text{-1}}} \right)}^{-1}}\text{=-5}\left[ \begin{matrix} -\dfrac{\text{1}}{5} & -\dfrac{2}{5} & -\dfrac{\text{1}}{5}  \\ -\dfrac{2}{5} & -\dfrac{3}{5} & -\dfrac{\text{1}}{5}  \\ -\dfrac{\text{1}}{5} & -\dfrac{\text{1}}{5} & -1  \\ \end{matrix} \right]\]

\[\Rightarrow {{\left( {{\text{A}}^{\text{-1}}} \right)}^{-1}}\text{=}\left[ \begin{matrix} 1 & 2 & 1  \\ 2 & 3 & 1  \\ 1 & 1 & 1  \\ \end{matrix} \right]\]

\[\Rightarrow {{\left( {{\text{A}}^{\text{-1}}} \right)}^{-1}}\text{=A}\]

Hence verified that \[{{\left( {{\text{A}}^{\text{-1}}} \right)}^{\text{-1}}}\text{=A}\].


5. Evaluate \[\mathbf{\left| \begin{matrix} \text{x} & \text{y} & \text{x+y}  \\ \text{y} & \text{x+y} & \text{x}  \\ \text{x+y} & \text{x} & \text{y}  \\ \end{matrix} \right|}\]

Ans: Given, \[\text{ }\!\!\Delta\!\!\text{ =}\left| \begin{matrix} \text{x} & \text{y} & \text{x+y}  \\ \text{y} & \text{x+y} & \text{x}  \\ \text{x+y} & \text{x} & \text{y}  \\ \end{matrix} \right|\]

Applying \[{{R}_{1}}\to {{R}_{1}}\text{+}{{\text{R}}_{2}}\text{+}{{\text{R}}_{3}}\]

\[\text{ }\!\!\Delta\!\!\text{ =}\left| \begin{matrix} \text{2}\left( \text{x+y} \right) & \text{2}\left( \text{x+y} \right) & \text{2}\left( \text{x+y} \right)  \\ \text{y} & \text{x+y} & \text{x}  \\ \text{x+y} & \text{x} & \text{y}  \\ \end{matrix} \right|\]

Taking \[\text{2}\left( \text{x+y} \right)\] common from \[{{\text{R}}_{1}}\]

\[\Rightarrow \Delta \text{=2}\left( \text{x+y} \right)\left| \begin{matrix} \text{1} & \text{1} & \text{1}  \\ \text{y} & \text{x+y} & \text{x}  \\ \text{x+y} & \text{x} & \text{y}  \\ \end{matrix} \right|\]

Applying the row operations \[{{\text{C}}_{2}}\to {{C}_{2}}-{{C}_{1}}\] and \[{{C}_{3}}\to {{C}_{3}}-{{C}_{1}}\]

\[\text{ }\!\!\Delta\!\!\text{ =2}\left( \text{x+y} \right)\left| \begin{matrix} \text{1} & \text{0} & 0  \\ \text{y} & \text{x} & \text{x-y}  \\ \text{x+y} & \text{-y} & \text{-x}  \\ \end{matrix} \right|\]

Expanding along \[{{\text{R}}_{1}}\]

\[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =2}\left( \text{x+y} \right)\left[ 1\left( \left( x\times \left( \text{-x} \right) \right)-\left( -y\left( x-y \right) \right) \right)\text{+0+}0 \right]\]

\[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =2}\left( \text{x+y} \right)\left[ 1\left( \left( \text{-}{{\text{x}}^{2}} \right)-\left( -yx+{{y}^{2}} \right) \right) \right]\]

\[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =2}\left( \text{x+y} \right)\left[ -{{\text{x}}^{\text{2}}}\text{+xy}-{{\text{y}}^{\text{2}}} \right]\]

\[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =-2}\left( \text{x+y} \right)\left[ {{\text{x}}^{\text{2}}}-xy+{{\text{y}}^{\text{2}}} \right]\]

Applying the identity,

\[\therefore \text{ }\!\!\Delta\!\!\text{ =-2}\left[ {{\text{x}}^{3}}\text{+}{{\text{y}}^{3}} \right]\]


6. Evaluate \[\mathbf{\left| \begin{matrix} \text{1} & \text{x} & \text{y}  \\ \text{1} & \text{x+y} & \text{y}  \\ \text{1} & \text{x} & \text{x+y}  \\ \end{matrix} \right|}\]

Ans: Given, \[\text{ }\!\!\Delta\!\!\text{ =}\left| \begin{matrix} \text{1} & \text{x} & \text{y}  \\ \text{1} & \text{x+y} & \text{y}  \\ \text{1} & \text{x} & \text{x+y}  \\ \end{matrix} \right|\]

Applying the row operations \[{{\text{R}}_{2}}\to {{\text{R}}_{2}}-{{\text{R}}_{1}}\] and \[{{\text{R}}_{3}}\to {{\text{R}}_{3}}-{{\text{R}}_{1}}\]

\[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =}\left| \begin{matrix} \text{1} & \text{x} & \text{y}  \\ \text{0} & \text{y} & \text{0}  \\ \text{0} & \text{0} & \text{x}  \\ \end{matrix} \right|\]

Expanding along \[{{\text{C}}_{1}}\]

\[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =1}\left( \text{xy-0} \right)\]

\[\therefore \text{ }\!\!\Delta\!\!\text{ }=\text{xy}\]


7. Solve the system of the following equations

\[\mathbf{\dfrac{\text{2}}{\text{x}}\text{+}\dfrac{\text{3}}{\text{y}}\text{+}\dfrac{\text{10}}{\text{z}}\text{=4}}\]

\[\mathbf{\dfrac{\text{4}}{\text{x}}\text{+}\dfrac{\text{6}}{\text{y}}\text{+}\dfrac{\text{5}}{\text{z}}\text{=1}}\]

\[\mathbf{\dfrac{\text{6}}{\text{x}}\text{+}\dfrac{\text{9}}{\text{y}}\text{+}\dfrac{\text{20}}{\text{z}}\text{=2}}\]

Ans: Given equations,

\[\dfrac{\text{2}}{\text{x}}\text{+}\dfrac{\text{3}}{\text{y}}\text{+}\dfrac{\text{10}}{\text{z}}\text{=4}\]

\[\dfrac{\text{4}}{\text{x}}\text{+}\dfrac{\text{6}}{\text{y}}\text{+}\dfrac{\text{5}}{\text{z}}\text{=1}\]

\[\dfrac{\text{6}}{\text{x}}\text{+}\dfrac{\text{9}}{\text{y}}\text{+}\dfrac{\text{20}}{\text{z}}\text{=2}\]

Let \[\dfrac{\text{1}}{\text{x}}\text{=p}\] , \[\dfrac{\text{1}}{\text{y}}\text{=q}\] and \[\dfrac{\text{1}}{\text{z}}\text{=r}\]

Then the given system of equations becomes:

\[\text{2p+3q+10r=4}\]

\[\text{4p-6q+5r=1}\]

\[\text{6p+9q+20r=2}\]

Let \[\text{A=}\left[ \begin{matrix} \text{2} & \text{3} & \text{10}  \\ \text{4} & \text{-6} & \text{5}  \\ \text{6} & \text{9} & \text{-20}  \\ \end{matrix} \right]\] , \[\text{X=}\left[ \begin{matrix} \text{p}  \\ \text{q}  \\ \text{r}  \\ \end{matrix} \right]\] and \[\text{B=}\left[ \begin{matrix} \text{4}  \\ \text{1}  \\ \text{2}  \\ \end{matrix} \right]\] such that, this system can be written in the form of \[\text{AX=B}\].

Now,

\[\Rightarrow \left| A \right|\text{=2}\left( \text{120-45} \right)\text{-3}\left( \text{-80-30} \right)\text{+10}\left( \text{36+36} \right)\]

\[\Rightarrow \left| A \right|\text{=150+330+720}\]

\[\Rightarrow \left| A \right|\text{=1200}\]

Thus, \[\text{A}\] is a non-singular matrix.

$\therefore $ Its inverse exists.

So,

\[\Rightarrow {{\text{A}}_{11}}\text{=}{{\left( \text{-1} \right)}^{1+1}}{{\text{M}}_{11}}={{\left( \text{-1} \right)}^{2}}\left| \begin{matrix} -6 & 5  \\ 9 & -20  \\ \end{matrix} \right|\]

\[\Rightarrow {{A}_{11}}\text{=75}\]

\[\Rightarrow {{\text{A}}_{12}}\text{=}{{\left( \text{-1} \right)}^{1+2}}{{\text{M}}_{12}}={{\left( \text{-1} \right)}^{3}}\left| \begin{matrix} 4 & 5  \\ 6 & -20  \\ \end{matrix} \right|\]

\[\Rightarrow {{A}_{12}}=110\]

\[\Rightarrow {{\text{A}}_{13}}\text{=}{{\left( \text{-1} \right)}^{1+3}}{{\text{M}}_{13}}={{\left( \text{-1} \right)}^{4}}\left| \begin{matrix} 4 & -6  \\ 6 & 9  \\ \end{matrix} \right|\]

\[\Rightarrow {{A}_{13}}=72\]

Similarly,

\[\Rightarrow {{\text{A}}_{21}}\text{=}{{\left( \text{-1} \right)}^{2+1}}{{\text{M}}_{21}}={{\left( \text{-1} \right)}^{3}}\left| \begin{matrix} 3 & 10  \\ 9 & -20  \\ \end{matrix} \right|\]

\[\Rightarrow {{\text{A}}_{21}}\text{=150}\]

\[\Rightarrow {{\text{A}}_{22}}\text{=}{{\left( \text{-1} \right)}^{2+2}}{{\text{M}}_{22}}={{\left( \text{-1} \right)}^{4}}\left| \begin{matrix} 2 & 10  \\ 6 & -20  \\ \end{matrix} \right|\]

\[\Rightarrow {{\text{A}}_{22}}=100\]

\[\Rightarrow {{\text{A}}_{23}}\text{=}{{\left( \text{-1} \right)}^{2+3}}{{\text{M}}_{23}}={{\left( \text{-1} \right)}^{5}}\left| \begin{matrix} 2 & 3  \\ 6 & 9  \\ \end{matrix} \right|\]

\[\Rightarrow {{\text{A}}_{23}}\text{=0}\]

and

\[\Rightarrow {{\text{A}}_{31}}\text{=}{{\left( \text{-1} \right)}^{3+1}}{{\text{M}}_{31}}={{\left( \text{-1} \right)}^{4}}\left| \begin{matrix} 3 & 10  \\ -6 & 5  \\ \end{matrix} \right|\]

\[\Rightarrow {{\text{A}}_{31}}=75\]

\[\Rightarrow {{\text{A}}_{32}}\text{=}{{\left( \text{-1} \right)}^{3+2}}{{\text{M}}_{32}}={{\left( \text{-1} \right)}^{5}}\left| \begin{matrix} 2 & 10  \\ 4 & 5  \\ \end{matrix} \right|\]

\[\Rightarrow {{\text{A}}_{32}}=30\]

\[\Rightarrow {{\text{A}}_{33}}\text{=}{{\left( \text{-1} \right)}^{3+3}}{{\text{M}}_{33}}={{\left( \text{-1} \right)}^{6}}\left| \begin{matrix} 2 & 3  \\ 4 & -6  \\ \end{matrix} \right|\]

\[\Rightarrow {{\text{A}}_{33}}=-24\].

The inverse of a matrix is given by:

\[\Rightarrow {{\text{A}}^{\text{-1}}}\text{=}\dfrac{\text{1}}{\left| \text{A} \right|}\left( \text{adjA} \right)\]

\[\therefore {{\text{A}}^{\text{-1}}}\text{=}\dfrac{\text{1}}{\text{1200}}\left[ \begin{matrix} \text{75} & \text{150} & \text{75}  \\ \text{110} & \text{-100} & \text{30}  \\ \text{72} & \text{0} & \text{-24}  \\ \end{matrix} \right]\]

Now, \[\text{X=}{{\text{A}}^{\text{-1}}}\text{B}\]

\[\Rightarrow \left[ \begin{matrix} \text{p}  \\ \text{q}  \\ \text{r}  \\ \end{matrix} \right]\text{=}\dfrac{\text{1}}{\text{1200}}\left[ \begin{matrix} \text{75} & \text{150} & \text{75}  \\ \text{110} & \text{-100} & \text{30}  \\ \text{72} & \text{0} & \text{-24}  \\ \end{matrix} \right]\left[ \begin{matrix} \text{4}  \\ \text{1}  \\ \text{2}  \\ \end{matrix} \right]\]

\[\Rightarrow \left[ \begin{matrix} \text{p}  \\ \text{q}  \\ \text{r}  \\ \end{matrix} \right]\text{=}\dfrac{\text{1}}{\text{1200}}\left[ \begin{matrix} \text{300+150+150}  \\ \text{440-100+60}  \\ \text{288+0-48}  \\ \end{matrix} \right]\]

\[\Rightarrow \left[ \begin{matrix} \text{p}  \\ \text{q}  \\ \text{r}  \\ \end{matrix} \right]\text{=}\dfrac{\text{1}}{\text{1200}}\left[ \begin{matrix} \text{600}  \\ \text{400}  \\ \text{240}  \\ \end{matrix} \right]\]

\[\Rightarrow \left[ \begin{matrix} \text{p}  \\ \text{q}  \\ \text{r}  \\ \end{matrix} \right]\text{=}\left[ \begin{matrix} \dfrac{\text{1}}{\text{2}}  \\ \dfrac{\text{1}}{\text{3}}  \\ \dfrac{\text{1}}{\text{5}}  \\ \end{matrix} \right]\]

\[\therefore \text{P=}\dfrac{\text{1}}{\text{2}}\], \[\text{q=}\dfrac{\text{1}}{\text{3}}\] and \[\text{r=}\dfrac{\text{1}}{\text{5}}\]

Thus \[\text{x=2}\] , \[\text{y=3}\] and \[\text{z=5}\].


8. Choose the correct answer.If \[\mathbf{\text{X,Y,Z}}\] are nonzero real numbers, then the inverse of matrix \[\mathbf{\text{A=}\left[ \begin{matrix} \text{x} & \text{0} & \text{0}  \\ \text{0} & \text{y} & \text{0}  \\ \text{0} & \text{0} & \text{z}  \\ \end{matrix} \right]}\]

  1. \[\mathbf{\left[ \begin{matrix} {{\text{x}}^{\text{-1}}} & \text{0} & \text{0}  \\ \text{0} & {{\text{y}}^{\text{-1}}} & \text{0}  \\ \text{0} & \text{0} & {{\text{z}}^{\text{-1}}}  \\ \end{matrix} \right]}\]

  2. \[\mathbf{\text{xyz}\left[ \begin{matrix} {{\text{x}}^{\text{-1}}} & \text{0} & \text{0}  \\ \text{0} & {{\text{y}}^{\text{-1}}} & \text{0}  \\ \text{0} & \text{0} & {{\text{z}}^{\text{-1}}}  \\ \end{matrix} \right]}\]

  3. \[\mathbf{\dfrac{\text{1}}{\text{xyz}}\left[ \begin{matrix} \text{x} & \text{0} & \text{0}  \\ \text{0} & \text{y} & \text{0}  \\ \text{0} & \text{0} & \text{z}  \\ \end{matrix} \right]}\]

  4. \[\mathbf{\dfrac{\text{1}}{\text{xyz}}\left[ \begin{matrix} \text{1} & \text{0} & \text{0}  \\ \text{0} & \text{1} & \text{0}  \\ \text{0} & \text{0} & \text{1}  \\ \end{matrix} \right]}\]

Ans: Given, \[\text{A=}\left[ \begin{matrix} \text{x} & \text{0} & \text{0}  \\ \text{0} & \text{y} & \text{0}  \\ \text{0} & \text{0} & \text{z}  \\ \end{matrix} \right]\]

\[\Rightarrow \left| \text{A} \right|\text{=x}\left( \text{yz-0} \right)\]

\[\therefore \left| \text{A} \right|\text{=xyz}\ne \text{0}\]

Thus,

\[\Rightarrow {{\text{A}}_{11}}\text{=}{{\left( \text{-1} \right)}^{1+1}}{{\text{M}}_{11}}={{\left( \text{-1} \right)}^{2}}{{\text{M}}_{11}}\]

\[\Rightarrow {{A}_{11}}\text{=yz}\]

\[\Rightarrow {{\text{A}}_{12}}\text{=}{{\left( \text{-1} \right)}^{1+2}}{{\text{M}}_{12}}={{\left( \text{-1} \right)}^{3}}{{\text{M}}_{12}}\]

\[\Rightarrow {{A}_{12}}=0\]

\[\Rightarrow {{\text{A}}_{13}}\text{=}{{\left( \text{-1} \right)}^{1+3}}{{\text{M}}_{13}}={{\left( \text{-1} \right)}^{4}}{{\text{M}}_{13}}\]

\[\Rightarrow {{A}_{13}}=0\]

Similarly,

\[\Rightarrow {{\text{A}}_{21}}\text{=}{{\left( \text{-1} \right)}^{2+1}}{{\text{M}}_{21}}={{\left( \text{-1} \right)}^{3}}{{\text{M}}_{21}}\]

\[\Rightarrow {{\text{A}}_{21}}\text{=0}\]

\[\Rightarrow {{\text{A}}_{22}}\text{=}{{\left( \text{-1} \right)}^{2+2}}{{\text{M}}_{22}}={{\left( \text{-1} \right)}^{4}}{{\text{M}}_{22}}\]

\[\Rightarrow {{\text{A}}_{22}}=xz\]

\[\Rightarrow {{\text{A}}_{23}}\text{=}{{\left( \text{-1} \right)}^{2+3}}{{\text{M}}_{23}}={{\left( \text{-1} \right)}^{5}}{{\text{M}}_{23}}\]

\[\Rightarrow {{\text{A}}_{23}}\text{=0}\]

and

\[\Rightarrow {{\text{A}}_{31}}\text{=}{{\left( \text{-1} \right)}^{3+1}}{{\text{M}}_{31}}={{\left( \text{-1} \right)}^{4}}{{\text{M}}_{31}}\]

\[\Rightarrow {{\text{A}}_{31}}=0\]

\[\Rightarrow {{\text{A}}_{32}}\text{=}{{\left( \text{-1} \right)}^{3+2}}{{\text{M}}_{32}}={{\left( \text{-1} \right)}^{5}}{{\text{M}}_{32}}\]

\[\Rightarrow {{\text{A}}_{32}}=0\]

\[\Rightarrow {{\text{A}}_{33}}\text{=}{{\left( \text{-1} \right)}^{3+3}}{{\text{M}}_{33}}={{\left( \text{-1} \right)}^{6}}{{\text{M}}_{33}}\]

\[\Rightarrow {{\text{A}}_{33}}=xy\].

Cofactor matrix is \[\left[ \begin{matrix} yz & 0 & 0  \\ 0 & xz & 0  \\ 0 & 0 & xy  \\ \end{matrix} \right]\].

We know that adjoint of a matrix is the transpose of its cofactor matrix.

\[\Rightarrow adjA={{\left[ \begin{matrix} yz & 0 & 0  \\ 0 & xz & 0  \\ 0 & 0 & xy  \\ \end{matrix} \right]}^{T}}\]

\[\therefore \text{adjA=}\left[ \begin{matrix} \text{yz} & \text{0} & \text{0}  \\ \text{0} & \text{xz} & \text{0}  \\ \text{0} & \text{0} & \text{xy}  \\ \end{matrix} \right]\]

The inverse of a matrix is given by:

\[\Rightarrow {{\text{A}}^{\text{-1}}}=\dfrac{\text{1}}{\left| \text{A} \right|}\left( \text{adjA} \right)\]

\[\Rightarrow {{\text{A}}^{\text{-1}}}\text{=}\dfrac{\text{1}}{\text{xyz}}\left[ \begin{matrix} \text{yz} & \text{0} & \text{0}  \\ \text{0} & \text{xz} & \text{0}  \\ \text{0} & \text{0} & \text{xy}  \\ \end{matrix} \right]\]

\[\Rightarrow {{\text{A}}^{\text{-1}}}\text{=}\left[ \begin{matrix} \dfrac{\text{yz}}{\text{xyz}} & \text{0} & \text{0}  \\ \text{0} & \dfrac{\text{xz}}{\text{xyz}} & \text{0}  \\ \text{0} & \text{0} & \dfrac{\text{xy}}{\text{xyz}}  \\ \end{matrix} \right]\]

\[\Rightarrow {{\text{A}}^{\text{-1}}}\text{=}\left[ \begin{matrix} \dfrac{\text{1}}{\text{x}} & \text{0} & \text{0}  \\ \text{0} & \dfrac{\text{1}}{\text{y}} & \text{0}  \\ \text{0} & \text{0} & \dfrac{\text{1}}{\text{z}}  \\ \end{matrix} \right]\]

\[\therefore {{\text{A}}^{\text{-1}}}\text{=}\left[ \begin{matrix} {{\text{x}}^{\text{-1}}} & \text{0} & \text{0}  \\ \text{0} & {{\text{y}}^{\text{-1}}} & \text{0}  \\ \text{0} & \text{0} & {{\text{z}}^{\text{-1}}}  \\ \end{matrix} \right]\]

Thus, A. \[\left[ \begin{matrix} {{\text{x}}^{\text{-1}}} & \text{0} & \text{0}  \\ \text{0} & {{\text{y}}^{\text{-1}}} & \text{0}  \\ \text{0} & \text{0} & {{\text{z}}^{\text{-1}}}  \\ \end{matrix} \right]\] is the correct answer.


9. Choose the correct answer.

Let \[\mathbf{\text{A}=\left[ \begin{matrix} 1 & \sin \theta  & 1  \\ -\sin \theta  & 1 & \sin \theta   \\ -1 & -\sin \theta  & 1  \\ \end{matrix} \right]}\], 

where \[\mathbf{\text{0}\le \text{ }\!\!\theta\!\!\text{ }\le \text{2n}}\] , then

  1. \[\mathbf{\text{Det}\left( \text{A} \right)\text{=0}}\]

  2. \[\mathbf{text{Det}\left( \text{A} \right)\in \left( \text{2,}\infty  \right)}\]

  3. \[\mathbf{\text{Det}\left( \text{A} \right)\in \left( \text{2,4} \right)}\]

  4. \[\mathbf{\text{Det}\left( \text{A} \right)\left[ \text{2,4} \right]}\]

Ans: Given, \[A=\left[ \begin{matrix} 1 & \sin \theta  & 1  \\ -\sin \theta  & 1 & \sin \theta   \\ -1 & -\sin \theta  & 1  \\ \end{matrix} \right]\]

\[\therefore \left| A \right|=1\left( 1+{{\sin }^{2}}\theta  \right)-\sin \theta \left( -\sin \theta +\sin \theta  \right)+1\left( {{\sin }^{2}}\theta +1 \right)\]

\[\Rightarrow \left| A \right|=1+{{\sin }^{2}}\theta +{{\sin }^{2}}\theta +1\]

\[\Rightarrow \left| A \right|=2+2{{\sin }^{2}}\theta \]

\[\Rightarrow \left| A \right|=2\left( 1+{{\sin }^{2}}\theta  \right)\]

We know, \[0\le \sin \theta \le 1\]

\[\Rightarrow 1\le 1+{{\sin }^{2}}\theta \le 2\]

\[\Rightarrow 2\le 2\left( 1+{{\sin }^{2}}\theta  \right)\le 4\]

Thus, D. \[\text{Det}\left( \text{A} \right)\left[ \text{2,4} \right]\] is the correct answer.


Conclusion

Miscellaneous Exercise in Class 12 Maths Chapter 4 is important for understanding various concepts thoroughly. Class 12 Maths Chapter 4 Miscellaneous Solutions covers diverse problems that require the application of multiple formulas and techniques. It's important to focus on understanding the underlying principles behind each question rather than just memorizing solutions. Remember to understand the theory behind each concept, practice regularly, and refer to solved examples to excel in this exercise effectively.


Class 12 Maths Chapter 4: Exercises Breakdown

Exercise

Number of Questions

Exercise 4.1

8 Questions and Solutions

Exercise 4.2

5 Questions and Solutions

Exercise 4.3

5 Questions and Solutions

Exercise 4.4

18 Questions and Solutions

Exercise 4.5

16 Questions and Solutions

Miscellaneous Exercises

9 Questions and Solutions


CBSE Class 12 Maths Chapter 4 Other Study Materials


Chapter-Specific NCERT Solutions for Class 12 Maths

Given below are the chapter-wise NCERT Solutions for Class 12 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.


Additional Study Materials for Class 12 Maths 

WhatsApp Banner

FAQs on NCERT Solutions For Class 12 Maths Chapter 4 Determinants

1. What is the correct step-by-step approach for solving determinant problems in Class 12 Maths Chapter 4 as per NCERT Solutions?

Start by identifying the correct method to expand the determinant—usually along the row or column with the most zeroes. Use properties of determinants to simplify rows or columns if possible, compute minors and cofactors, then expand. Apply any relevant row or column operations as allowed by the CBSE guidelines. Always show all calculations for full marks.

2. How do NCERT Solutions help in understanding complex miscellaneous problems in Class 12 Determinants?

They provide detailed, stepwise solutions for each problem, clarifying each concept and method used. This helps students learn how to logically approach tough questions, understand the use of different properties, and recognize patterns across different types of determinant problems.

3. Why is it important to understand properties like row/column operations when solving Miscellaneous Exercise problems in Chapter 4?

Mastering row and column operations allows students to simplify determinants efficiently, reduce calculation time, and avoid errors. These properties often turn challenging questions into manageable ones by creating zeros or identical rows/columns, leading directly to correct solutions.

4. What strategies should students use to avoid common mistakes when using NCERT Solutions for determinants?

  • Carefully track signs when applying cofactors.
  • Use properties only when allowed as per the method shown in solutions.
  • Check each arithmetic step in expansions.
  • Understand each step in the solution instead of rote learning, ensuring conceptual clarity for all board-level problems.

5. How does practicing with NCERT Solutions improve analytical and problem-solving skills for Class 12 board exams?

Consistent practice exposes students to a variety of question patterns and solution techniques, developing analytical skills and the ability to tackle unfamiliar or complex problems with confidence, as required in board exams.

6. What role do minors and cofactors play in solutions to determinant and matrix problems in this chapter?

Minors and cofactors are foundational for expanding determinants, finding adjoints and inverses of matrices, and solving systems of linear equations. These concepts are essential for accurate calculations and deeper understanding of determinant properties as per Class 12 NCERT guidelines.

7. In what cases should students choose direct expansion versus using determinant properties in the Miscellaneous Exercise?

Choose direct expansion for small or simple matrices, especially when zeros are present for easier computation. Use determinant properties when simplification is possible, such as when two rows/columns are multiples or when row operations can produce zeros. NCERT Solutions highlight such opportunities for efficiency.

8. How do solutions to Class 12 Maths Chapter 4 enable students to apply determinants in practical or real-life mathematical scenarios?

NCERT Solutions demonstrate applications such as finding the area of triangles, solving systems of equations (Cramer's rule), and verifying linear dependence. This builds analytical skills useful in higher mathematics, engineering, and economics, making the chapter more relevant and practical.

9. What is the significance of verifying results, such as determinant independence from variables or matrix inverses, in the solutions?

Verifying these results strengthens conceptual understanding and prevents common mistakes. For example, recognizing that the determinant is independent of a variable confirms correct application of properties and solution methods, which is crucial for both board and competitive exams.

10. Are the solutions for advanced application-based and HOTS problems included in the NCERT Solutions for Class 12 Maths Chapter 4 Determinants?

Yes, the NCERT Solutions include application-based and higher order thinking skill (HOTS) problems that require integration of multiple concepts from the chapter, such as proof-based, system-solving, and property-verification questions. Step-by-step explanations help students approach these advanced problems confidently.

11. How can students use NCERT Solutions to self-assess their mastery over Chapter 4 before the CBSE 2025–26 board exams?

Students can compare their own step-by-step solutions to those in the official NCERT Solutions, identifying gaps or errors. This self-assessment, along with solving all miscellaneous problems, ensures complete coverage and understanding as demanded by the latest board pattern.

12. What should students focus on while revising from NCERT Solutions for Chapter 4 to maximize exam success?

  • Grasp the logical flow in solutions, not just answers.
  • Revisit proofs and properties: understand why each step is taken.
  • Apply methods to new/sample questions to test conceptual strength before the exam.