Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

Determinants Class 12 Notes CBSE Maths Chapter 4 (Free PDF Download)

ffImage

Revision Notes for CBSE Class 12 Maths Chapter 4 (Determinants) - Free PDF Download

CBSE Class 12 Maths Notes Chapter 4 Determinants offered by Vedantu is essential for aspiring students who are aiming to achieve top marks in their examinations. Here, students can consult our Determinants Class 12 Notes PDF for their exam preparation. Opt for Determinant Class 12 Notes online to learn about several shortcut techniques that help solve numerical in a step by step manner. Avail the Determinant Notes Class 12 PDF and gains access to the study material available on the web at your convenience.

CBSE Class 12 Maths Revision Notes 2024-25 - Chapter Wise PDF Notes for Free

In the table below we have provided the PDF links of all the chapters of CBSE Class 12 Maths whereby the students are required to revise the chapters by downloading the PDF. 


Determinants Related Important Links

It is a curated compilation of relevant online resources that complement and expand upon the content covered in a specific chapter. Explore these links to access additional readings, explanatory videos, practice exercises, and other valuable materials that enhance your understanding of the chapter's subject matter.

Class 12 Study Materials Important Links

Find a curated selection of study resources for Class 12 subjects, helping students prepare effectively and excel in their academic pursuits.

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
More Free Study Material for Determinants
icons
Ncert solutions
565.5k views 12k downloads
icons
Important questions
720.9k views 14k downloads
icons
Ncert books
732.3k views 14k downloads

Determinants Class 12 Notes Maths - Basic Subjective Questions

Section–A (1 Mark Questions)


1. If $A$ is invertible matrix of order $3 \times 3$, then $\left|A^{-1}\right|=\ldots \ldots$

Ans. $A A^{-1}=I$

$$\begin{aligned}& \Rightarrow\left|A A^{-1}\right|=|I| \\& \Rightarrow|A|\left|A^{-1}\right|=1 \\& \Rightarrow\left|A^{-1}\right|=\frac{1}{|A|} .\end{aligned}$$


2. If $A$ is a matrix of order $3 \times 3$, then number of minors in determinant of $A$ are

Ans. If $A$ is a matrix of order $3 \times 3$, then it has 9 elements and hence, the number of minors in determinant of $A$ are 9 .


3. The sum of the products of elements of any row with the co-factors of corresponding elements is equal to..........

Ans. The sum of products of elements of any row with the cofactors of corresponding elements is equal to value of the determinant.

Let $$\Delta=\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\a_{21} & a_{22} & a_{23} \\a_{31} & a_{32} & a_{33}\end{array}\right|$$

Expanding along $R_1$,

$$\Delta=a_{11} A_{11}+a_{12} A_{12}+a_{13} A_{13}$$


4. Evaluate $\left|\begin{array}{cc}2 & 4 \\ -1 & 2\end{array}\right|$.

Ans. We have $\left|\begin{array}{cc}2 & 4 \\ -1 & 2\end{array}\right|=2(2)-4(-1)$

$$=4+4=8$$


5. $$\Delta=\left|\begin{array}{lll}3 & 2 & 3 \\2 & 2 & 3 \\3 & 2 & 3\end{array}\right| .$$

Ans. Here ${ }^{R_1}$ and $R_3$ are identical. Thus, value of determinant is zero.


Section–B (2 Marks Questions)


6. Prove that $\left(A^{\prime}\right)^{-1}=\left(A^{-1}\right)^{\prime}$, where $A$ is an invertible matrix.

Ans. Since $\mathrm{A}$ is an invertible matrix, so it is non-singular.

We know that $|A|=|A|$

But $|A| \neq 0$.

So $\left|A^{\prime}\right| \neq 0$ i.e. $A^{\prime}$ is invertible matrix.

Now we know that $A A^{-1}=A^{-1} A=I$.

Taking transpose on both sides, we get

$\left(A^{-1}\right)^{\prime}A^{\prime}=A^{\prime}\left(A^{-1}\right)^{\prime}=(I)^{\prime}=I$

Hence $\left(A^{-1}\right)^{\prime}$ is inverse of $A^{\prime}$, i.e $\left(A^{\prime}\right)^{-1}=\left(A^{-1}\right)^{\prime}$.


7. If $\left|\begin{array}{cc}2 x & 5 \\ 8 & x\end{array}\right|=\left|\begin{array}{cc}6 & -2 \\ 7 & 3\end{array}\right|$, then find $x$.

Ans. We have $\left|\begin{array}{cc}2 x & 5 \\ 8 & x\end{array}\right|=\left|\begin{array}{cc}6 & -2 \\ 7 & 3\end{array}\right|$

$$\begin{aligned}& \Rightarrow 2 x^2-40=18+14 \\& \Rightarrow 2 x^2=72 \\& \Rightarrow x^2=36 \\& \Rightarrow x= \pm 6\end{aligned}$$


8. The area of a triangle with vertices $(-3,0),(-3,0),(3,0)$ and $(0, k)$ is 9 sq. units. Find the value of $k$.

Ans. Area of triangle with vertices $(-3,0),(3,0)$and $(0, k)$ is 9

$$\begin{aligned}& \Delta=\left|\frac{1}{2}\right| \begin{array}{ccc}-3 & 0 & 1 \\3 & 0 &1 \\0 & k & 1\end{array} \mid=9 \quad \text { (given) } \\\therefore & \quad[-3(-k)-0+1(3 k)]= \pm 18\end{aligned}$$

$$\begin{aligned}& \Rightarrow 6 k= \pm 18 \\& \therefore k= \pm \frac{18}{6}= \pm 3\end{aligned}$$

$$\Delta=\left|\begin{array}{ccc}\sin ^2 23^{\circ} & \sin ^2 67^{\circ} & \cos 180^{\circ} \\-\sin ^2 67^{\circ} & -\sin ^2 23^{\circ} & \cos ^2 180^{\circ} \\\cos 180^{\circ} & \sin ^2 23^{\circ} & \sin ^2 67^{\circ}\end{array}\right| .$$


9. Find the value of the determinant $$\Delta=\left|\begin{array}{ccc}\sin ^2 23^{\circ} & \sin ^2 67^{\circ} & \cos 180^{\circ} \\-\sin ^2 67^{\circ} & -\sin ^2 23^{\circ} & \cos ^2 180^{\circ} \\\cos 180^{\circ} & \sin ^2 23^{\circ} & \sin ^2 67^{\circ}\end{array}\right|$$

Ans. $$=\left|\begin{array}{ccc}\sin ^2 23^{\circ} & \cos ^2 23^{\circ} & -1 \\-\sin ^2 67^{\circ} & -\cos ^2 67^{\circ} & 1 \\-1 & \sin ^2 23^{\circ} & \cos ^2 23^{\circ}\end{array}\right|$$

Apply $C_1 \rightarrow C_1+C_2+C_3$

$$=\left|\begin{array}{ccc}0 & \cos ^2 23^{\circ} & -1 \\0 & -\cos ^2 67^{\circ} & 1 \\0 & \sin ^2 23^{\circ} & \cos ^2 23^{\circ}\end{array}\right|=0$$


10. Find the value of $a$ if the value of the determinant

$$\left|\begin{array}{ccc}1 & -2 & 5 \\2 & a & 1 \\0 & 4 & 2 a\end{array}\right| \text { is} 78 .$$

Ans. We have, $$\Delta=\left|\begin{array}{ccc}1 & -2 & 5 \\2 & a & 1 \\0 & 4 & 2 a\end{array}\right|=78$$

Expanding along $\mathrm{C}_1$

$$\begin{aligned}& 1\left(2 a^2-4\right)-2(-4 a-20)+0=78 \\& \Rightarrow 2 a^2-4+8 a+40=78 \\& \Rightarrow 2 a^2+8 a-42=0 \\& \Rightarrow a^2+4 a-21=0 \\& \Rightarrow(a+7)(a-3)=0\end{aligned}$$

$\Rightarrow a=-7$ and 3


11. Solve $\left|\begin{array}{cc}x^2-x+1 & x-1 \\ x+1 & x+1\end{array}\right|$ using the properties of

Ans. We have, $\left|\begin{array}{cc}x^2-x+1 & x-1 \\ x+1 & x+1\end{array}\right|$

Applying $C_1 \rightarrow C_1-C_2$

$$\begin{aligned}& =\left|\begin{array}{cc}x^2-2 x+2 & x-1 \\0 & x+1\end{array}\right| \\& =\left(x^2-2 x+2\right) \cdot(x+1)-(x-1) \cdot 0 \\& =x^3-2 x^2+2 x+x^2-2 x+2 \\& =x^3-x^2+2 .\end{aligned}$$determinants.


12. $$\Delta=\left|\begin{array}{ccc}0 & b-a & c-a \\a-b & 0 & c-b \\a-c & b-c & 0\end{array}\right|,$$, then show that $\Delta$ is equal to zero.

Ans. Interchanging rows and columns we get

$$\Delta=\left|\begin{array}{ccc}0 & a-b & a-c \\b-a & 0 & b-c \\c-a & c-b & 0\end{array}\right|$$

Taking ' -1 ' common from $R_1, R_2$ and $R_3$, we get

$$\begin{aligned}& \Delta=(-1)^3\left|\begin{array}{ccc}0 & b-a & c-a \\a-b & 0 & c-b \\a-c & b-c & 0\end{array}\right|=-\Delta \\& 2 \Delta=0 \text { or } \Delta=0 . \\& \Rightarrow \Delta=0\end{aligned}$$


13. Evaluate: $\left|\begin{array}{ccc}0 & x y^2 & x z^2 \\ x^2 y & 0 & y z^2 \\ x z^2 & z y^2 & 0\end{array}\right|$.

Ans. Let,

$$\Delta=\left|\begin{array}{ccc}0 & x y^2 & x z^2 \\x^2 y & 0 & y z^2 \\x^2 z & z y^2 & 0\end{array}\right|$$

On simplification we get,

$$\begin{aligned}& =0\left(0-y^3 z^3\right)-x y^2\left(0-x^2 y z^3\right)+x z^2\left(x^2 y^3 z-0\right) \\& =0+x^3 y^3 z^3+x^3 y^3 z^3 \\& =2 x^3 y^3 z^3\end{aligned}$$



PDF Summary - Class 12 Maths Determinants Notes (Chapter 4)


Recollecting Concepts

When a system of algebraic equations is given to us as:


${{a}_{1}}x+{{b}_{1}}y={{c}_{1}}$


${{a}_{2}}x+{{b}_{2}}y={{c}_{2}}$


Then we can express them in the form of matrices as:

$\left[ \begin{matrix} {{a}_{1}} & {{b}_{1}}  \\ {{a}_{2}} & {{b}_{2}}  \\ \end{matrix} \right]\left[ \begin{matrix} x  \\ y  \\ \end{matrix} \right]=\left[ \begin{matrix} {{c}_{1}}  \\ {{c}_{2}}  \\ \end{matrix} \right]$

 

To get the solution of a system of linear equations, we find all the values of the variables satisfying all the linear equations in the system.


Definition of Determinants

  • We can define the determinant of a matrix as a scalar value that can be calculated from the elements of a square matrix.

  • The scalar value for a square matrix  $\left[ \begin{matrix} {{a}_{1}} & {{b}_{1}}  \\ {{a}_{2}} & {{b}_{2}}  \\ \end{matrix} \right]$ is given by ${{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}$.

  • It is represented as $\left| A \right|$ or det $\left( A \right)$ or $\Delta $.

  • For a matrix  $\left[ \begin{matrix} {{a}_{1}} & {{b}_{1}}  \\ {{a}_{2}} & {{b}_{2}}  \\ \end{matrix} \right]$, the determinant is written as $\left| \begin{matrix} {{a}_{1}} & {{b}_{1}}  \\ {{a}_{2}} & {{b}_{2}}  \\ \end{matrix} \right|$.

  • Square matrices are those matrices that have the same number of rows and columns. Only such matrices have determinants.


Types of Determinants

1. First Order Determinant – It is the determinant of a matrix of order one. The element of the matrix will be the determinant value. 


For example,


$\left[ 2 \right]\Rightarrow \left| 2 \right|\Rightarrow 2$ 


2. Second Order Determinant - It is the determinant of a matrix of order two.

If $\left[ \begin{matrix} {{a}_{1}} & {{b}_{1}}  \\ {{a}_{2}} & {{b}_{2}}  \\ \end{matrix} \right]$, then $\left| \begin{matrix} {{a}_{1}} & {{b}_{1}}  \\ {{a}_{2}} & {{b}_{2}}  \\ \end{matrix} \right|={{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}$.


For example,


$\left[ \begin{matrix} 1 & 3  \\ 5 & 3  \\ \end{matrix} \right]\Rightarrow \left| \begin{matrix} 1 & 3  \\ 5 & 3  \\ \end{matrix} \right|$ 


$\Rightarrow \left( 1\times 3 \right)-\left( 3\times 5 \right)\Rightarrow 3-15\Rightarrow -12$


3. Third Order Determinant - It is the determinant of a matrix of order three.


Let us consider $\left[ \begin{matrix} {{a}_{1}} & {{b}_{1}} & {{c}_{1}}  \\ {{a}_{2}} & {{b}_{2}} & {{c}_{2}}  \\ {{a}_{3}} & {{b}_{3}} & {{c}_{3}}  \\ \end{matrix} \right]$. 


We have six ways to write the determinant, i.e. three ways to expand along rows and three ways to expand along columns.


Let us consider the expansion along the first row, which is the most common method.


So, first we consider the first element, ${{a}_{11}}$ and delete the row \[1\] and column $1$. We end up with a second order matrix and so we apply the determinant for this and multiply with ${{a}_{11}}$ and also \[{{\left( -1 \right)}^{sum\text{ }of\text{ }coefficients\text{ }of\text{ }{{a}_{11}}}}\Rightarrow {{\left( -1 \right)}^{1+1}}\], here sum of coefficients indicates the sum $i+j$ for element ${{a}_{ij}}$.


${{\left( -1 \right)}^{2}}.{{a}_{1}}.\left( {{b}_{2}}{{c}_{3}}-{{b}_{3}}{{c}_{2}} \right)$ 


Then we move onto element ${{a}_{12}}$ and delete the row \[1\] and column $2$. Again, We end up with a second order matrix and so we apply the determinant for this and multiply with \[{{a}_{12}}\] and also \[{{\left( -1 \right)}^{sum\text{ }of\text{ }coefficients\text{ }of\text{ }{{a}_{12}}}}\Rightarrow {{\left( -1 \right)}^{1+2}}\].


${{\left( -1 \right)}^{3}}.{{b}_{1}}.\left( {{a}_{2}}{{c}_{3}}-{{a}_{3}}{{c}_{2}} \right)$


At last, we move onto element ${{a}_{13}}$ and delete the row \[1\] and column $3$.

Again, We end up with a second order matrix and so we apply the determinant for this and multiply with ${{a}_{13}}$ and also \[{{\left( -1 \right)}^{sum\text{ }of\text{ }coefficients\text{ }of\text{ }{{a}_{13}}}}\Rightarrow {{\left( -1 \right)}^{1+3}}\].


${{\left( -1 \right)}^{4}}.{{c}_{1}}.\left( {{a}_{2}}{{b}_{3}}-{{a}_{3}}{{b}_{2}} \right)$


Now, we add them up to get the determinant of matrix 


$\left[ \begin{matrix} {{a}_{1}} & {{b}_{1}} & {{c}_{1}}  \\ {{a}_{2}} & {{b}_{2}} & {{c}_{2}}  \\ {{a}_{3}} & {{b}_{3}} & {{c}_{3}}  \\ \end{matrix} \right]$ as 

${{a}_{1}}\left( {{b}_{2}}{{c}_{3}}-{{b}_{3}}{{c}_{2}} \right)-{{b}_{1}}\left({{a}_{2}}{{c}_{3}}-{{a}_{3}}{{c}_{2}} \right)+{{c}_{1}}\left({{a}_{2}}{{b}_{3}}-{{a}_{3}}{{b}_{2}} \right)$.


In the same manner, we can expand along other rows and columns. We will get the same value of determinant irrespective of the kind of expansion we opt for.


A tip to keep in mind while choosing the expansion method would be to go for the row or column containing the maximum number of zeroes. If zeroes are not present, then one. This will make calculations easier.


Another interesting point to keep in mind is that if we have two square matrices $A$ and $B$ of order $n$ and $A=kB$, then $\left| A \right|={{k}^{n}}\left| B \right|$, where $n=1,2,3,....$.


Properties of Determinants

The below properties are true for determinants of all orders.

1. Property 1 - The value of the determinant remains unchanged if its rows and columns are interchanged. Let us verify with the help of an example,

The determinant ${\left| \begin{matrix} 1 & 2 & 1  \\ 3 & 4 & 1  \\ 1 & 2 & 3  \\ \end{matrix} \right|}$ is $1\left( 12-2 \right)-2\left( 9-1 \right)+1\left( 6-4 \right)\Rightarrow 10-16+2\Rightarrow -4$. 

Exchanging rows and columns, we get  $\left| \begin{matrix} 1 & 3 & 1  \\ 2 & 4 & 2  \\ 1 & 1 & 3  \\ \end{matrix} \right|$. The value of this determinant is $1\left( 12-2 \right)-3\left( 6-2 \right)+1\left( 2-4 \right)\Rightarrow 10-12-2\Rightarrow -4$.

Hence verified.

  • It follows from the above property that if $A$ is a square matrix, then $det\left( A \right)=det\left( A\prime  \right)$ . Here, $A\prime $ is the transpose of $A$.

  • For interchange of row and columns, say ${{R}_{i}}={{i}^{th}}$ row and ${{C}_{i}}={{i}^{th}}$ column, we represent it symbolically as ${{C}_{i}}\leftrightarrow {{R}_{i}}$.

2. Property 2 - If any two rows (or columns) of a determinant are interchanged, then sign of determinant changes. Let us verify with the help of an example,

The determinant  $\left| \begin{matrix} 1 & 2 & 1  \\ 3 & 4 & 1  \\ 1 & 2 & 3  \\ \end{matrix} \right|$ is $1\left( 12-2 \right)-2\left( 9-1 \right)+1\left( 6-4 \right)\Rightarrow 10-16+2\Rightarrow -4$.

 

Interchanging first and second rows, we get  $\left| \begin{matrix} 3 & 4 & 1  \\ 1 & 2 & 1  \\ 1 & 2 & 3  \\ \end{matrix} \right|$. The value of this determinant is $3\left( 6-2 \right)-4\left( 3-1 \right)+1\left( 2-2 \right)\Rightarrow 12-8+0\Rightarrow 4$.

Hence verified.

  • For interchange of two rows/columns, say ${{R}_{i}}\text{ and }{{R}_{j}}$ rows or ${{C}_{i}}\text{ }and\text{ }{{C}_{j}}$ columns, we represent it symbolically as ${{R}_{i}}\leftrightarrow {{R}_{j}}$ or ${{C}_{i}}\leftrightarrow {{C}_{j}}$.

3. Property 3 - If any two rows (or columns) of a determinant are identical (all corresponding elements are the same), then the value of the determinant is zero. Let us verify with the help of an example,

The value of the determinant with identical columns  $\left| \begin{matrix} 1 & 3 & 1  \\ 3 & 4 & 3  \\ 1 & 2 & 1  \\ \end{matrix} \right|$ is $1\left( 4-6 \right)-3\left( 3-3 \right)+1\left( 6-4 \right)\Rightarrow -2+0+2\Rightarrow 0$.

Hence verified.

4. Property 4 - If each element of a row (or a column) of a determinant is multiplied by a constant $k$, then its value gets multiplied by $k$. Let us verify with the help of an example,

Consider the determinant  $\left| \begin{matrix} 1 & 2 & 3  \\ 1 & 3 & 3  \\ 1 & 2 & 1  \\ \end{matrix} \right|$. The value of this determinant is $1\left( 3-6 \right)-2\left( 1-3 \right)+3\Rightarrow -3+4-3\Rightarrow -2$.

Now, first row of the same determinant is multiplied by a constant $2$ to get 

$\left| \begin{matrix} 2 & 4 & 6  \\ 1 & 3 & 3  \\ 1 & 2 & 1  \\ \end{matrix} \right|$. The value of this determinant is $2\left( 3-6 \right)-4\left( 1-3 \right)+6\left( 2-3 \right)\Rightarrow -6+8-6\Rightarrow -4$, which is $2\left[ -2 \right]$.

Hence verified.

5. Property 5 - If some or all elements of a row or column of a determinant are expressed as sum of two (or more) terms, then the determinant can be expressed as sum of two (or more) determinants. Let us verify with the help of an example,

Consider the determinant $\left| \begin{matrix} 1 & 2 & 3  \\ 1 & 3 & 3  \\ 1 & 2 & 1  \\ \end{matrix} \right|$. The value of this determinant is $1\left( 3-6 \right)-2\left( 1-3 \right)+3\left( 2-3 \right)\Rightarrow -3+4-3\Rightarrow -2$.

Now, we add terms to the terms in the first row of the same determinant and get 

$\left| \begin{matrix} 2+1 & 2+2 & 1+3  \\ 1 & 3 & 3  \\ 1 & 2 & 1  \\ \end{matrix} \right|$. The value of this determinant is $3\left( 3-6 \right)-4\left( 1-3 \right)+4\left( 2-3 \right)\Rightarrow -9+8-4\Rightarrow -5$.

The value of this determinant is $\left| \begin{matrix} 1 & 2 & 3  \\ 1 & 3 & 3  \\ 1 & 2 & 1  \\ \end{matrix} \right|+\left| \begin{matrix} 2 & 2 & 1  \\ 1 & 3 & 3  \\ 1 & 2 & 1  \\ \end{matrix} \right|$$\left[ 1\left( 3-6 \right)-2\left( 1-3 \right)+3\left( 2-3 \right) \right]+\left[ 2\left( 3-6 \right)-2\left( 1-3 \right)+1\left( 2-3 \right) \right]$

$\Rightarrow \left[ -3+4-3 \right]+\left[ -6+4-1 \right]$

$\Rightarrow \left[ -2 \right]+\left[ -3 \right]$

$\Rightarrow -5$

which is same as determinant value for $\left| \begin{matrix} 2+1 & 2+2 & 1+3  \\ 1 & 3 & 3  \\ 1 & 2 & 1  \\ \end{matrix} \right|$.

Hence verified.

6. Property 6 - If, to each element of any row or column of a determinant, the equimultiples of corresponding elements of other row (or column) are added, then value of determinant remains the same, i.e., the value of determinant remain same if we apply the operation ${{R}_{i}}\to {{R}_{i}}+k{{R}_{j}}$ or ${{C}_{i}}\to {{C}_{i}}+k{{C}_{j}}$. Let us verify with the help of an example,

Consider the determinant $\left| \begin{matrix} 1 & 2 & 3  \\ 1 & 3 & 3  \\ 1 & 2 & 1  \\ \end{matrix} \right|$. The value of this determinant is $1\left( 3-6 \right)-2\left( 1-3 \right)+3\left( 2-3 \right)\Rightarrow -3+4-3\Rightarrow -2$.

Now, we add term which is a multiple of third row to the terms in the first row of the same determinant and get $\left| \begin{matrix} 2+2 & 2+4 & 1+2  \\ 1 & 3 & 3  \\ 1 & 2 & 1  \\ \end{matrix} \right|$.

By using the property 5, this can be expressed as $\left| \begin{matrix} 1 & 2 & 3  \\ 1 & 3 & 3  \\ 1 & 2 & 1  \\ \end{matrix} \right|+\left| \begin{matrix} 2 & 4 & 2  \\ 1 & 3 & 3  \\ 1 & 2 & 1  \\ \end{matrix} \right|$.

By using the property 3, since we have the first and third row as proportional, the second determinant would be zero. The value of determinant $\left| \begin{matrix} 2+2 & 2+4 & 1+2  \\ 1 & 3 & 3  \\ 1 & 2 & 1  \\ \end{matrix} \right|$ would be the same as determinant $\left| \begin{matrix} 1 & 2 & 3  \\ 1 & 3 & 3  \\ 1 & 2 & 1  \\ \end{matrix} \right|$.

Hence verified.

7. Property 7 - If each element of a row (or column) of a determinant is zero, then its value is zero. For example,  $\left| \begin{matrix} 0 & 12 & -7  \\ 0 & 8 & 1  \\ 0 & -5 & 13  \\ \end{matrix} \right|$. If we expand this along the first column, then the value will be zero.

8. Property 8 - In a determinant, if all the elements on one side of the principal diagonal are zeroes, then the value of the determinant is equal to the product of the elements in the principal diagonal. For example the determinant  $\left| \begin{matrix} 3 & -3 & 2  \\ 0 & 8 & 1  \\ 0 & 0 & 1  \\ \end{matrix} \right|$ expanded along the first column has value as $3\left( 8-0 \right)=24$. The product of the elements in principal diagonal is $3\times 8\times 1=24$. Hence, verified. (Not in the current syllabus)


Area of a Triangle

  • Consider a triangle with vertices as $\left( {{x}_{1}},{{y}_{1}} \right),\left( {{x}_{2}},{{y}_{2}} \right)$ and $\left( {{x}_{3}},{{y}_{3}} \right)$. We know that the area of the triangle can be found as $A=\dfrac{1}{2}\left[ {{x}_{1}}\left( {{y}_{2}}-{{y}_{3}} \right)+{{x}_{2}}\left( {{y}_{3}}-{{y}_{1}} \right)+{{x}_{3}}\left( {{y}_{1}}-{{y}_{2}} \right) \right]$.

  • We can represent the same using determinants as $\Delta$ =$\dfrac{1}{2}\left| \begin{matrix} {{x}_{1}} & {{y}_{1}} & 1  \\ {{x}_{2}} & {{y}_{2}} & 1  \\ {{x}_{3}} & {{y}_{3}} & 1  \\ \end{matrix} \right|$.

  • We always take the absolute value of the determinant while computing the area as it is a positive quantity.

  • We use both positive and negative values of the determinant in case the area is given.

  • We know that three collinear points cannot form a triangle and hence we can say that the area of the triangle formed by three collinear points is zero.


Minors

  • If we delete the ${{i}^{th}}$ row and \[{{j}^{th}}\] column of a determinant in which the element ${{a}_{ij}}$ lies, then we get the minor of that element.

  • Minor is represented as \[{{M}_{ij}}\].

  • Minor of an element of a determinant of order \[n\left( n\ge 2 \right)\] is a determinant of order \[n1\].

  • If we have to find \[{{M}_{21}}\] of determinant \[\left| \begin{matrix} 1 & -4 & 0  \\ 2 & 5 & 3  \\ -1 & 2 & 1  \\ \end{matrix} \right|\], then we get it as \[{{M}_{21}}=\left| \begin{matrix} -4 & 0  \\ 2 & 1  \\ \end{matrix} \right|\Rightarrow {{M}_{21}}=-4\].


Cofactors

  • We denote the cofactor of an element \[{{a}_{ij}}\] as ${{A}_{ij}}$.

  • Multiplying the minor of an element with a factor \[{{\left( 1 \right)}^{i+j}}\] gives the cofactor.

  • It can be defined as \[{{A}_{ij}}=\text{ }{{\left( 1 \right)}^{i+j}}{{M}_{ij}}\], where \[{{M}_{ij}}\] is minor of \[{{a}_{ij}}\].

  • When the elements of a row/column are multiplied with the cofactors of any other row/column, then their sum is zero.

  • If we have to find \[{{A}_{11}}\] of determinant \[\left| \begin{matrix} 1 & -4 & 0  \\ 2 & 5 & 3  \\ -1 & 2 & 1  \\ \end{matrix} \right|\], then we get it as \[{{A}_{11}}={{\left( -1 \right)}^{1+1}}\left| \begin{matrix} 5 & 3  \\ 2 & 1  \\ \end{matrix} \right|\Rightarrow {{A}_{11}}=1.\left( 5-6 \right)\Rightarrow {{A}_{11}}=-1\].


Adjoint of a Matrix

  • The matrix obtained after taking the transpose of the matrix of cofactors of the given matrix is called the adjoint of that matrix.

  • For example, if we have the cofactor matrix as \[\left[\begin{matrix} a & b & c  \\ d & e & f  \\ g & h & i  \\ \end{matrix} \right]\], then the adjoint would be $\left[ \begin{matrix} a & d & g  \\ b & e & h  \\ c & f & i  \\ \end{matrix} \right]$.

  • For a square matrix of order two, we can use the following shortcut:


Order 2 square matrix


  • Theorem 1 - If $A$ be any given square matrix of order $n$, then \[A\left( adj\text{ }A \right)=\left( adj\text{ }A \right)A=\left| A \right|I\], where $I$ is the identity matrix of order $n$.

If we have a matrix $\left[ \begin{matrix} a & b  \\ c & d  \\ \end{matrix} \right]$ and its adjoint as $\left[ \begin{matrix} e & f  \\ g & h  \\ \end{matrix} \right]$, then we can say that the sum of product of elements of a row/column with corresponding cofactors is equal to \[\left| A \right|\] and otherwise zero. So, we can write

$A\left( adj\text{ }A \right)=\left[ \begin{matrix} \left| A \right| & 0  \\ 0 & \left| A \right|  \\ \end{matrix} \right]=\left| A \right|I$

  • Singular Matrices – If the determinant of a square matrix is zero, then it is said to be a singular matrix.

  • Non-Singular Matrices – If the determinant of a square matrix is a non-zero value, then it is said to be a non-singular matrix.

  • Theorem 2 - If $A$ and $B$ are nonsingular matrices of the same order, then $AB$ and $BA$ are also non-singular matrices of the same order.

  • Theorem 3 - The determinant of the product of matrices is equal to the product of their respective determinants. It can be written as \[AB=\left| A \right|\left| B \right|\], where $A$ and $B$ are square matrices of the same order.

This can be verified as shown below:

From Theorem 1, we have $A\left( adj\text{ }A \right)=\left[ \begin{matrix} \left| A \right| & 0  \\ 0 & \left| A \right|  \\ \end{matrix} \right]$. 

Now taking the determinant value of matrices on both sides,

$\left| A\left( adj\text{ }A \right) \right|=\left| \begin{matrix} \left| A \right| & 0  \\ 0 & \left| A \right|  \\ \end{matrix} \right|$

$\left| A \right|\left| \left( adj\text{ }A \right) \right|={{\left| A \right|}^{2}}\left| \begin{matrix} 1 & 0  \\ 0 & 1  \\ \end{matrix} \right|$

$\left| A \right|\left| \left( adj\text{ }A \right) \right|={{\left| A \right|}^{2}}I$

$\left| \left( adj\text{ }A \right) \right|={{\left| A \right|}^{1}}$

Hence verified. This leads us to the general conclusion that if $A$ is a square matrix of order $n$, then $\left| \left( adj\text{ }A \right) \right|={{\left| A \right|}^{n-1}}$.

  • Theorem 4 - A square matrix is invertible if and only if it is a non-singular matrix.

So, for a non-singular matrix $A$, we can write the inverse of the matrix as ${{A}^{-1}}=\dfrac{1}{\left| A \right|}\left( adj\text{ }A \right)$.

Looking into the proof,

Let $A$ be an invertible matrix of order $n$. Let $I$ be the identity matrix of order $n$. Then, there exists a square matrix $B$ of order $n$ such that \[AB=BA=I\].

So, we have \[AB=I\]. We can write \[\left| AB \right|=I\]. Since \[\left| I \right|=1,\left| AB \right|=\left| A \right|\left| B \right|\], it can be written as \[\left| A \right|\left| B \right|=1\].


This gives \[\left| A \right|\ne 0\] and hence $A$ is non-singular.

Conversely, if we let $A$ as a non-singular matrix, then \[\left| A \right|\ne 0\].

From Theorem 1, \[A\left( adj\text{ }A \right)=\left( adj\text{ }A \right)A=\left| A \right|I\]. Rearranging terms,

\[A\left[ \dfrac{1}{\left| A \right|}\left( adj\text{ }A \right) \right]=\left[ \left( adj\text{ }A \right)\dfrac{1}{\left| A \right|} \right]A=I\]

It is the same as $AB=BA=I$.

So, here $B=\dfrac{1}{\left| A \right|}\left( adj\text{ }A \right)$, which is the inverse of matrix $A$.


Applications of Determinants and Matrices

  • They can be used for solving systems of linear equations in two or three variables. They can also be used for checking the consistency of a system of linear equations.

  • Consistent system is a system of equations whose solution (one or more) exists.

  • Inconsistent system is a system of equations whose solution does not exist.

  • We can say that the determinant is a number that determines the uniqueness of the solution of a system of linear equations.


Solution of a System of Linear Equations Using Inverse of Matrix

Let us consider system of equations with three variables as


${{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z={{d}_{1}}$


${{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z={{d}_{2}}$


${{a}_{3}}x+{{b}_{3}}y+{{c}_{3}}z={{d}_{3}}$


Writing it in matrix form, we have

$\left[ \begin{matrix} {{a}_{1}} & {{b}_{1}} & {{c}_{1}}  \\ {{a}_{2}} & {{b}_{2}} & {{c}_{2}}  \\ {{a}_{3}} & {{b}_{3}} & {{c}_{3}}  \\ \end{matrix} \right]\left[ \begin{matrix} x  \\ y  \\ z  \\ \end{matrix} \right]=\left[ \begin{matrix} {{d}_{1}}  \\ {{d}_{2}}  \\ {{d}_{3}}  \\ \end{matrix} \right]$


This can be expressed as $AX=B$.


  • Now, we look at two cases:

Case 1: If $A$ is a non-singular matrix, then its inverse exists.

From $AX=B$, we premultiply by ${{A}^{-1}}$,


${{A}^{-1}}\left( AX \right)={{A}^{-1}}B$


Using associative property,


$\left( {{A}^{-1}}A \right)X={{A}^{-1}}B$


$IX={{A}^{-1}}B$


$X={{A}^{-1}}B$


The above matrix equation provides a unique solution for the system of equations as we know that the inverse of a matrix is unique. We call this method as Matrix Method.


Case 2: If $A$ is a singular matrix, then \[\left| A \right|=0\].

For this case, first we calculate \[\left( adj\text{ }A \right)B\].


If \[\left( adj\text{ }A \right)B\] is a non-zero matrix, then the solution does not exist and the system of equations is called inconsistent.


If \[\left( adj\text{ }A \right)B\] is a zero matrix, then the system of equations may be either consistent (with infinitely many solutions) or inconsistent (with no solution).


Other Related Links for Class 12 Maths Chapter 4


Conclusion

Vedantu's revision notes for CBSE Class 12 Maths Determinant offer a comprehensive and valuable resource for students. The notes cover key concepts, formulas, and provide ample practice questions to enhance understanding and retention. With these revision notes, students can effectively review the topic of Determinant, clarify doubts, and strengthen their problem-solving skills. The well-organized and concise nature of the notes allows for efficient revision, making them a reliable companion for exam preparation. By utilizing Vedantu's revision notes, students can feel confident and well-prepared to excel in their CBSE Class 12 Maths Determinant examinations.

FAQs on Determinants Class 12 Notes CBSE Maths Chapter 4 (Free PDF Download)

1. What is the minor and cofactor of the third element in determinant [1 -2]  [4  3]

In this question, the third element is 4.

This means that the minor of the element of 4 = -2

Also, the cofactor of element 4 = (-1)2+1 (Minor of element 4)

A21 = (-1)3 (-2) = (-1) (-2) = 2

2. What do you understand by the term determinant?

The determinant can be defined as a scalar value. This value is associated with the square matrix. This means that if X is a matrix, then the determinants of a matrix can be represented by [X] or det (X).

3. How many problems are there in NCERT Solutions for Class 12 Maths Chapter 4?

The NCERT solution constitutes the most important part of the CBSE Curriculum as well as the students' needs. These Solutions cover the syllabus and all the basics in a simple language. Students can find repeated questions from NCERT exercises in previous years' papers. So, solving questions from these solutions should be an important part of exam preparation. Chapter 4 of class 12 Maths consists of 82 questions that cover all the topics related to determinants.

4. What are the uses of determinants according to Class 12 Maths Chapter 4?

The NCERT solutions available on Vedantu are the only material in which students can find the basics in a simple language. Thus, these Solutions help students understand Determinants more reasonably. The determinant can be seen as a scalar that is a function of the entries of a square matrix. Using determinants, students will be able to understand the change in the area, volume, and variables in terms of integrals and at the same time, it calculates the values of square matrices.

5. What are the benefits of using NCERT Solutions for Class 12 Chapter 4 Maths?

NCERT Solutions is a stock of step-by-step explanations to every question given in the textbook. So, students find these Solutions very useful during their exam preparations. Chapter 4 deals with determinants which is an easy chapter if students understand the right concept. These solutions are the best tools for them to understand the fundamentals. This chapter deals with using determinants to find physical dimensions like area and volume. Therefore, NCERT Solutions are the best choice for students.

6. How can I solve Chapter 4 of Maths, Class 12 easily?

The NCERT Solutions for Class 12 Maths, Chapter 4 cover all the topics required and prescribed by the CBSE for Determinants. So, for students preparing for the exams, NCERT solutions will be a perfect partner. They provide solutions for all the problems in the chapter. These solutions are written in an approachable and clear language for students of different calibres. Chapter 4, Determinants consists of 82 problems in total with solutions that help students understand and solve questions more easily. You can also use the revision notes provided by Vedantu on their website and app. All the resources are free of cost.

7. Do I need to practice all the questions provided in NCERT Solutions of Chapter 4 of Maths, Class 12?

The NCERT Solutions provide questions and their solutions for Chapter 4 of Class 12, thereby providing students with an easy way out of complicated problems. Every question is unique in its way as it introduces different aspects of the topics discussed, so students are recommended to practice every question given in the Solutions for Chapter 4. This helps them to be prepared thoroughly with a good understanding and insightful knowledge on the different topics which are covered in Chapter 4 of Determinants.