Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 12 Maths Chapter 4: Determinants - Exercise 4.2

ffImage
Last updated date: 23rd Apr 2024
Total views: 575.7k
Views today: 8.75k
MVSAT offline centres Dec 2023

NCERT Solutions for Class 12 Maths Chapter 4 - Determinants

NCERT Solutions for Class 12 Chapter 4 Exercise 4.2 are available in PDF format on Vedantu. Referring to these solutions will help students to get an understanding of the sums given in the chapter on determinants. All the solutions have been prepared by the subject expert at Vedantu as per the latest CBSE guidelines to help students score good marks in Maths board exams. The NCERT solutions for Class 12 Maths Chapter 4 Exercise 4.2 PDF can be downloaded for free from Vedantu for the offline reference of students. 


Class:

NCERT Solutions for Class 12

Subject:

Class 12 Maths

Chapter Name:

Chapter 4 - Determinants

Exercise:

Exercise - 4.2

Content-Type:

Text, Videos, Images and PDF Format

Academic Year:

2024-25

Medium:

English and Hindi

Available Materials:

  • Chapter Wise

  • Exercise Wise

Other Materials

  • Important Questions

  • Revision Notes

Competitive Exams after 12th Science

Access NCERT Solutions for class 12 Maths Chapter 4 - Determinants

Exercise (4.2)

1. Using the property of determinants and without expanding, prove that:

\[\left| \begin{matrix} \text{x} & \text{a} & \text{x+a} \\ \text{y} & \text{b} & \text{y+b} \\ \text{z} & \text{c} & \text{z+c} \\ \end{matrix} \right|\text{=0}\]. Ans: Given matrix \[\left| \begin{matrix} \text{x} & \text{a} & \text{x+a} \\ \text{y} & \text{b} & \text{y+b} \\ \text{z} & \text{c} & \text{z+c} \\ \end{matrix} \right|\]. Applying the Sum Property of determinants, we have \[\left| \begin{matrix} \text{x} & \text{a} & \text{x+a} \\ \text{y} & \text{b} & \text{y+b} \\ \text{z} & \text{c} & \text{z+c} \\ \end{matrix} \right|\text{=}\left| \begin{matrix} \text{x} & \text{a} & \text{x} \\ \text{y} & \text{b} & \text{y} \\ \text{z} & \text{c} & \text{z} \\ \end{matrix} \right|\text{+}\left| \begin{matrix} \text{x} & \text{a} & \text{a} \\ \text{y} & \text{b} & \text{b} \\ \text{z} & \text{c} & \text{c} \\ \end{matrix} \right|\] We know, if two rows or columns of a determinant are identical, then the value of the determinant is zero. Since, the two columns in both the determinants are identical, thus its determinant would be zero. \[\Rightarrow \left| \begin{matrix} \text{x} & \text{a} & \text{x+a} \\ \text{y} & \text{b} & \text{y+b} \\ \text{z} & \text{c} & \text{z+c} \\ \end{matrix} \right|=0+0\] \[\therefore \left| \begin{matrix} \text{x} & \text{a} & \text{x+a} \\ \text{y} & \text{b} & \text{y+b} \\ \text{z} & \text{c} & \text{z+c} \\ \end{matrix} \right|=0\]


2. Using the property of determinants and without expanding, prove that:

\[\left| \begin{matrix} \text{a-b} & \text{b-c} & \text{c-a} \\ \text{b-c} & \text{c-a} & \text{a-b} \\ \text{c-a} & \text{a-b} & \text{b-c} \\ \end{matrix} \right|\text{=0}\] Ans: Let \[\text{ }\!\!\Delta\!\!\text{ =}\left| \begin{matrix} \text{a}-\text{b} & \text{b}-\text{c} & \text{c}-\text{a} \\ \text{b}-\text{c} & \text{c}-\text{a} & \text{a}-\text{b} \\ \text{c}-\text{a} & \text{a}-\text{b} & \text{b}-\text{c} \\ \end{matrix} \right|\] Applying row operation, \[{{\text{R}}_{\text{1}}}\to \text{ }{{\text{R}}_{\text{1}}}\text{+}{{\text{R}}_{\text{2}}}\] \[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =}\left| \begin{matrix} \text{a}-c & \text{b}-a & \text{c}-b \\ \text{b}-\text{c} & \text{c}-\text{a} & \text{a}-\text{b} \\ c-a & a-b & b-c \\ \end{matrix} \right|\] \[\Rightarrow \Delta =\left| \begin{matrix} a-c & b-a & c-b \\ b-c & c-a & a-b \\ -\left( a-c \right) & -\left( b-a \right) & -\left( c-b \right) \\ \end{matrix} \right|\] Multiplying the third row by $\left( -1 \right)$, we get: \[\Rightarrow \Delta \text{=}-\left| \begin{matrix} \text{a}-c & \text{b}-a & \text{c}-b \\ \text{b}-\text{c} & \text{c}-\text{a} & \text{a}-\text{b} \\ \text{a}-\text{c} & \text{b}-\text{a} & \text{c}-\text{b} \\ \end{matrix} \right|\] We know, if two rows or columns of a determinant are identical, then the value of the determinant is zero. Since, the two rows \[{{\text{R}}_{\text{1}}}\] and \[{{\text{R}}_{\text{3}}}\] are identical. \[\therefore \text{ }\!\!\Delta\!\!\text{ =0}\] Hence, \[\left| \begin{matrix} \text{a}-\text{b} & \text{b}-\text{c} & \text{c}-\text{a} \\ \text{b}-\text{c} & \text{c}-\text{a} & \text{a}-\text{b} \\ \text{c}-\text{a} & \text{a}-\text{b} & \text{b}-\text{c} \\ \end{matrix} \right|=0\].


3. Using the property of determinants and without expanding, prove that:

\[\left| \begin{matrix} \text{2} & \text{7} & \text{65} \\ \text{3} & \text{8} & \text{75} \\ \text{5} & \text{9} & \text{86} \\ \end{matrix} \right|\text{=0}\]

Ans: Let $\Delta =\left| \begin{matrix} \text{2} & \text{7} & \text{65} \\ \text{3} & \text{8} & \text{75} \\ \text{5} & \text{9} & \text{86} \\ \end{matrix} \right|$ \[\therefore \Delta \text{=}\left| \begin{matrix} \text{2} & \text{7} & \text{63+2} \\ \text{3} & \text{8} & \text{72+3} \\ \text{5} & \text{9} & \text{81+5} \\ \end{matrix} \right|\] Applying the Sum Property of determinants, we get \[\Rightarrow \Delta \text{=}\left| \begin{matrix} \text{2} & \text{7} & \text{63} \\ \text{3} & \text{8} & \text{72} \\ \text{5} & \text{9} & \text{81} \\ \end{matrix} \right|\text{+}\left| \begin{matrix} \text{2} & \text{7} & \text{2} \\ \text{3} & \text{8} & \text{3} \\ \text{5} & \text{9} & \text{5} \\ \end{matrix} \right|\] The two columns of the second determinant are identical, thus it’s value becomes zero. Hence, \[\Rightarrow \Delta \text{=}\left| \begin{matrix} \text{2} & \text{7} & 63 \\ \text{3} & \text{8} & 72 \\ \text{5} & \text{9} & 81 \\ \end{matrix} \right|\text{+0}\] \[\Rightarrow \Delta \text{=}\left| \begin{matrix} \text{2} & \text{7} & 9\left( 7 \right) \\ \text{3} & \text{8} & 9\left( 8 \right) \\ \text{5} & \text{9} & 9\left( 9 \right) \\ \end{matrix} \right|\] Taking $9$ common from the third column, we have \[\Rightarrow \Delta =9\left| \begin{matrix} 2 & 7 & 7 \\ 3 & 8 & 8 \\ 5 & 9 & 9 \\ \end{matrix} \right|\] Since, the two columns \[C_2\] and \[C_3\] are identical. $\therefore \Delta =0$ Hence, $\left| \begin{matrix} \text{2} & \text{7} & \text{65} \\ \text{3} & \text{8} & \text{75} \\ \text{5} & \text{9} & \text{86} \\ \end{matrix} \right|=0$


4. Using the property of determinants and without expanding, prove that:

\[\left| \begin{matrix} \text{1} & \text{bc} & \text{a}\left( \text{b+c} \right) \\ \text{1} & \text{ca} & \text{b}\left( \text{c+a} \right) \\ \text{1} & \text{ab} & \text{c}\left( \text{a+b} \right) \\ \end{matrix} \right|\text{=0}\].

Ans: Let\[\text{ }\!\!\Delta\!\!\text{ =}\left| \begin{matrix} \text{1} & \text{bc} & \text{a}\left( \text{b+c} \right) \\ \text{1} & \text{ca} & \text{b}\left( \text{c+a} \right) \\ \text{1} & \text{ab} & \text{c}\left( \text{a+b} \right) \\ \end{matrix} \right|\]

Applying the column operation, \[{{\text{C}}_{\text{3}}}\to {{\text{C}}_{\text{3}}}\text{+}{{\text{C}}_{\text{2}}}\]. \[\text{ }\!\!\Delta\!\!\text{ =}\left| \begin{matrix} \text{1} & \text{bc} & \text{ab+bc+ca} \\ \text{1} & \text{ca} & \text{ab+bc+ca} \\ \text{1} & \text{ab} & \text{ab+bc+ca} \\ \end{matrix} \right|\] Taking $\left( ab+bc+ca \right)$ common from the third column, we get: \[\text{ }\!\!\Delta\!\!\text{ =}\left( ab+bc+ca \right)\left| \begin{matrix} \text{1} & \text{bc} & 1 \\ \text{1} & \text{ca} & 1 \\ \text{1} & \text{ab} & 1 \\ \end{matrix} \right|\] Since, the two columns \[C_1\] and \[C_3\] are identical. \[\therefore \text{ }\!\!\Delta\!\!\text{ =0}\] Hence, \[\left| \begin{matrix} \text{1} & \text{bc} & \text{a}\left( \text{b+c} \right) \\ \text{1} & \text{ca} & \text{b}\left( \text{c+a} \right) \\ \text{1} & \text{ab} & \text{c}\left( \text{a+b} \right) \\ \end{matrix} \right|=0\].


5. Using the property of determinants and without expanding, prove that:

\[\left| \begin{matrix} \text{b+c} & \text{q+r} & \text{y+z} \\ \text{c+a} & \text{r+p} & \text{z+x} \\ \text{a+b} & \text{p+q} & \text{x+y} \\ \end{matrix} \right|\text{=2}\left| \begin{matrix} \text{a} & \text{p} & \text{x} \\ \text{b} & \text{q} & \text{y} \\ \text{c} & \text{r} & \text{z} \\ \end{matrix} \right|\].

Ans: Let\[\text{ }\!\!\Delta\!\!\text{ =}\left| \begin{matrix} \text{b+c} & \text{q+r} & \text{y+z} \\ \text{c+a} & \text{r+p} & \text{z+x} \\ \text{a+b} & \text{p+q} & \text{x+y} \\ \end{matrix} \right|\] Applying the Sum Property, we get \[\Rightarrow \Delta \text{=}\left| \begin{matrix} \text{b+c} & \text{q+r} & \text{y+z} \\ \text{c+a} & \text{r+p} & \text{z+x} \\ \text{a} & \text{p} & \text{x} \\ \end{matrix} \right|\text{+}\left| \begin{matrix} \text{b+c} & \text{q+r} & \text{y+z} \\ \text{c+a} & \text{r+p} & \text{z+x} \\ \text{b} & \text{q} & \text{y} \\ \end{matrix} \right|\] Suppose \[\Delta \text{=}{\Delta}_\text{1+ }\!\!{\Delta}_\text{ 2}\] ……(1) Now, \[\text{ }\!\!\Delta_\text{1 = }\left| \begin{matrix} \text{b+c} & \text{q+r} & \text{y+z} \\ \text{c+a} & \text{r+p} & \text{z+x} \\ \text{a} & \text{p} & \text{x} \\ \end{matrix} \right|\] Applying the row operation, \[{R_2}\to{R_2}-{R_3}\] \[\Rightarrow \text{ }\!\!\Delta_\text{1 = }\left| \begin{matrix} \text{b+c} & \text{q+r} & \text{y+z} \\ \text{c} & \text{r} & \text{z} \\ \text{a} & \text{p} & \text{x} \\ \end{matrix} \right|\] Again, applying the row operation, \[{R_1}\to {R_1}-{R_2}\] \[\Rightarrow \text{ }\!\!\Delta_\text{1=}\left| \begin{matrix} \text{b} & \text{q} & \text{y} \\ \text{c} & \text{r} & \text{z} \\ \text{a} & \text{p} & \text{x} \\ \end{matrix} \right|\] We know that if any two rows or columns of a determinant are interchanged, the value of the determinant is multiplied by $\left( -1 \right)$. Hence, interchanging the rows, \[{R_1}\leftrightarrow {R_3}\] and \[{R_2}\leftrightarrow {R_3}\], we have \[\Rightarrow \text{ }\!\!\Delta_\text{1=}{{\left( \text{-1} \right)}^{\text{2}}}\left| \begin{matrix} \text{a} & \text{p} & \text{x} \\ \text{b} & \text{q} & \text{y} \\ \text{c} & \text{r} & \text{z} \\ \end{matrix} \right|\] \[\therefore \Delta_1\text{=}\left| \begin{matrix} \text{a} & \text{p} & \text{x} \\ \text{b} & \text{q} & \text{y} \\ \text{c} & \text{r} & \text{z} \\ \end{matrix} \right|\] ……(2) We have, \[\text{ }\!\!{\Delta}_\text{2=}\left| \begin{matrix} \text{b+c} & \text{q+r} & \text{y+z} \\ \text{c+a} & \text{r+p} & \text{z+x} \\ \text{b} & \text{q} & \text{y} \\ \end{matrix} \right|\] Applying the row operation, \[{R_1}\to{R}1-{R_3}\] \[\Rightarrow \text{ }\!\!\Delta_\text{2}=\left| \begin{matrix} \text{c} & \text{r} & \text{z} \\ \text{c+a} & \text{r+p} & \text{z+x} \\ \text{b} & \text{q} & \text{y} \\ \end{matrix} \right|\] Applying the row operation, \[{R_2}\to{R_2}-{R_1}\] \[\Rightarrow \text{ }\!\!\Delta_\text{2=}\left| \begin{matrix} \text{c} & \text{r} & \text{z} \\ \text{a} & \text{p} & \text{x} \\ \text{b} & \text{q} & \text{y} \\ \end{matrix} \right|\] Interchanging the rows, \[{{\text{R}}_{\text{1}}}\leftrightarrow {{\text{R}}_{\text{2}}}\] and \[{{\text{R}}_{\text{2}}}\leftrightarrow {{\text{R}}_{\text{3}}}\] \[\Rightarrow \text{ }\!\!\Delta_\text{2=}{{\left( \text{-1} \right)}^{\text{2}}}\left| \begin{matrix} \text{a} & \text{p} & \text{x} \\ \text{b} & \text{q} & \text{y} \\ \text{c} & \text{r} & \text{z} \\ \end{matrix} \right|\] \[\therefore \text{ }\!\!\Delta_\text{2=}\left| \begin{matrix} \text{a} & \text{p} & \text{x} \\ \text{b} & \text{q} & \text{y} \\ \text{c} & \text{r} & \text{z} \\ \end{matrix} \right|\] …… (3) From (2) and (3), we get: \[\Rightarrow \text{ }\!\!\Delta_\text{1}=\text{ }\!\!\Delta_\text{2}=\left| \begin{matrix} \text{a} & \text{p} & \text{x} \\ \text{b} & \text{q} & \text{y} \\ \text{c} & \text{r} & \text{z} \\ \end{matrix} \right|\] From (1), we have: \[\Rightarrow \text{ }\!\!\Delta=2\Delta_ \text{1}\] \[\therefore \Delta \text{=2}\left| \begin{matrix} \text{a} & \text{p} & \text{x} \\ \text{b} & \text{q} & \text{y} \\ \text{c} & \text{r} & \text{z} \\ \end{matrix} \right|\]. Hence, \[\left| \begin{matrix} \text{b+c} & \text{q+r} & \text{y+z} \\ \text{c+a} & \text{r+p} & \text{z+x} \\ \text{a+b} & \text{p+q} & \text{x+y} \\ \end{matrix} \right|\text{=2}\left| \begin{matrix} \text{a} & \text{p} & \text{x} \\ \text{b} & \text{q} & \text{y} \\ \text{c} & \text{r} & \text{z} \\ \end{matrix} \right|\].


6. By using properties of determinants, show that:

\[\left| \begin{matrix} \text{0} & \text{a} & \text{-b} \\ \text{-a} & \text{0} & \text{-c} \\ \text{b} & \text{c} & \text{0} \\ \end{matrix} \right|\text{=0}\]. Ans: Given, \[\text{ }\!\!\Delta\!\!\text{ =}\left| \begin{matrix} \text{0} & \text{a} & -\text{b} \\ -\text{a} & \text{0} & -\text{c} \\ \text{b} & \text{c} & \text{0} \\ \end{matrix} \right|\]

Applying \[{R_1}\to \text{cR}_1\]: \[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =}\dfrac{\text{1}}{\text{c}}\left| \begin{matrix} \text{0} & \text{ac} & -\text{bc} \\ -\text{a} & \text{0} & -\text{c} \\ \text{b} & \text{c} & \text{0} \\ \end{matrix} \right|\] Applying \[{R_1}\to R_1-{bR_2}\] \[\text{ }\!\!\Delta\!\!\text{ =}\dfrac{\text{1}}{\text{c}}\left| \begin{matrix} \text{ab} & \text{ac} & \text{0} \\ -\text{a} & \text{0} & -\text{c} \\ \text{b} & \text{c} & \text{0} \\ \end{matrix} \right|\] Taking $a$ common from the first row, we have: \[\Rightarrow \Delta \text{=}\dfrac{\text{a}}{\text{c}}\left| \begin{matrix} \text{b} & \text{c} & \text{0} \\ -\text{a} & \text{0} & -\text{c} \\ \text{b} & \text{c} & \text{0} \\ \end{matrix} \right|\] Since, the two rows \[{{\text{R}}_{\text{1}}}\] and \[{{\text{R}}_{\text{3}}}\] are identical. \[\therefore \text{ }\!\!\Delta\!\!\text{ =0}\] Hence, \[\left| \begin{matrix} \text{0} & \text{a} & -\text{b} \\ -\text{a} & \text{0} & -\text{c} \\ \text{b} & \text{c} & \text{0} \\ \end{matrix} \right|=0\].


7. By using properties of determinants, show that:

\[\left| \begin{matrix} \text{-}{{\text{a}}^{\text{2}}} & \text{ab} & \text{ac} \\ \text{ba} & \text{-}{{\text{b}}^{\text{2}}} & \text{bc} \\ \text{ca} & \text{cb} & \text{-}{{\text{c}}^{\text{2}}} \\ \end{matrix} \right|\text{=4}{{\text{a}}^{\text{2}}}{{\text{b}}^{\text{2}}}{{\text{c}}^{\text{2}}}\].

Ans: Let\[\text{ }\!\!\Delta\!\!\text{ =}\left| \begin{matrix} \text{-}{{\text{a}}^{\text{2}}} & \text{ab} & \text{ac} \\ \text{ba} & \text{-}{{\text{b}}^{\text{2}}} & \text{bc} \\ \text{ca} & \text{cb} & \text{-}{{\text{c}}^{\text{2}}} \\ \end{matrix} \right|\] Taking out $a,b,c$ from $R_1$, $R_2$and $R_3$ respectively, we have: \[\Rightarrow \Delta \text{=abc}\left| \begin{matrix} \text{-a} & \text{b} & \text{c} \\ \text{a} & \text{-b} & \text{c} \\ \text{a} & \text{b} & \text{-c} \\ \end{matrix} \right|\] Similarly, taking out $a,b,c$ from $C_1$, $C_2$ and $C_3$ respectively, we have: \[\Rightarrow \Delta \text{=}{{\text{a}}^{\text{2}}}{{\text{b}}^{\text{2}}}{{\text{c}}^{\text{2}}}\left| \begin{matrix} \text{-1} & \text{1} & \text{1} \\ \text{1} & \text{-1} & \text{1} \\ \text{1} & \text{1} & \text{-1} \\ \end{matrix} \right|\] Applying the row operations, \[R_2\to R_2\text{+ }R_1\] and \[R_3\to R_3\text{+}R_1\] \[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =}{{\text{a}}^{\text{2}}}{{\text{b}}^{\text{2}}}{{\text{c}}^{\text{2}}}\left| \begin{matrix} \text{-1} & \text{1} & \text{1} \\ \text{0} & \text{0} & \text{2} \\ \text{0} & \text{2} & \text{0} \\ \end{matrix} \right|\] Solving it, we get: \[\Rightarrow \Delta \text{=}{{\text{a}}^{\text{2}}}{{\text{b}}^{\text{2}}}{{\text{c}}^{\text{2}}}\left( \text{-1} \right)\left| \begin{matrix} \text{0} & \text{2} \\ \text{2} & \text{0} \\ \end{matrix} \right|\] \[\Rightarrow \Delta \text{=}{{\text{a}}^{\text{2}}}{{\text{b}}^{\text{2}}}{{\text{c}}^{\text{2}}}\left( \text{-1} \right)\left( \text{0-4} \right)\] \[\therefore \Delta \text{=4}{{\text{a}}^{\text{2}}}{{\text{b}}^{\text{2}}}{{\text{c}}^{\text{2}}}\] Hence, \[\left| \begin{matrix} \text{-}{{\text{a}}^{\text{2}}} & \text{ab} & \text{ac} \\ \text{ba} & \text{-}{{\text{b}}^{\text{2}}} & \text{bc} \\ \text{ca} & \text{cb} & \text{-}{{\text{c}}^{\text{2}}} \\ \end{matrix} \right|\text{=4}{{\text{a}}^{\text{2}}}{{\text{b}}^{\text{2}}}{{\text{c}}^{\text{2}}}\].


8. By using properties of determinants, show that:

i. \[\left| \begin{matrix} \text{1} & \text{a} & {{\text{a}}^{\text{2}}} \\ \text{1} & \text{b} & {{\text{b}}^{\text{2}}} \\ \text{1} & \text{c} & {{\text{c}}^{\text{2}}} \\ \end{matrix} \right|=\left( \text{a}-\text{b} \right)\left( \text{b}-\text{c} \right)\left( \text{c}-\text{a} \right)\]

Ans: Let\[\text{ }\!\!\Delta\!\!\text{ =}\left| \begin{matrix} \text{1} & \text{a} & {{\text{a}}^{\text{2}}} \\ \text{1} & \text{b} & {{\text{b}}^{\text{2}}} \\ \text{1} & \text{c} & {{\text{c}}^{\text{2}}} \\ \end{matrix} \right|\] Applying the row operations, \[R_1\to R_1-R_3\] and \[R_2\to R_2-R_3\] \[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =}\left| \begin{matrix} \text{0} & \text{a-c} & {{\text{a}}^{\text{2}}}\text{-}{{\text{c}}^{\text{2}}} \\ \text{0} & \text{b-c} & {{\text{b}}^{\text{2}}}\text{-}{{\text{c}}^{\text{2}}} \\ \text{1} & \text{c} & {{\text{c}}^{\text{2}}} \\ \end{matrix} \right|\] \[\Rightarrow \Delta \text{=}\left( \text{c}-\text{a} \right)\left( \text{b}-c \right)\left| \begin{matrix} \text{0} & -\text{1} & -\left( a+c \right) \\ \text{0} & \text{1} & \text{b+c} \\ \text{1} & \text{c} & {{\text{c}}^{\text{2}}} \\ \end{matrix} \right|\] Applying \[R_1\to R_1+R_2\] \[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =}\left( \text{b}-\text{c} \right)\left( \text{c}-\text{a} \right)\left| \begin{matrix} \text{0} & \text{0} & -a+b \\ \text{0} & \text{1} & \text{b+c} \\ \text{1} & \text{c} & {{\text{c}}^{\text{2}}} \\ \end{matrix} \right|\] Taking out \[\left( \text{a}-\text{b} \right)\] common from \[R_1\] \[\Rightarrow \Delta \text{=}\left( \text{a}-\text{b} \right)\left( \text{b}-\text{c} \right)\left( \text{c}-\text{a} \right)\left| \begin{matrix} \text{0} & \text{0} & -\text{1} \\ \text{0} & \text{1} & \text{b+c} \\ \text{1} & \text{c} & {{\text{c}}^{\text{2}}} \\ \end{matrix} \right|\] Expanding along \[\text{C}_1\], \[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =}\left( \text{a-b} \right)\left( \text{b-c} \right)\left( \text{c-a} \right)\left| \begin{matrix} \text{0} & \text{-1} \\ \text{1} & \text{b+c} \\ \end{matrix} \right|\] \[\therefore \Delta \text{=}\left( \text{a-b} \right)\left( \text{b-c} \right)\left( \text{c-a} \right)\] Hence, \[\left| \begin{matrix} \text{1} & \text{a} & {{\text{a}}^{\text{2}}} \\ \text{1} & \text{b} & {{\text{b}}^{\text{2}}} \\ \text{1} & \text{c} & {{\text{c}}^{\text{2}}} \\ \end{matrix} \right|=\left( \text{a}-\text{b} \right)\left( \text{b}-\text{c} \right)\left( \text{c}-\text{a} \right)\]


ii.\[\left| \begin{matrix} \text{1} & \text{1} & \text{1} \\ \text{a} & \text{b} & \text{c} \\ {{\text{a}}^{\text{3}}} & {{\text{b}}^{\text{3}}} & {{\text{c}}^{\text{3}}} \\ \end{matrix} \right|\text{=}\left( \text{a-b} \right)\left( \text{b-c} \right)\left( \text{c-a} \right)\left( \text{a+b+c} \right)\]

Ans: Let \[\text{ }\!\!\Delta\!\!\text{ =}\left| \begin{matrix} \text{1} & \text{1} & \text{1} \\ \text{a} & \text{b} & \text{c} \\ {{\text{a}}^{\text{3}}} & {{\text{b}}^{\text{3}}} & {{\text{c}}^{\text{3}}} \\ \end{matrix} \right|\] Applying the column operations, \[\text{C}_1\to \text{C}_1-\text{C}_3\] and \[C_2\to C_2-\text{C}_3\] \[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =}\left| \begin{matrix} \text{0} & \text{0} & \text{1} \\ \text{a-c} & \text{b-c} & \text{c} \\ {{\text{a}}^{\text{3}}}\text{-}{{\text{c}}^{\text{3}}} & {{\text{b}}^{\text{3}}}\text{-}{{\text{c}}^{\text{3}}} & {{\text{c}}^{\text{3}}} \\ \end{matrix} \right|\] \[\Rightarrow \Delta \text{=}\left| \begin{matrix} \text{0} & \text{0} & \text{1} \\ \text{a-c} & \text{b-c} & \text{c} \\ \left( \text{a-c} \right)\left( {{\text{a}}^{\text{2}}}\text{+ac+}{{\text{c}}^{\text{2}}} \right) & \left( \text{b-c} \right)\left( {{\text{b}}^{\text{2}}}\text{+bc+}{{\text{c}}^{\text{2}}} \right) & {{\text{c}}^{\text{3}}} \\ \end{matrix} \right|\] Taking out \[\left( c-a \right)\] and \[\left( b-c \right)\] common from \[C_1\] and \[C_2\] respectively, \[\Rightarrow \Delta \text{=}\left( c-a \right)\left( b-c \right)\left| \begin{matrix} \text{0} & \text{0} & \text{1} \\ -1 & \text{1} & \text{c} \\ -\left( {{\text{a}}^{\text{2}}}\text{+ac+}{{\text{c}}^{\text{2}}} \right) & \left( {{\text{b}}^{\text{2}}}\text{+bc+}{{\text{c}}^{\text{2}}} \right) & {{\text{c}}^{\text{3}}} \\ \end{matrix} \right|\] Applying \[C_1\to C_1+C_2\] \[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =}\left( c-a \right)\left( b-c \right)\left| \begin{matrix} \text{0} & \text{0} & \text{1} \\ 0 & \text{1} & \text{c} \\ \left( {{b}^{2}}-{{a}^{2}} \right)+c\left( b-a \right) & \left( {{\text{b}}^{\text{2}}}\text{+bc+}{{\text{c}}^{\text{2}}} \right) & {{\text{c}}^{\text{3}}} \\ \end{matrix} \right|\] Taking out $\left( a-b \right)$ common from \[C_1\], we get: \[\Rightarrow \Delta \text{=}\left( a-b \right)\left( c-a \right)\left( b-c \right)\left| \begin{matrix} \text{0} & \text{0} & \text{1} \\ \text{0} & \text{1} & \text{c} \\ \text{-}\left( \text{a+b+c} \right) & \left( {{\text{b}}^{\text{2}}}\text{+bc+}{{\text{c}}^{\text{2}}} \right) & {{\text{c}}^{\text{3}}} \\ \end{matrix} \right|\] Again taking out $\left( a+b+c \right)$ common from \[C_1\], we get: \[\Rightarrow \Delta \text{=}\left( a-b \right)\left( b-c \right)\left( c-a \right)\left| \begin{matrix} \text{0} & \text{0} & \text{1} \\ \text{0} & \text{1} & \text{c} \\ -1 & \left( {{\text{b}}^{\text{2}}}\text{+bc+}{{\text{c}}^{\text{2}}} \right) & {{\text{c}}^{\text{3}}} \\ \end{matrix} \right|\] Expanding along \[C_1\] \[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =}\left( a-b \right)\left( b-c \right)\left( c-a \right)\left( \text{a+b+c} \right)\left( \text{-1} \right)\left| \begin{matrix} \text{0} & \text{1} \\ \text{1} & \text{c} \\ \end{matrix} \right|\] \[\therefore \Delta \text{=}\left( \text{a-b} \right)\left( \text{b-c} \right)\left( \text{c-a} \right)\left( \text{a+b+c} \right)\] Hence, \[\left| \begin{matrix} \text{1} & \text{1} & \text{1} \\ \text{a} & \text{b} & \text{c} \\ {{\text{a}}^{\text{3}}} & {{\text{b}}^{\text{3}}} & {{\text{c}}^{\text{3}}} \\ \end{matrix} \right|\text{=}\left( \text{a-b} \right)\left( \text{b-c} \right)\left( \text{c-a} \right)\left( \text{a+b+c} \right)\]


9. By using properties of determinants, show that:

\[\left| \begin{matrix} \text{x} & {{\text{x}}^{\text{2}}} & \text{yz} \\ \text{y} & {{\text{y}}^{\text{2}}} & \text{zx} \\ \text{z} & {{\text{z}}^{\text{2}}} & \text{xy} \\ \end{matrix} \right|\text{=}\left( \text{x-y} \right)\left( \text{y-z} \right)\left( \text{z-x} \right)\left( \text{xy+yz+zx} \right)\].

Ans: Let \[\text{ }\!\!\Delta\!\!\text{ =}\left| \begin{matrix} \text{x} & {{\text{x}}^{\text{2}}} & \text{yz} \\ \text{y} & {{\text{y}}^{\text{2}}} & \text{zx} \\ \text{z} & {{\text{z}}^{\text{2}}} & \text{xy} \\ \end{matrix} \right|\] Applying \[\text{R}_2\to \text{R}_2-\text{R}_1\] and \[\text{R}_3\to \text{R}_3-\text{R}_1\] \[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =}\left| \begin{matrix} \text{x} & {{\text{x}}^{\text{2}}} & \text{yz} \\ \text{y-x} & {{\text{y}}^{\text{2}}}\text{-}{{\text{x}}^{\text{2}}} & \text{zx-yz} \\ \text{z-x} & {{\text{z}}^{\text{2}}}\text{-}{{\text{x}}^{\text{2}}} & \text{xy-yz} \\ \end{matrix} \right|\] \[\Rightarrow \Delta \text{=}\left| \begin{matrix} \text{x} & {{\text{x}}^{\text{2}}} & \text{yz} \\ \text{-}\left( \text{x-y} \right) & \text{-}\left( \text{x-y} \right)\left( \text{x+y} \right) & \text{z}\left( \text{x-y} \right) \\ \left( \text{z-x} \right) & \left( \text{z-x} \right)\left( \text{z+x} \right) & \text{-y}\left( \text{z-x} \right) \\ \end{matrix} \right|\] Taking out \[\left( x-y \right)\] and \[\left( z-x \right)\] common from \[R_2\] and \[R_3\] respectively \[\Rightarrow \Delta \text{=}\left( x-y \right)\left( z-x \right)\left| \begin{matrix} \text{x} & {{\text{x}}^{\text{2}}} & \text{yz} \\ -1 & -x-y & \text{z} \\ \text{1} & z+x & -y \\ \end{matrix} \right|\] Applying \[R_3\to R_3+R_2\] \[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =}\left( x-y \right)\left( z-x \right)\left| \begin{matrix} \text{x} & {{\text{x}}^{\text{2}}} & \text{yz} \\ \text{-1} & \text{-x-y} & \text{z} \\ 0 & z-y & z-y \\ \end{matrix} \right|\] Taking out \[\left( z-y \right)\] common from \[R_3\], we get: \[\Rightarrow \Delta \text{=}\left( x-y \right)\left( z-x \right)\left( z-y \right)\left| \begin{matrix} \text{x} & {{\text{x}}^{\text{2}}} & \text{yz} \\ -1 & -x-y & \text{z} \\ \text{0} & \text{1} & \text{1} \\ \end{matrix} \right|\] Expanding along \[R_3\] \[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =}\left[ \left( x-y \right)\left( z-x \right)\left( z-y \right) \right]\left[ \left( -1 \right)\left| \begin{matrix} \text{x} & \text{yz} \\ -1 & \text{z} \\ \end{matrix} \right|\text{+1}\left| \begin{matrix} \text{x} & {{\text{x}}^{\text{2}}} \\ -1 & -x-y \\ \end{matrix} \right| \right]\] \[\Rightarrow \Delta \text{=}\left( \text{x-y} \right)\left( \text{z-x} \right)\left( \text{z-y} \right)\left[ \left( \text{-xz-yz} \right)\text{+}\left( \text{-}{{\text{x}}^{\text{2}}}\text{-xy+}{{\text{x}}^{\text{2}}} \right) \right]\] \[\Rightarrow \Delta \text{=}-\left( x-y \right)\left( z-x \right)\left( z-y \right)\left( \text{xy+yz+zx} \right)\] \[\therefore \Delta \text{=}\left( x-y \right)\left( y-z \right)\left( z-x \right)\left( \text{xy+yz+zx} \right)\] Hence, \[\left| \begin{matrix} \text{x} & {{\text{x}}^{\text{2}}} & \text{yz} \\ \text{y} & {{\text{y}}^{\text{2}}} & \text{zx} \\ \text{z} & {{\text{z}}^{\text{2}}} & \text{xy} \\ \end{matrix} \right|\text{=}\left( x-y \right)\left( y-z \right)\left( z-x \right)\left( \text{xy+yz+zx} \right)\]


10. By using properties of determinants, show that:

i. \[\left| \begin{matrix} \text{x+4} & \text{2x} & \text{2x} \\ \text{2x} & \text{x+4} & \text{2x} \\ \text{2x} & \text{2x} & \text{x+4} \\ \end{matrix} \right|\text{=}\left( \text{5x+4} \right){{\left( \text{4-x} \right)}^{\text{2}}}\]

Ans: Let \[\text{ }\!\!\Delta\!\!\text{ =}\left| \begin{matrix} \text{x+4} & \text{2x} & \text{2x} \\ \text{2x} & \text{x+4} & \text{2x} \\ \text{2x} & \text{2x} & \text{x+4} \\ \end{matrix} \right|\]

Applying the row operation,\[R_1\to R_1\text{+}R_2\text{+}R_3\] \[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =}\left| \begin{matrix} \text{5x+4} & \text{5x+4} & \text{5x+4} \\ \text{2x} & \text{x+4} & \text{2x} \\ \text{2x} & \text{2x} & \text{x+4} \\ \end{matrix} \right|\] Taking out $\left( 5x+4 \right)$ common from \[R_1\] \[\Rightarrow \Delta \text{=}\left( \text{5x+4} \right)\left| \begin{matrix} \text{1} & 1 & 1 \\ \text{2x} & \text{x+4} & 2x \\ \text{2x} & \text{2x} & \text{x+4} \\ \end{matrix} \right|\] Applying the column operations, \[C_2\to C_2-C_1\] and \[\text{C}_3\to C_3-\text{C}_1\] \[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =}\left( \text{5x+4} \right)\left| \begin{matrix} \text{1} & \text{0} & \text{0} \\ \text{2x} & 4-x & \text{0} \\ \text{2x} & \text{0} & 4-x \\ \end{matrix} \right|\] Taking out $\left( 4-x \right)$ common from \[C_2\] and \[C_3\] respectively, \[\Rightarrow \Delta \text{=}\left( \text{5x+4} \right)\left( \text{4-x} \right)\left( \text{4-x} \right)\left| \begin{matrix} \text{1} & \text{0} & \text{0} \\ \text{2x} & \text{1} & \text{0} \\ \text{2x} & \text{0} & \text{1} \\ \end{matrix} \right|\] Expanding along \[C_3\] \[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =}\left( \text{5x+4} \right){{\left( 4-x \right)}^{\text{2}}}\left| \begin{matrix} \text{1} & \text{0} \\ \text{2x} & \text{1} \\ \end{matrix} \right|\] \[\therefore \Delta \text{=}\left( \text{5x+4} \right){{\left( 4-x \right)}^{\text{2}}}\] Hence, \[\left| \begin{matrix} \text{x+4} & \text{2x} & \text{2x} \\ \text{2x} & \text{x+4} & \text{2x} \\ \text{2x} & \text{2x} & \text{x+4} \\ \end{matrix} \right|\text{=}\left( \text{5x+4} \right){{\left( \text{4-x} \right)}^{\text{2}}}\]


ii. \[\left| \begin{matrix} \text{y+k} & \text{y} & \text{y} \\ \text{y} & \text{y+k} & \text{y} \\ \text{y} & \text{y} & \text{y+k} \\ \end{matrix} \right|\text{=}{{\text{k}}^{\text{2}}}\left( \text{3x+k} \right)\]

Ans: Let \[\text{ }\!\!\Delta\!\!\text{ =}\left| \begin{matrix} \text{y+k} & \text{y} & \text{y} \\ \text{y} & \text{y+k} & \text{y} \\ \text{y} & \text{y} & \text{y+k} \\ \end{matrix} \right|\] Applying the row operation, \[\text{R}_1\to \text{R}_1\text{+R}_2\text{+R}_3\] \[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =}\left| \begin{matrix} \text{3y+k} & \text{3y+k} & \text{3y+k} \\ \text{y} & \text{y+k} & \text{y} \\ \text{y} & \text{y} & \text{y+k} \\ \end{matrix} \right|\] Taking out $\left( 3y+k \right)$ common from \[R_1\] \[\Rightarrow \Delta \text{=}\left( \text{3y+k} \right)\left| \begin{matrix} \text{1} & \text{1} & \text{1} \\ \text{y} & \text{y+k} & \text{y} \\ \text{y} & \text{y} & \text{y+k} \\ \end{matrix} \right|\] Applying \[C_2\to C_2-\text{C}_1\] and \[C_3\to C_3-\text{C}_1\] \[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =}\left( \text{3y+k} \right)\left| \begin{matrix} \text{1} & \text{0} & \text{0} \\ \text{y} & \text{k} & \text{0} \\ \text{y} & \text{0} & \text{k} \\ \end{matrix} \right|\] Taking out $\left( k \right)$ common from \[C_2\] and \[C_3\] respectively, \[\Rightarrow \Delta \text{=}{{\text{k}}^{\text{2}}}\left( \text{3x+k} \right)\left| \begin{matrix} \text{1} & \text{0} & \text{0} \\ \text{y} & \text{1} & \text{0} \\ \text{y} & \text{0} & \text{1} \\ \end{matrix} \right|\] Expanding along \[C_3\] \[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =}{{\text{k}}^{\text{2}}}\left( \text{3x+k} \right)\left| \begin{matrix} \text{1} & \text{0} \\ \text{y} & \text{1} \\ \end{matrix} \right|\] \[\therefore \Delta \text{=}{{\text{k}}^{\text{2}}}\left( \text{3x+k} \right)\] Hence, \[\left| \begin{matrix} \text{y+k} & \text{y} & \text{y} \\ \text{y} & \text{y+k} & \text{y} \\ \text{y} & \text{y} & \text{y+k} \\ \end{matrix} \right|\text{=}{{\text{k}}^{\text{2}}}\left( \text{3x+k} \right)\].


11. By using properties of determinants, show that:

i. \[\left| \begin{matrix} \text{a-b-c} & \text{2a} & \text{2a}\\ \text{2b} & \text{b-c-a} & \text{2b} \\ \text{2c} & \text{2c} & \text{c-a-b} \\ \end{matrix} \right|\text{=}{{\left( \text{a+b+c} \right)}^{\text{3}}}\]

Ans: Let\[\text{ }\!\!\Delta\!\!\text{ =}\left| \begin{matrix} \text{a+b+c} & \text{a+b+c} & \text{a+b+c} \\ \text{2b} & \text{b-c-a} & \text{2b} \\ \text{2c} & \text{2c} & \text{c-a-b} \\ \end{matrix} \right|\] Applying the row operation, \[\text{R}_1\to \text{R}_1\text{+ R}_2\text{+R}_3\] \[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =}\left| \begin{matrix} \text{a+b+c} & \text{a+b+c} & \text{a+b+c} \\ \text{2b} & \text{b-c-a} & \text{2b} \\ \text{2c} & \text{2c} & \text{c-a-b} \\ \end{matrix} \right|\] Taking out $\left( a+b+c \right)$ common from \[R_1\] \[\Rightarrow \Delta \text{=}\left( \text{a+b+c} \right)\left| \begin{matrix} \text{1} & \text{1} & \text{1} \\ \text{2b} & \text{b-c-a} & \text{2b} \\ \text{2c} & \text{2c} & \text{c-a-b} \\ \end{matrix} \right|\] Applying the column operations, \[C_2\to C_2-\text{C}_1\] and \[\text{C}_3\to \text{C}_3-\text{C}_1\] \[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =}\left( \text{a+b+c} \right)\left| \begin{matrix} \text{1} & \text{0} & \text{0} \\ \text{2b} & \text{-}\left( \text{a+b+c} \right) & \text{0} \\ \text{2c} & \text{0} & \text{-}\left( \text{a+b+c} \right) \\ \end{matrix} \right|\] Taking out $\left( a+b+c \right)$ common from \[C_2\] and \[C_3\] respectively, \[\Rightarrow \Delta \text{=}{{\left( \text{a+b+c} \right)}^{\text{3}}}\left| \begin{matrix} \text{1} & \text{0} & \text{0} \\ \text{2b} & \text{-1} & \text{0} \\ \text{2c} & \text{0} & \text{-1} \\ \end{matrix} \right|\] Expanding along \[\text{C}_3\] \[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =}{{\left( \text{a+b+c} \right)}^{\text{3}}}\left( \text{-1} \right)\left( \text{-1} \right)\] \[\therefore \Delta \text{=}{{\left( \text{a+b+c} \right)}^{\text{3}}}\] Hence, \[\left| \begin{matrix} \text{a-b-c} & \text{2a} & \text{2a} \\ \text{2b} & \text{b-c-a} & \text{2b} \\ \text{2c} & \text{2c} & \text{c-a-b} \\ \end{matrix} \right|\text{=}{{\left( \text{a+b+c} \right)}^{\text{3}}}\].


ii. \[\left| \begin{matrix} \text{x+y+2z} & \text{x} & \text{y} \\ \text{z} & \text{y+z+2x} & \text{y} \\ \text{z} & \text{x} & \text{z+x+2y} \\ \end{matrix} \right|\text{=2}{{\left( \text{x+y+z} \right)}^{\text{3}}}\]

Ans:  Let \[\text{ }\!\!\Delta\!\!\text{ =}\left| \begin{matrix} \text{x+y+2z} & \text{x} & \text{y} \\ \text{z} & \text{y+z+2z} & \text{y} \\ \text{z} & \text{x} & \text{z+x+2y} \\ \end{matrix} \right|\] Applying the column operation, \[C_1\to C_1\text{+}C_2\text{+}C_3\] \[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =}\left| \begin{matrix} \text{2}\left( \text{x+y+z} \right) & \text{x} & \text{y} \\ \text{2}\left( \text{x+y+z} \right) & \text{y+z+2x} & \text{y} \\ \text{2}\left( \text{x+y+z} \right) & \text{x} & \text{z+x+2y} \\ \end{matrix} \right|\] Taking out $2\left( x+y+z \right)$ common from \[C_1\] \[\Rightarrow \Delta \text{=2}\left( \text{x+y+z} \right)\left| \begin{matrix} \text{1} & \text{x} & \text{y} \\ \text{1} & \text{y+z+2x} & \text{y} \\ \text{1} & \text{x} & \text{z+x+2y} \\ \end{matrix} \right|\] Applying \[R_2\to R_2-R_1\] and \[R_3\to R_3-R_1\] \[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =2}\left( \text{x+y+z} \right)\left| \begin{matrix} \text{1} & \text{x} & \text{y} \\ \text{0} & \text{x+y+z} & \text{0} \\ \text{0} & \text{0} & \text{x+y+z} \\ \end{matrix} \right|\] Taking out $\left( x+y+z \right)$ common from \[R_2\] and \[R_3\] respectively, \[\Rightarrow \Delta \text{=2}\left( \text{x+y+z} \right)\left| \begin{matrix} \text{1} & \text{x} & \text{y} \\ \text{0} & \text{1} & \text{0} \\ \text{0} & \text{0} & \text{1} \\ \end{matrix} \right|\] Expanding along \[R_3\] \[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =2}{{\left( \text{x+y+z} \right)}^{\text{3}}}\left( \text{1} \right)\left( \text{1-0} \right)\] \[\therefore \Delta \text{=2}{{\left( \text{x+y+z} \right)}^{\text{3}}}\] Hence, \[\left| \begin{matrix} \text{x+y+2z} & \text{x} & \text{y} \\ \text{z} & \text{y+z+2x} & \text{y} \\ \text{z} & \text{x} & \text{z+x+2y} \\ \end{matrix} \right|\text{=2}{{\left( \text{x+y+z} \right)}^{\text{3}}}\].


12. By using properties of determinants, show that:

\[\left| \begin{matrix} \text{1} & \text{x} & {{\text{x}}^{\text{2}}} \\ {{\text{x}}^{\text{2}}} & \text{1} & \text{x} \\ \text{x} & {{\text{x}}^{\text{2}}} & \text{1} \\ \end{matrix} \right|\text{=}{{\left( \text{1-}{{\text{x}}^{\text{3}}} \right)}^{\text{2}}}\].

Ans: Let \[\text{ }\!\!\Delta\!\!\text{ =}\left| \begin{matrix} \text{1} & \text{x} & {{\text{x}}^{\text{2}}} \\ {{\text{x}}^{\text{2}}} & \text{1} & \text{x} \\ \text{x} & {{\text{x}}^{\text{2}}} & \text{1} \\ \end{matrix} \right|\] Applying \[R_1\to R_1\text{+}R_2+R_3\] \[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =}\left| \begin{matrix} \text{1+x+}{{\text{x}}^{\text{2}}} & \text{1+x+}{{\text{x}}^{\text{2}}} & \text{1+x+}{{\text{x}}^{\text{2}}} \\ {{\text{x}}^{\text{2}}} & \text{1} & \text{x} \\ \text{x} & {{\text{x}}^{\text{2}}} & \text{1} \\ \end{matrix} \right|\] Taking out $\left( \text{1+x+}{{\text{x}}^{\text{2}}} \right)$ common from \[R_1\] \[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =}\left( \text{1+x+}{{\text{x}}^{\text{2}}} \right)\left| \begin{matrix} 1 & 1 & 1 \\ {{\text{x}}^{\text{2}}} & \text{1} & \text{x} \\ \text{x} & {{\text{x}}^{\text{2}}} & \text{1} \\ \end{matrix} \right|\] Applying \[C_2\to C_2-\text{C}_1\] and \[\text{C}_3\to C_3-\text{C}_1\] \[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =}\left( \text{1+x+}{{\text{x}}^{\text{2}}} \right)\left| \begin{matrix} \text{1} & \text{0} & \text{0} \\ {{\text{x}}^{\text{2}}} & \text{1-}{{\text{x}}^{\text{2}}} & \text{x-}{{\text{x}}^{\text{2}}} \\ \text{x} & {{\text{x}}^{\text{2}}}\text{-x} & \text{1-x} \\ \end{matrix} \right|\] Taking out $\left( 1-x \right)$ common from \[C_2\] and \[C_3\] respectively, \[\Rightarrow \Delta \text{=}\left( \text{1+x+}{{\text{x}}^{\text{2}}} \right)\left( \text{1-x} \right)\left( \text{1-x} \right)\left| \begin{matrix} \text{1} & \text{0} & \text{0} \\ {{\text{x}}^{\text{2}}} & \text{1+x} & \text{x} \\ \text{x} & \text{-x} & \text{1} \\ \end{matrix} \right|\] \[\Rightarrow \Delta \text{=}\left( \text{1-}{{\text{x}}^{\text{3}}} \right)\left( \text{1-x} \right)\left| \begin{matrix} \text{1} & \text{0} & \text{0} \\ {{\text{x}}^{\text{2}}} & \text{1+x} & \text{x} \\ \text{x} & \text{-x} & \text{1} \\ \end{matrix} \right|\] Expanding along \[\text{R}_1\] \[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =}\left( \text{1-}{{\text{x}}^{\text{3}}} \right)\left( 1-x \right)\left( \text{1} \right)\left| \begin{matrix} \text{1+x} & \text{x} \\ -x & \text{1} \\ \end{matrix} \right|\] \[\Rightarrow \Delta \text{=}\left( \text{1-}{{\text{x}}^{\text{3}}} \right)\left( \text{1-x} \right)\left( \text{1+x+}{{\text{x}}^{\text{2}}} \right)\] \[\Rightarrow \Delta \text{=}\left( \text{1-}{{\text{x}}^{\text{3}}} \right)\left( \text{1-}{{\text{x}}^{\text{3}}} \right)\] \[\therefore \Delta \text{=}{{\left( \text{1-}{{\text{x}}^{\text{3}}} \right)}^{\text{2}}}\] Hence, \[\left| \begin{matrix} \text{1} & \text{x} & {{\text{x}}^{\text{2}}} \\ {{\text{x}}^{\text{2}}} & \text{1} & \text{x} \\ \text{x} & {{\text{x}}^{\text{2}}} & \text{1} \\ \end{matrix} \right|\text{=}{{\left( \text{1-}{{\text{x}}^{\text{3}}} \right)}^{\text{2}}}\].


13. By using properties of determinants, show that:

\[\left| \begin{matrix} \text{1+}{{\text{a}}^{\text{2}}}\text{-}{{\text{b}}^{\text{2}}} & \text{2ab} & \text{-2b} \\ \text{2ab} & \text{1-}{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}} & \text{2a} \\ \text{2b} & \text{-2a} & \text{1-}{{\text{a}}^{\text{2}}}\text{-}{{\text{b}}^{\text{2}}} \\ \end{matrix} \right|\text{=}{{\left( \text{1+}{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}} \right)}^{\text{3}}}\].


Ans: Let \[\text{ }\!\!\Delta\!\!\text{ =}\left| \begin{matrix} \text{1+}{{\text{a}}^{\text{2}}}\text{-}{{\text{b}}^{\text{2}}} & \text{2ab} & \text{-2b} \\ \text{2ab} & \text{1-}{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}} & \text{2a} \\ \text{2b} & \text{-2a} & \text{1-}{{\text{a}}^{\text{2}}}\text{-}{{\text{b}}^{\text{2}}} \\ \end{matrix} \right|\] Applying the row operations, \[\text{R}_1\to \text{R}_1\text{+bR}_3\] and \[\text{R}_2\to \text{R}_2-\text{aR}_3\] \[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =}\left| \begin{matrix} \text{1+}{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}} & \text{0} & \text{-b}\left( \text{1+}{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}} \right) \\ \text{0} & \text{1+}{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}} & \text{a}\left( \text{1+}{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}} \right) \\ \text{2b} & \text{-2a} & \text{1-}{{\text{a}}^{\text{2}}}\text{-}{{\text{b}}^{\text{2}}} \\ \end{matrix} \right|\] Taking out $\left( \text{1+}{{\text{a}}^{2}}\text{+}{{\text{b}}^{\text{2}}} \right)$ common from \[R_1\] and \[R_2\] respectively, \[\Rightarrow \Delta \text{=}{{\left( \text{1+}{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}} \right)}^{2}}\left| \begin{matrix} \text{1} & \text{0} & \text{-b} \\ \text{0} & \text{1} & \text{a} \\ \text{2b} & \text{-2a} & \text{1-}{{\text{a}}^{\text{2}}}\text{-}{{\text{b}}^{\text{2}}} \\ \end{matrix} \right|\] Expanding along \[R_1\] \[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =}\left( \text{1+}{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}} \right)\left[ \left( \text{1} \right)\left| \begin{matrix} \text{1} & \text{a} \\ -\text{2a} & \text{1}-{{\text{a}}^{\text{2}}}-{{\text{b}}^{\text{2}}} \\ \end{matrix} \right|-b\left| \begin{matrix} \text{0} & \text{1} \\ \text{2b} & -2a \\ \end{matrix} \right| \right]\] \[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =}{{\left( \text{1+}{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}} \right)}^{2}}\left[ \text{1-}{{\text{a}}^{\text{2}}}\text{-}{{\text{b}}^{\text{2}}}\text{+2}{{\text{a}}^{\text{2}}}\text{-b}\left( \text{-2b} \right) \right]\] \[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =}{{\left( \text{1+}{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}} \right)}^{2}}\left( \text{1+}{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}} \right)\] \[\therefore \text{ }\!\!\Delta\!\!\text{ =}{{\left( \text{1+}{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}} \right)}^{\text{3}}}\] Hence, \[\left| \begin{matrix} \text{1+}{{\text{a}}^{\text{2}}}\text{-}{{\text{b}}^{\text{2}}} & \text{2ab} & \text{-2b} \\ \text{2ab} & \text{1-}{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}} & \text{2a} \\ \text{2b} & \text{-2a} & \text{1-}{{\text{a}}^{\text{2}}}\text{-}{{\text{b}}^{\text{2}}} \\ \end{matrix} \right|\text{=}{{\left( \text{1+}{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}} \right)}^{\text{3}}}\].


14. By using properties of determinants, show that:

\[\left| \begin{matrix} {{\text{a}}^{\text{2}}}\text{+1} & \text{ab} & \text{ac} \\ \text{ab} & {{\text{b}}^{\text{2}}}\text{+1} & \text{bc} \\ \text{ca} & \text{cb} & {{\text{c}}^{\text{2}}}\text{+1} \\ \end{matrix} \right|\text{=1+}{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}}\].

Ans: Let \[\text{ }\!\!\Delta\!\!\text{ =}\left| \begin{matrix} {{\text{a}}^{\text{2}}}\text{+1} & \text{ab} & \text{ac} \\ \text{ab} & {{\text{b}}^{\text{2}}}\text{+1} & \text{bc} \\ \text{ca} & \text{cb} & {{\text{c}}^{\text{2}}}\text{+1} \\ \end{matrix} \right|\] Taking out \[\text{a,b}\] and \[\text{c}\] from \[R_1\] , \[R_2\] and \[R_3\] respectively \[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =abc}\left| \begin{matrix} \text{a+}\dfrac{\text{1}}{\text{a}} & \text{b} & \text{c} \\ \text{a} & \text{b+}\dfrac{\text{1}}{\text{b}} & \text{c} \\ \text{a} & \text{b} & \text{c+}\dfrac{\text{1}}{\text{c}} \\ \end{matrix} \right|\] Applying \[\text{R}_2\to \text{R}_2-\text{R}_1\] and \[\text{R}_3\to \text{R}_3-\text{R}_1\] \[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =abc}\left| \begin{matrix} \text{a+}\dfrac{\text{1}}{\text{a}} & \text{b} & \text{c} \\ \text{-}\dfrac{\text{1}}{\text{a}} & \dfrac{\text{1}}{\text{b}} & \text{0} \\ \text{-}\dfrac{\text{1}}{\text{a}} & \text{0} & \dfrac{\text{1}}{\text{c}} \\ \end{matrix} \right|\] Applying \[\text{C}_1\to \text{aC}_1\] , \[C_2\to \text{bC}_2\] and \[\text{C}_3\to \text{cC}_3\] \[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =abc }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{abc}}\left| \begin{matrix} {{\text{a}}^{\text{2}}}\text{+1} & {{\text{b}}^{\text{2}}} & {{\text{c}}^{\text{2}}} \\ \text{-1} & \text{1} & \text{0} \\ \text{-1} & \text{0} & \text{1} \\ \end{matrix} \right|\] Expanding along \[\text{R}_3\] \[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =-1}\left| \begin{matrix} {{\text{b}}^{\text{2}}} & {{\text{c}}^{\text{2}}} \\ \text{1} & \text{0} \\ \end{matrix} \right|\text{+1}\left| \begin{matrix} {{\text{a}}^{\text{2}}}\text{+1} & {{\text{b}}^{\text{2}}} \\ \text{-1} & \text{1} \\ \end{matrix} \right|\] \[\Rightarrow \Delta \text{=1}\left( \text{-}{{\text{c}}^{\text{2}}} \right)\text{+}\left( {{\text{a}}^{\text{2}}}\text{+1+}{{\text{b}}^{\text{2}}} \right)\] \[\therefore \Delta \text{=1+}{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}}\] Hence, \[\left| \begin{matrix} {{\text{a}}^{\text{2}}}\text{+1} & \text{ab} & \text{ac} \\ \text{ab} & {{\text{b}}^{\text{2}}}\text{+1} & \text{bc} \\ \text{ca} & \text{cb} & {{\text{c}}^{\text{2}}}\text{+1} \\ \end{matrix} \right|\text{=1+}{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}}\].


15. Choose the correct answer. Let \[\text{A}\] be a square matrix of order \[\text{3 }\!\!\times\!\!\text{ 3}\] , then \[\left| \text{kA} \right|\] is equal to  \[\text{k}\left| \text{A} \right|\]

  1. \[{{\text{k}}^{\text{2}}}\left| \text{A} \right|\]

  2. \[{{\text{k}}^{\text{3}}}\left| \text{A} \right|\]

  3. \[\text{3k}\left| \text{A} \right|\]

Ans: Since, \[\text{A}\] is a square matrix of order \[\text{3 }\!\!\times\!\!\text{ 3}\] . Let us suppose \[\text{A=}\left[ \begin{matrix} \text{a}_1 & \text{b}_1 & \text{c}_1 \\ \text{a}_2 & \text{b}_2 & \text{c}_2 \\ \text{a}_3 & \text{b}_3 & \text{c}_3 \\ \end{matrix} \right]\] Thus, \[\text{kA=}\left[ \begin{matrix} \text{ka}_1 & \text{kb}_1 & \text{kc}_1 \\ \text{ka}_2 & \text{kb}_2 & \text{kc}_2 \\ \text{ka}_3 & \text{kb}_3 & \text{kc}_3 \\ \end{matrix} \right]\] \[\therefore \left| \text{kA} \right|\text{=}\left| \begin{matrix} \text{ka}_1 & \text{kb}_1 & \text{kc}1 \\ \text{ka}_2 & \text{kb}_2 & \text{kc}2 \\ \text{ka}_3 & \text{kb}_3 & \text{kc}3 \\ \end{matrix} \right|\] Taking out $\left( k \right)$ common from each row, we have: \[\Rightarrow \left| kA \right|\text{=}{{\text{k}}^{\text{3}}}\left| \begin{matrix} \text{a}_1 & \text{b}_1 & \text{c}_1 \\ \text{a}_2 & \text{b}_2 & \text{c}_2 \\ \text{a}_3 & \text{b}_3 & \text{c}_3 \\ \end{matrix} \right|\] \[\therefore \left| \text{kA} \right|\text{=}{{\text{k}}^{\text{3}}}\left| \text{A} \right|\] Hence, B. \[{{\text{k}}^{\text{3}}}\left| \text{A} \right|\] is the correct option.


16. Which of the following is correct?

  1. Determinant is a square matrix.

  2. Determinant is a number associated to a matrix.

  3. Determinant is a number associated to a square matrix.

  4. None of these.


Ans: For every square matrix, \[\text{A=}\left[ \text{aij} \right]\] of order \[\text{n}\], we can determine or associate a value which is termed as determinant of square matrix A, where \[\text{aij=}{{\left( \text{i,j} \right)}^{\text{th}}}\] element of \[\text{A}\] .

Thus, the determinant is a number associated with a square matrix.

Hence, C. Determinant is a number associated to a square matrix is the correct option.


NCERT Solutions For Class 12 Math Chapter 4 Exercise 4.2

NCERT Solutions for Class 12 Math Chapter 4 Determinants exercise 4.2 contains solutions for all questions covered in the exercise in the pdf format. NCERT Solutions for Class 12 Math Chapter 4 Determinants exercise 4.2 care solved by subject experts at Vedantu in a simple way.. Solving through these questions repeatedly can give students the confidence to write the exams better. Students can download the NCERT Solutions for Class 12 Math  Chapter 4 Exercise 4.2 and practice offline anytime and from anywhere. The questions given in Chapter 4 Exercise 4.2 is based on the topic “Different Properties of Determinants”.


What are Determinants?

In Math, determinants are determined as the scalar quantities. It is obtained by the sum of the elements of a square matrix and their cofactors according to the prescribed rule.


What are the Different Properties of Determinants?

The different properties of Determinants includes:

  • Reflection Property

  • All Zero Property

  • Proportionality Property

  • Switching Property

  • Scalar Multiple Property

  • Factor Property

  • Sum Property

  • Triangle Property

  • Property of Invariance

  • Determinants of Cofactor Matrix

NCERT Solutions for Class 12 Maths PDF Download


NCERT Solutions Class 12 Maths Chapter 4 – Other Exercises

Chapter 4 - Determinants Exercises in PDF Format

Exercise 4.1

8 Questions & Solutions (3 Short Answers, 5 Long Answers)

Exercise 4.3

5 Questions & Solutions (2 Short Answers, 3 Long Answers)

Exercise 4.4

5 Questions & Solutions (2 Short Answers, 3 Long Answers)

Exercise 4.5

18 Questions & Solutions (4 Short Answers, 14 Long Answers)

Exercise 4.6

16 Questions & Solutions (3 Short Answers, 13 Long Answers)


The NCERT Solutions Class 12 Chapter 4 Exercise 4.2 Determinants will help students to get a better understanding of the types of questions that are commonly asked from this topic in the exams. Students should download and refer to the Class 12 Maths Chapter 4 Exercise 4.2 for getting a clear idea of the concepts of Determinants. 

 

All the students can refer to these NCERT Solutions to perform well in their exams and score high marks. If you have any doubts while studying math or while solving the questions given in the exercise in the Maths books, you can refer to the solutions on Vedantu for a detailed stepwise analysis of the sums. Hence, to ensure a better learning experience, download  NCERT Solutions for Maths Class 12 Chapter 4 Exercise 4.2 Determinant.

 

Properties of Determinants

To solve the sums given in the ex 4.2 class 12 maths solutions, students should know the properties of determinants thoroughly. As mentioned before, a determinant is a special number that can be found by using a square matrix.

 

The determinant of a matrix, also known as P, can be denoted by det(P) or det P. Determinants have important properties that play a role in permitting an individual to get the same results with simpler and different configurations of entries or elements.

 

Students should know about these properties if they want to find class 12 maths NCERT solutions. To help students out, we have created a list of those properties. And that list is mentioned below.

  • Reflection Property

According to this property, the determinant remains unaltered if the rows are changed into columns. For this property to be effective, the columns should also turn into rows.

  • All-Zero Property

If all the elements of a row or column are zero, the value of the determinant is also zero.

  • Proportionality or Repetition Property

This property is important for writing NCERT class 12 maths exercise 4.2 solutions. According to this property, if all the elements of a column or row are identical or proportional to the elements of some other column or row, then the value of the determinant is zero.

  • Switching Property

The interchange of any two columns or rows of the determinant results in a change in the sign.

  • Scalar Multiple Property

If all the elements of a column or row of a determinant are multiplied by a non-zero constant, then the determinant will get multiplied by the same constant.

There are also other properties that students should know about if they want to solve all class 12 maths ch 4 ex 4.2 questions.

 

Class 12 Determinants Exercise 4.2

Class 12th is an important time for a student. And if a student wants to get the most out of that time, then he or she should focus on getting the best marks in his or her final examination. To achieve this aim in mathematics, students should solve all questions of chapter 4 exercise 4.2.

 

But what if you need some extra help? In that case, we at Vedantu are always here for all students. We at Vedantu provide students with NCERT solutions class 12 maths pdf files. Students can download these files for free from Vedantu.

 

Apart from NCERT solutions for class 12 maths exercise 4.2, we also provide solutions for other exercises of the same chapter. There are exercises 4.1, exercise 4.3, exercise 4.4, exercise 4.5, and exercise 4.6 in this chapter. All of these exercises have roughly five questions each.

 

Why Should You Download Exercise 4.2 Class 12 Maths Answers From Vedantu?

There are a lot of benefits with the NCERT Maths Solutions For Class 12 Chapter 4 Exercise 4.2 Determinants. Some of the benefits of the solutions are: 

  • All answers are completely accurate and reliable

  • Answers are written by the most talented subject matter experts in India

  • We also provide live classes and 24x7 academic assistance to students

  • The answers are present in a pdf file, which is very easy to download

  • All answers are accompanied by an explanation section. This section provides extra clarity to the answer, and it also highlights the process that the expert followed to arrive at the answer

FAQs on NCERT Solutions for Class 12 Maths Chapter 4: Determinants - Exercise 4.2

1. How Can I Download Exercise 4.2 Class 12 Maths NCERT Solutions from Vedantu?

It is very simple to download solved maths questions from Vedantu. To begin, the student should download the Vedantu app or visit the official website of Vedantu. Then proceed to register by mentioning a couple of your details. After that, all you have to do is search for the Exercise 4.2 Class 12 NCERT Solutions and click on the download link for the solved questions PDF. As soon as the file is finished downloading, you can learn the answers to score the best marks in mathematics!

2. How Accurate are the Class 12 Maths Exercise 4.2 Solutions?

We at Vedantu go to great lengths to make sure that all answers in pdf files are completely accurate. This is why we only take the help of the best subject matter experts in India to write the answers. The answers are written according to the guidelines set by CBSE.

3. Define Determinant.

A determinant is a scalar value that is associated with the square matrix. This means that if X is a matrix, then the determinant of a matrix can be represented as |X| or det (X).

4. Why Would One Use Determinants?

Determinants are primarily used for solving the system of linear equations. Determinants can also be used to find the inverse of a matrix.

5. What are Some Properties of Determinants?

Some properties of determinants are:

  • Reflection property

  • All zero property

  • Triangle property

  • Sum property

  • Factor property

  • Proportionality property

  • Scalar multiple property

6. What are the properties of Determinants according to Exercise 4.2 of Chapter 4 of Class 12 Maths?

Scalar multiple property, switching property, sum property, reflection property, invariance property, factor property, triangle property, all-zero property, cofactor matrix property and proportionality or repetition property are the ten main properties of determinants. The exercise focuses on these properties and it is very crucial to grasp the concepts well. Practice all problems related to determinants properly and in case of any doubt, feel free to visit the Vedantu website.

7. What do you mean by the reflection property of Determinants in Exercise 4.2 of Chapter 4 of Class 12 Maths?

The determinant stays unaltered if the matrix's rows are transformed into columns and columns into rows. We can refer to this property of determinants as the reflection property of determinants. We may also argue that the matrix's determinant and transpose are equivalent. It is a very crucial property and hence must be studied well. If you have any questions about determinants, feel free to visit the Vedantu website.

8. What do you mean when a determinant is zero?

When a matrix's determinant is zero, the volume of the region with sides provided by its columns or rows is zero, indicating that the matrix regarded as a transformation converts the basis vectors into vectors that are linearly dependant and define 0 volume. If any determinant is 0, the system has an unlimited number of possible solutions. The determinant equals 0 if two rows or two columns are similar to each other. The determinant of a matrix equals 0 if it contains either a row of zeros or a column of zeros.

9. What do you mean by the factor property of determinants in Exercise 4.2 of Chapter 4 of Class 12 Maths?

When we multiply a determinant’s elements in a row/column by a constant k, its value gets multiplied by that constant as well. This property can be referred to as the factor property of determinants. Practice problems related to this property as well as this is an integral property for the problems in NCERT Class 12 Chapter 4 Exercise 4.2. This property enables us to extract any common factor from any one row or column of determinants in order to solve different problems and simplify them.

10. How can I download the Solutions of Class 12 Maths Chapter 4 Exercise 4.2?

The solutions are easily available free of cost on Vedantu’s website, and also on the Vedantu app. 

  1. Visit the webpage with Vedantu’s solutions for Class 12 Maths Chapter 4 Exercise 4.2.

  2. To download this PDF, click on the Download PDF button and you can view the solutions offline. Do visit the Vedantu site in case you need more help regarding various topics or subjects. These solutions are available at free of cost on Vedantu’s website and its mobile app.