Astrocyte Meaning

An astrocyte is a star-shaped cell. It is a type of neuroglia found in the nervous system in both vertebrates and invertebrates. Protoplasmic and fibrous astrocytes are two types of astrocytes. Fibrous astrocytes are more prevalent among the myelinated nerve fibres in the central nervous system's white matter. Also, the organelles in the somata of neurons are seen in the astrocytes, but they appear to be sparser. These cells are characterized in their cytoplasm by the presence of numerous fibrils. The primary processes exit the cell in a radial direction (thus, the name astrocyte means "star-shaped cell"), forming the expansions and endfeet at the vascular capillaries' surfaces.

Astrocytes Structure

Let us discuss the astrocytes structure. Astrocytes are the sub-type of glial cells of the central nervous system. They are also called astrocytic glial cells. Star-shaped, their several processes envelop synapses made by neurons. In humans, a single astrocyte cell may interact with up to 2 million synapses at one time. Histological research has traditionally been used to identify astrocytes; many of these cells express the intermediate filament Glial Fibrillary Acidic Protein (GFAP).

Many astrocyte forms exist in the central nervous system, including protoplasmic (in grey matter), fibrous (in white matter), and radial. Usually, the fibrous glia is located within the white matter, contains relatively few organelles, and exhibits long unbranched cellular processes. Often, this type has astrocytic end-foot processes, which physically connect the cells to the outside of capillary walls when they are in proximity to them. The protoplasmic glia is the most prevalent one and is found in grey matter tissue. They possess a larger quantity of organelles and exhibit short and highly branched tertiary processes.

The radial glial cells are disposed of in the planes that are perpendicular to the ventricle axes. One of their processes will abut the pia mater, where the other is deeply buried in the grey matter. Mostly, the radial glia is present during development, playing the main role in neuron migration. Müller cells of the Bergmann glia and retina cells of the cerebellar cortex are the only cells that survive into adulthood. Both three types of astrocytes send out processes to form the pial-glial membrane when they are near the pia mater.

[Image will be Uploaded Soon]

Astrocytes Function

Let us know about the astrocytes function in detail.

Astrocytes help form the physical structure of the brain and are thought to play numerous acting roles, including the absorption or secretion of the neural transmitters and the blood-brain barrier maintenance. The tripartite synapse concept has been proposed, referring to the tight relationship taking place at synapses among the presynaptic element, a glial element, and a postsynaptic element.

Structural: They are involved in the brain's physical structuring. Astrocytes get their name from the fact that they are shaped like stars. They are the most common glial cells in the brain, and they are closely linked to neuronal synapses. They control how electrical signals are transmitted in the brain.

Glycogen Fuel Reserve Buffer: Astrocytes have glycogen, and they are capable of gluconeogenesis. The astrocytes, which are next to neurons in the hippocampus, store and frontal cortex and release glucose. Therefore, astrocytes may fuel neurons with glucose during periods of high glucose consumption rate and glucose shortage. Recent research on rats suggests there can be a connection between physical exercise and this activity.

Protoplasmic Astrocytes

Protoplasmic astrocytes, unlike fibrous astrocytes, are found in the grey matter of the central nervous system. They have fewer fibrils in their cytoplasm and fewer cytoplasmic organelles, allowing their somata to be formed by the surrounding fibres and neurons. Also, the processes of protoplasmic astrocytes make contact with capillaries.

[Image will be Uploaded Soon]

Astrocytes divide after the nervous system injury and occupy spaces left by the injured neurons. Also, astrocytes are thought to contain high-affinity uptake systems for the neurotransmitters such as gamma-aminobutyric acid (GABA) and glutamate. This function is essential in the modulation of synaptic transmission since uptake systems tend to terminate the neurotransmitter action at the synapses and also can act as storage systems for neurotransmitters when they are required.

Clinical Significance


Astrocytomas are the primary intracranial tumors, which develop from astrocytes. Also, it is possible that neural stem cells or glial progenitors may give rise to astrocytomas. These tumors may take place in several parts of the brain and/or spinal cord. Astrocytomas are classified into two categories: low grade (I and II) and high grade (III and IV). Low-grade tumors are very common in children, whereas high-grade tumors are very common in adults. Malignant astrocytomas are prevalent among men, contributing to the worst survival.

Pilocytic astrocytomas are grade I tumors. They are considered slow-growing and benign tumors. The solid portion of pilocytic astrocytomas often contains cystic sections filled with a nodule and fluid. Many are located in the cerebellum. Thus, most symptoms are related to coordination or balance difficulties. They also take place more frequently in teens and children.

FAQs (Frequently Asked Questions)

1. Give the Blood-Brain Barrier Functionality of Astrocyte?

Answer: The astrocyte end-feet that are encircling the endothelial cells were thought to aid in the blood-brain barrier maintenance, but recent research shows that they do not involve in a substantial role; instead, it is the basal lamina and tight junctions of the cerebral endothelial cells that play a substantial role in maintaining the barrier. However, it has recently been shown that astrocyte activity is linked to the brain's blood flow and that this is actually being measured in fMRI.

2. Give the Anatomical Classification of Astrocyte?

Answer: Protoplasmic: It is found in grey matter and contains many branching processes whose end-feet envelop synapses. A few protoplasmic astrocytes are generated by the multipotent subventricular zone progenitor cells.

3. What are the Neurodevelopmental Disorders Astrocytes?

Answer: Astrocytes have emerged as important participants in multiple neurodevelopmental disorders. This view states that astrocyte dysfunction can result in improper neural circuitry that underlies certain psychiatric disorders such as schizophrenia and autism spectrum disorders.

4. What are Anaplastic Astrocytomas?

Answer: Anaplastic astrocytomas are grade III malignant tumors, and they grow more rapidly than lower grade tumors. Anaplastic astrocytomas recur more frequently compared to the lower grade tumors due to their tendency to spread into the surrounding tissue makes them difficult to remove surgically.