Application of Integrals: Class 12 Maths Revision Notes Chapter 8 PDF Download
Revision notes for Class 12 Maths Chapter 8 Application of Integrals include explaining all the topics provided in every chapter in a simple and easily understandable format. These revision notes help students in preparing concepts important for the exam point of view in a better way. It provides an extra edge to students and boosts their self-confidence before the exam. The concepts covered in class 12 Maths Application of Integrals are a foundational base for competitive exams like IIT JEE, Olympiad, etc.
Therefore, the students are advised to have a clear understanding of concepts. The students can prepare topics covered by downloading the Class 12 Maths Chapter 8 Application of Integrals revision notes through the link provided below:
Topics Covered In Class 12 Maths Chapter 8 Application of Integral
Introduction to integrals.
The area under simple curves.
The area between two curves.
Advantages of CBSE Class 12 Maths Chapter 8 Application of Integrals: Revision Notes (Free PDF Download)
The following are some benefits of using Vedantu's Class 12 Maths Chapter 8 Revision Notes.
It covers the key point of each topic covered in the chapter.
Equations are solved with a step-by-step procedure.
The revision notes follow the most recent CBSE syllabus requirements.
Referring to the revision notes is the most effective method of exam preparation.
It allows applicants to master all the concepts quickly, considerably reducing revision hours and allowing time for solving papers.
It aids in improving one's understanding of the complex concepts
Exam Preparation Tips
Following are some tips that help students perform well in the upcoming examinations.
Know the complete syllabus.
Make revision notes to get the last-minute revision.
Solve previous year's question papers and sample papers.
Always analyse the mistakes and work on them.
Focus on the NCERT exercises and examples as the questions are majorly asked from the NCERT book in board exams.
Prepare flowcharts and diagrams to explain the complicated concepts. This would help students to memorise better and also help them to retain information for a longer time.
Applications of Integrals Extra Questions For Practice
Find the area bounded by the parabola y2 = 8x and x2 = 8y.
Calculate the area of the region enclosed between the circles: x2 + y2 = 25 and (x + 5)2 + y2 = 25.
Find the area between the x-axis curve y = sin x when 0≤ x < 2.
Find the area bounded by the parabola x2 = 4x and the line x = 4y-2
Find the region's area bounded by the curves y = x - 1 and y = 3 - x.
Find the area enclosed by the curve x2y = 36. the x-axis and the lines x = 6 and x= 9.
Find the area bounded by the curve y = x3, x = 0 and the ordinates x = -2 and x = 1.
Calculate the area of the region bounded by the ellipse x2/4 + y2/9 = 1.
Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x, and the circle x2 + y2 = 32 using the integration method.
Find the area of the region bounded by the lines: 3x – 2y + 1 = 0,2x + 3y – 21 = 0 and x – 5y + 9 = 0 using integration method
Access Class 12 Maths Chapter 20 - Definite Integration and Area
Definite Integration
1. Definition:
If \[\text{ }\!\!~\!\!\text{ F}\left( \text{x} \right)\] is an antiderivative of \[\text{f}\left( \text{x} \right)\text{,}\] then \[\text{ }\!\!~\!\!\text{ F}\left( \text{b} \right)\text{--F}\left( \text{a} \right)\] is known as the definite integral of \[\text{f}\left( \text{x} \right)\] from $\text{a}$ to $\text{b}$, such that the variable \[\text{x,}\] takes any two independent values say \[\text{a}\] and \[\text{b}\].
This is also denoted as $\int_{\text{a}}^{\text{b}}{\text{f(x)dx}}$.
Thus $\int_{\text{a}}^{\text{b}}{\text{f(x)dx}}=\text{F}\left( \text{b} \right)-\text{F}\left( \text{a} \right)$, The numbers $\text{a}$ and $\text{b}$ are called the limits of integration; $\text{a}$ is the lower limit and $\text{b}$ is the upper limit. Usually $\text{F}\left( \text{b} \right)-\text{F}\left( \text{a} \right)$ is abbreviated by writing $\text{F}\left( \text{x} \right)\left| _{\text{a}}^{\text{b}} \right.$.
2. Properties of Definite Integrals:
l. $\int\limits_{\text{a}}^{\text{b}}{\text{f(x)dx=}-\int\limits_{\text{b}}^{\text{a}}{\text{f(x)}}}$
ll. $\int\limits_{\text{a}}^{\text{b}}{\text{f(x)dx=}\int\limits_{\text{b}}^{\text{a}}{\text{f(y)}}}\text{dy}$
lll. $\int\limits_{\text{a}}^{\text{b}}{\text{f(x)dx=}\int\limits_{\text{a}}^{\text{c}}{\text{f(x)dx+}\int\limits_{\text{c}}^{\text{b}}{\text{f(x)dx}}}}$, where $\text{c}$ may or may not lie between $\text{a}$ and $\text{b}$.
lV. $\int\limits_{\text{0}}^{\text{a}}{\text{f(x)dx=}\int\limits_{\text{0}}^{\text{a}}{\text{f(a}-\text{x)dx}}}$
V. $\int\limits_{\text{a}}^{\text{b}}{\text{f(x)dx=}\int\limits_{\text{a}}^{\text{b}}{\text{f(a+b}-\text{x)dx}}}$
Note:
$\int\limits_{\text{0}}^{\text{a}}{\dfrac{\text{f(x)}}{\text{f(x)+f(a}-\text{x)}}}\text{dx=}\dfrac{\text{a}}{\text{2}}$
$\int\limits_{\text{a}}^{\text{b}}{\dfrac{\text{f(x)}}{\text{f(x)+f(a+b}-\text{x)}}}\text{dx=}\dfrac{\text{b}-\text{a}}{\text{2}}$
Vl. $\int\limits_{\text{0}}^{\text{2a}}{\text{f(x)dx=}\int\limits_{\text{0}}^{\text{a}}{\text{f(x)dx+}\int\limits_{\text{0}}^{\text{a}}{\text{f(2a}-\text{x)dx}}}}$
$\text{=}\left\{ \begin{matrix} \text{0}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{if}\,\text{f(2a}-\text{x)}=-\text{f(x)} \\ \text{2}\int\limits_{\text{0}}^{\text{a}}{\text{f(x)dx}\,\,\,\,\,\,\,\,\,\,\,\,\text{if}\,\text{f(2a}-\text{x)}=\text{f(x)}} \\ \end{matrix} \right\}$
Vll. \[\int\limits_{\text{-a}}^{\text{a}}{\text{f(x)dx}=\left\{ \begin{matrix} \text{2}\int\limits_{\text{0}}^{\text{a}}{\text{f(x)dx}\,\,\,\,\,\,\,\,\,\,\text{if}\,\text{f(}-\text{x)}=\text{f(x)}\,\text{i}\text{.e}\text{.}\,\text{f(x)}\,\text{is}\,\text{even}} \\ \text{0}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{if}\,\text{f(}-\text{x)}=-\text{f(x)}\,\text{i}\text{.e}\text{.}\,\text{f(x)}\,\text{is}\,\text{odd} \\ \end{matrix} \right\}}\]
Vlll. If $\text{f(x)}$ is a periodic function of period $\text{ }\!\!'\!\!\text{ a }\!\!'\!\!\text{ }$, i.e. $\text{f(a}+\text{x)}=\text{f(x)}$, then
$\int\limits_{\text{0}}^{\text{na}}{\text{f(x)dx}=\text{n}\int\limits_{\text{0}}^{\text{a}}{\text{f(x)dx}}}$
$\int\limits_{\text{0}}^{\text{na}}{\text{f(x)dx}=\left( \text{n}-1 \right)\int\limits_{\text{0}}^{\text{a}}{\text{f(x)dx}}}$
$\int\limits_{\text{na}}^{\text{b+na}}{\text{f(x)dx}=\int\limits_{\text{0}}^{\text{b}}{\text{f(x)dx}}}$, where $\text{b}\in \text{R}$
$\int\limits_{\text{b}}^{\text{b+a}}{\text{f(x)dx}}$ independent of $\text{b}$.
$\int\limits_{\text{b}}^{\text{b+na}}{\text{f(x)dx}=\text{n}\int\limits_{\text{0}}^{\text{a}}{\text{f(x)dx}}}$, where $\text{n}\in \text{1}$
lX. If $\text{f(x)}\ge \text{0}$ on the interval $\left[ \text{a,b} \right]$, then $\int\limits_{\text{a}}^{\text{b}}{\text{f(x)dx}}\ge 0$.
X. If $\text{f(x)}\le \text{g(x)}$ on the interval $\left[ \text{a,b} \right]$, then $\int\limits_{\text{a}}^{\text{b}}{\text{f(x)dx}}\le \int\limits_{\text{a}}^{\text{b}}{\text{g(x)dx}}$
X. $\left| \int\limits_{\text{a}}^{\text{b}}{\text{f(x)dx}} \right|\le \int\limits_{\text{a}}^{\text{b}}{\left| \text{f(x)} \right|\text{dx}}$
Xl. If $\text{f(x)}$ is continuous on $\left[ \text{a,b} \right]$, $\text{m}$ is the least and $\text{M}$ is the greatest value of $\text{f(x)}$ on $\left[ \text{a,b} \right]$, then
$\text{m}\left( \text{b}-\text{a} \right)\le \int\limits_{\text{a}}^{\text{b}}{\text{f(x)dx}}\le \text{M(b}-\text{a)}$
Xll. For any two functions $\text{f(x)}$ and $\text{g(x)}$, integral on the interval $\left[ \text{a,b} \right]$, the Schwarz- Bunyakovsky inequality holds
$\left| \int\limits_{\text{a}}^{\text{b}}{\text{f(x)}\text{.g(x)dx}} \right|\le \sqrt{\int\limits_{\text{a}}^{\text{b}}{{{\text{f}}^{\text{2}}}\text{(x)dx}\text{.}\int\limits_{\text{a}}^{\text{b}}{{{\text{g}}^{\text{2}}}\text{(x)dx}}}}$
Xlll. If a function $\text{f(x)}$ is continuous on the interval $\left[ \text{a,b} \right]$, then there exists a point $\text{c}\in \left( \text{a,b} \right)$ such that
\[\int\limits_{\text{a}}^{\text{b}}{\text{f(x)dx}=\text{f(c)(b}-\text{a)}}\], where $\text{a}<\text{c}<\text{b}$.
3. Differentiation Under Integral Sign:
Newton Leibnitz’s Theorem:
Given that $\text{x}$ has two differentiable functions, $\text{g(x)}$ and $\text{h(x)}$, where $\text{x}\in \left[ \text{a,b} \right]$ and $\text{f}$ is continuous in that interval, then
$\dfrac{\text{d}}{\text{dx}}\left[ \int\limits_{\text{g(x)}}^{\text{h(x)}}{\text{f(t)dt}} \right]=\dfrac{\text{d}}{\text{dx}}\left[ \text{h(x)} \right]\text{.f}\left[ \text{h(x)} \right]-\dfrac{\text{d}}{\text{dx}}\left[ \text{g(x)} \right]\text{.f}\left[ \text{g(x)} \right]$
4. Definite Integral as a Limit of Sum:
Let $\text{f(x)}$ be a continuous real valued function defined on the closed interval $\left[ \text{a,b} \right]$ which is divided into $\text{n}$ parts as shown in figure.

The point of division on $\text{x-}$axis are
$\text{a,a}+\text{h,a}+\text{2h}.....\text{a}+\left( \text{n}-\text{1} \right)\text{h,a}+\text{nh,}$ where $\dfrac{\text{b}-\text{a}}{\text{n}}=\text{h}$.
Let ${{\text{S}}_{\text{n}}}$ denotes the area of these $\text{n}$ rectangles.
Then, ${{\text{S}}_{\text{n}}}=\text{hf(a)}+\text{hf}\left( \text{a}+\text{h} \right)+\text{hf}\left( \text{a}+\text{2h} \right)+....+\text{hf}\left( \text{a}+\left( \text{n}-\text{1} \right)\text{h} \right)$
Clearly, ${{\text{S}}_{\text{n}}}$ is area very close to the area of the region bounded by
Curve $\text{y}=\text{f(x),}$ $\text{x-}$axis and the ordinates $\text{x}=\text{a}$, $\text{x}=\text{b}$.
Hence \[\int\limits_{\text{a}}^{\text{b}}{\text{f(x)dx}=\underset{\text{n}\to \infty }{\mathop{\text{Lt}}}\,}{{\text{S}}_{\text{n}}}\]
\[\int\limits_{\text{a}}^{\text{b}}{\text{f(x)dx}=\underset{\text{n}\to \infty }{\mathop{\text{Lt}}}\,}\sum\limits_{\text{r}=\text{0}}^{\text{n-1}}{\text{hf(a+rh)}}\]
\[=\underset{\text{n}\to \infty }{\mathop{\text{Lt}}}\,\sum\limits_{\text{r}=\text{0}}^{\text{n-1}}{\left( \dfrac{\text{b}-\text{a}}{\text{n}} \right)}\text{f}\left( \text{a}+\dfrac{\left( \text{b}-\text{a} \right)\text{r}}{\text{n}} \right)\]
Note:
(a) We can also write
${{\text{S}}_{\text{n}}}=\text{hf}\left( \text{a}+\text{h} \right)+\text{hf}\left( \text{a}+\text{2h} \right)+.....+\text{hf}\left( \text{a}+\text{nh} \right)$
\[\int\limits_{\text{a}}^{\text{b}}{\text{f(x)dx}}=\underset{\text{n}\to \infty }{\mathop{\text{Lt}}}\,\sum\limits_{\text{r}=1}^{\text{n}}{\left( \dfrac{\text{b}-\text{a}}{\text{n}} \right)}\text{f}\left( \text{a}+\left( \dfrac{\text{b}-\text{a}}{\text{n}} \right)\text{r} \right)\]
(b) If \[\text{a}=0,\,\text{b}=1,\,\int\limits_{0}^{1}{\text{f(x)dx}}=\underset{\text{n}\to \infty }{\mathop{\text{Lt}}}\,\sum\limits_{\text{r}=0}^{\text{n}-1}{\dfrac{1}{\text{n}}\text{f}\left( \dfrac{\text{r}}{\text{n}} \right)}\]
Steps to Express the Limit of Sum as Definite Integral
Step 1. Replace \[\dfrac{\text{r}}{\text{n}}\] by $\text{x}$, $\dfrac{\text{1}}{\text{n}}$ by $\text{dx}$ and $\underset{\text{n}\to \infty }{\mathop{\text{Lt}}}\,\sum{\text{by}\,}\int{{}}$
Step 2. Evaluate $\underset{\text{n}\to \infty }{\mathop{\text{Lt}}}\,\left( \dfrac{\text{r}}{\text{n}} \right)$ by putting least and greatest values of $\text{r}$ as lower and upper limits respectively.
For example $\underset{\text{n}\to \infty }{\mathop{\text{Lt}}}\,\sum\limits_{\text{r}=1}^{\text{pn}}{\dfrac{1}{\text{n}}\text{f}\left( \dfrac{\text{r}}{\text{n}} \right)}=\int\limits_{0}{\text{f(x)dx}}$
$\left[ \underset{\text{n}\to \infty }{\mathop{\text{Lt}}}\,\left( \dfrac{\text{r}}{\text{n}} \right)\left| _{\text{r}=1}=0,\,\underset{\text{n}\to \infty }{\mathop{\text{Lt}}}\, \right.\left( \dfrac{\text{r}}{\text{n}} \right)\left| _{\text{r}=\text{np}}=\text{p} \right. \right]$
5. Reduction Formulae in Definite Integrals
l. If ${{\text{I}}_{\text{n}}}\text{=}\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}}{\text{si}{{\text{n}}^{\text{n}}}\text{xdx}}$, then show that ${{\text{I}}_{\text{n}}}\text{=}\left( \dfrac{\text{n}-\text{1}}{\text{n}} \right){{\text{I}}_{\text{n}-\text{2}}}$
Proof: ${{\text{I}}_{\text{n}}}\text{=}\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}}{\text{si}{{\text{n}}^{\text{n}}}\text{xdx}}$
${{\text{I}}_{\text{n}}}\text{=}\left[ -\text{si}{{\text{n}}^{\text{n}-\text{1}}}\text{xcosx} \right]_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}}\text{+}\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}}{\left( \text{n}-\text{1} \right)\text{si}{{\text{n}}^{\text{n}-\text{2}}}\text{x}\text{.co}{{\text{s}}^{\text{2}}}\text{xdx}}$
$\text{=}\left( \text{n}-\text{1} \right)\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}}{\text{si}{{\text{n}}^{\text{n}-\text{2}}}\text{x}\text{.}\left( \text{1}-\text{si}{{\text{n}}^{\text{2}}}\text{x} \right)\text{dx}}$
$\text{=}\left( \text{n}-\text{1} \right)\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}}{\text{si}{{\text{n}}^{\text{n}-\text{2}}}\text{xdx}-\left( \text{n}-1 \right)\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}}{\text{si}{{\text{n}}^{\text{n}}}\text{x}}\text{dx}}$
${{\text{I}}_{\text{n}}}+\left( \text{n}-\text{1} \right){{\text{I}}_{\text{n}}}=\left( \text{n}-\text{1} \right){{\text{I}}_{\text{n}-\text{2}}}$
${{\text{I}}_{\text{n}}}=\left( \dfrac{\text{n}-\text{1}}{\text{n}} \right){{\text{I}}_{\text{n}-\text{2}}}$
Note:
(a) $\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}}{\text{si}{{\text{n}}^{\text{n}}}\text{xdx}=\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}}{\text{co}{{\text{s}}^{\text{n}}}\text{xdx}}}$
(b) ${{\text{I}}_{\text{n}}}=\left( \dfrac{\text{n}-\text{1}}{\text{n}} \right)\left( \dfrac{\text{n}-\text{3}}{\text{n}-\text{2}} \right)\left( \dfrac{\text{n}-\text{5}}{\text{n}-\text{4}} \right)....{{\text{I}}_{\text{0}}}\,\text{or}\,{{\text{I}}_{\text{1}}}$ according as \[\text{n}\] is even or odd, ${{\text{I}}_{\text{0}}}=\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}\text{,}\,{{\text{I}}_{\text{1}}}=\text{1}$
Hence ${{\text{I}}_{\text{n}}}=\left\{ \begin{matrix} \left( \dfrac{\text{n}-\text{1}}{\text{n}} \right)\left( \dfrac{\text{n}-\text{3}}{\text{n}-\text{2}} \right)\left( \dfrac{\text{n}-\text{5}}{\text{n}-\text{4}} \right).....\left( \dfrac{\text{1}}{\text{2}} \right)\text{.}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}\,\,\text{if}\,\,\text{n}\,\,\text{is}\,\,\text{even} \\ \left( \dfrac{\text{n}-\text{1}}{\text{n}} \right)\left( \dfrac{\text{n}-\text{3}}{\text{n}-\text{2}} \right)\left( \dfrac{\text{n}-\text{5}}{\text{n}-\text{4}} \right).....\left( \dfrac{\text{2}}{\text{3}} \right)\text{.1}\,\,\text{if}\,\,\text{n}\,\,\text{is }\,\text{odd} \\ \end{matrix} \right\}$
ll. If ${{\text{I}}_{\text{n}}}=\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}}{\text{ta}{{\text{n}}^{\text{n}}}\text{xdx}}$, then show that ${{\text{I}}_{\text{n}}}+{{\text{I}}_{\text{n}-\text{2}}}=\dfrac{\text{1}}{\text{n}-\text{1}}$
Proof: ${{\text{I}}_{\text{n}}}=\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}}{{{\left( \text{tanx} \right)}^{\text{n}-\text{2}}}\text{.ta}{{\text{n}}^{\text{2}}}\text{xdx}}$
$=\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}}{{{\left( \text{tanx} \right)}^{\text{n}-\text{2}}}\left( \text{se}{{\text{c}}^{\text{2}}}\text{x}-\text{1} \right)\text{dx}}$
$\text{=}\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}}{{{\left( \text{tanx} \right)}^{\text{n}-\text{2}}}\text{se}{{\text{c}}^{\text{2}}}\text{xdx}}-\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}}{{{\left( \text{tanx} \right)}^{\text{n}-\text{2}}}\text{dx}}$
$=\left[ \dfrac{{{\left( \text{tanx} \right)}^{\text{n}-\text{1}}}}{\text{n}-\text{1}} \right]_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}}-{{\text{I}}_{\text{n}-\text{2}}}$
${{\text{I}}_{\text{n}}}=\dfrac{\text{1}}{\text{n}-\text{1}}-{{\text{I}}_{\text{n}-\text{2}}}$
${{\text{I}}_{\text{n}}}+{{\text{I}}_{\text{n}-\text{2}}}=\dfrac{\text{1}}{\text{n}-\text{1}}$
lll. If ${{\text{I}}_{\text{m,n}}}=\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}}{\text{si}{{\text{n}}^{\text{m}}}\text{x}\text{.co}{{\text{s}}^{\text{n}}}\text{xdx}}$, then show that ${{\text{I}}_{\text{m,n}}}=\dfrac{\text{m}-\text{1}}{\text{m}+\text{n}}{{\text{I}}_{\text{m}-\text{2}}}\text{,n}$
Proof: ${{\text{I}}_{\text{m,n}}}=\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}}{\text{si}{{\text{n}}^{\text{m}-1}}\text{x}\left( \text{sinxco}{{\text{s}}^{\text{n}}}\text{x} \right)\text{dx}}$
$=\left[ -\dfrac{\text{si}{{\text{n}}^{\text{m}-\text{1}}}\text{x}\text{.co}{{\text{s}}^{\text{n}+\text{1}}}\text{x}}{\text{n}+\text{1}} \right]_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}}+\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}}{\dfrac{\text{co}{{\text{s}}^{\text{n}+\text{1}}}}{\text{n}+\text{1}}\left( \text{m}-\text{1} \right)\text{si}{{\text{n}}^{\text{m}-\text{2}}}\text{xcosxdx}}$
$=\left( \dfrac{\text{m}-\text{1}}{\text{n}+\text{1}} \right)\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}}{\text{si}{{\text{n}}^{\text{m}-\text{2}}}\text{x}\text{.co}{{\text{s}}^{\text{n}}}\text{x}\text{.co}{{\text{s}}^{\text{2}}}\text{xdx}}$
$=\left( \dfrac{\text{m}-\text{1}}{\text{n}+\text{1}} \right)\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}}{\left( \text{si}{{\text{n}}^{\text{m}-\text{2}}}\text{x}\text{.co}{{\text{s}}^{\text{n}}}\text{x}-\text{si}{{\text{n}}^{\text{m}}}\text{x}\text{.co}{{\text{s}}^{\text{n}}}\text{x} \right)\text{dx}}$
$=\left( \dfrac{\text{m}-\text{1}}{\text{n}+\text{1}} \right){{\text{I}}_{\text{m}-\text{2,n}}}-\left( \dfrac{\text{m}-\text{1}}{\text{n}+\text{1}} \right){{\text{I}}_{\text{m,n}}}$
$\Rightarrow \left( \text{1}+\dfrac{\text{m}-\text{1}}{\text{n}+\text{1}} \right){{\text{I}}_{\text{m,n}}}=\left( \dfrac{\text{m}-\text{1}}{\text{n}+\text{1}} \right){{\text{I}}_{\text{m}-\text{2,n}}}$
${{\text{I}}_{\text{m,n}}}\text{=}\left( \dfrac{\text{m}-\text{1}}{\text{m}+\text{n}} \right){{\text{I}}_{\text{m}-\text{2,n}}}$
Note:
(a) ${{\text{I}}_{\text{m,n}}}=\left( \dfrac{\text{m}-\text{1}}{\text{m}+\text{n}} \right)\left( \dfrac{\text{m}-\text{3}}{\text{m}+\text{n}-\text{2}} \right)\left( \dfrac{\text{m}-\text{5}}{\text{m}+\text{n}-\text{4}} \right).....{{\text{I}}_{\text{0,n}}}\,\text{or}\,{{\text{I}}_{\text{1,n}}}$ according as $\text{m}$ is even or odd.
${{\text{I}}_{\text{0,n}}}=\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}}{\text{co}{{\text{s}}^{\text{n}}}\text{xdx}\,\text{and}\,{{\text{I}}_{\text{1,n}}}=\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}}{\text{sinx}\text{.co}{{\text{s}}^{\text{n}}}\text{xdx}=\dfrac{\text{1}}{\text{n+1}}}}$
(b) Walli’s Formula
\[{{\text{I}}_{\text{m,n}}}=\left\{ \begin{matrix} \dfrac{\left( \text{m}-\text{1} \right)\left( \text{m}-\text{3} \right)\left( \text{m}-\text{5} \right)....\left( \text{n}-\text{1} \right)\left( \text{n}-\text{3} \right)\left( \text{n}-\text{5} \right)....}{\left( \text{m}+\text{n} \right)\left( \text{m}+\text{n}-\text{2} \right)\left( \text{m}+\text{n}-\text{4} \right).....}\,\,\,\text{when}\,\,\text{both}\,\,\text{m,n}\,\,\text{are}\,\,\text{even} \\ \dfrac{\left( \text{m}-\text{1} \right)\left( \text{m}-\text{3} \right)\left( \text{m}-\text{5} \right)....\left( \text{n}-\text{1} \right)\left( \text{n}-\text{3} \right)\left( \text{n}-\text{5} \right).....}{\left( \text{m}+\text{n} \right)\left( \text{m}+\text{n}-\text{2} \right)\left( \text{m}+\text{n}-\text{4} \right)....}\,\,\text{otherwise} \\ \end{matrix} \right\}\]
Area Under the Curves
(a) Area of Plane Regions:
l. The area bounded by the curve $\text{y}=\text{f(x)}$, $\text{x-}$axis and the ordinates $\text{x}=\text{a}$ and \[\text{x}=\text{b}\] (where $\text{ba}$) is given by
$\text{A}=\int\limits_{\text{a}}^{\text{b}}{\left| \text{y} \right|\text{dx}=\int\limits_{\text{a}}^{\text{b}}{\left| \text{f(x)} \right|\text{dx}}}$
(i) If $\text{f(x)}>0\forall \text{x}\in \left[ \text{a,b} \right]$
Then $\text{A}=\int\limits_{\text{a}}^{\text{b}}{\text{f(x)dx}}$

(ii) If $\text{f(x)}>0\forall x\in \left[ \text{a,c} \right)\,\text{ }\!\!\And\!\!\text{ }\,<0\forall \text{x}\in \left( \text{c,b} \right]$
Then $\text{A}=\left| \int\limits_{\text{a}}^{\text{c}}{\text{ydx}} \right|+\left| \int\limits_{\text{c}}^{\text{b}}{\text{ydx}} \right|=\int\limits_{\text{a}}^{\text{c}}{\text{f(x)dx}-\int\limits_{\text{c}}^{\text{b}}{\text{f(x)dx}}}$ where $\text{c}$ is a point in between $\text{a}$ and $\text{b}$.

ll. The area bounded by the curve $\text{x}=\text{g(y)}$, $\text{y-}$axis and the abscissae $\text{y}=\text{c}$ and $\text{y}=\text{d}$ (where $\text{dc}$) is given by
$\text{A}=\int\limits_{\text{c}}^{\text{d}}{\left| \text{x} \right|\text{dy}=\int\limits_{\text{c}}^{\text{d}}{\left| \text{g(y)} \right|\text{dy}}}$

III. If we have two curve $\text{y}=\text{f(x)}$ and $\text{y}=\text{g(x)}$, such that $\text{y}=\text{f(x)}$ lies above the curve $\text{y}=\text{g(x)}$ then the area bounded between them and the ordinates $\text{x}=\text{a}$ and $\text{x}=\text{b}$ $\left( \text{b}>\text{a} \right)$, is given by
$\text{A}=\int\limits_{\text{a}}^{\text{b}}{\text{f(x)dx}-\int\limits_{\text{a}}^{\text{b}}{\text{g(x)dx}}}$
i.e. $\text{upper}\,\text{curve}\,\text{area}-\text{lower}\,\text{curve}\,\text{area}$.

lV. The area bounded by the curves $\text{y}=\text{f(x)}$ and $\text{y}=\text{g(x)}$ between the ordinates $\text{x}=\text{a}$ and $\text{x}=\text{b}$ is given by
$\text{A}=\int\limits_{\text{a}}^{\text{c}}{\text{f(x)dx}+\int\limits_{\text{c}}^{\text{b}}{\text{g(x)dx}}}$, where $\text{x}=\text{c}$ is the point of intersection of the two curves.

V. Curve Tracing
It is necessary to have a rough sketch of the desired piece in order to locate the area enclosed by many curves. The following steps are very useful in tracing a cartesian curve $\text{f(x,y)}=\text{0}$.
Step 1: Symmetry
(i) If all the powers of $\text{y}$ in the equation of the given curve are even then the curve is symmetrical about $\text{x-}$axis.
(ii) If all the powers of $\text{x}$ in the equation of the given curve are even then the curve is symmetrical about $\text{y-}$axis.
(iii) If the equation of the given curve remains unchanged on interchanging $\text{x}$ and $\text{y}$, then the curve is symmetrical about the line\[\text{y}=\text{x}\].
(iv) If the equation of the given curve remains unchanged when $\text{x}$ and $\text{y}$ are replaced by $-\text{x}$ and $-\text{y}$ respectively, then the curve is symmetrical in opposite quadrants.
Step 2: Origin
If the algebraic curve's equation contains no constant term, the curve passes through the origin.
The tangents at the origin are then calculated by equating the lowest degree terms in the equation of the specified algebraic curve to zero.
For example, the curve ${{\text{y}}^{\text{3}}}={{\text{x}}^{\text{3}}}+\text{axy}$ passes through the origin and the tangents at the origin are given by $\text{axy}=0$ i.e. $\text{x}=\text{0}$ and $\text{y}=0$.
Step 3: Intersection with the Co-ordinates Axes
(i) Find out the corresponding values of $\text{x}$ by putting \[\text{y}=\text{0}\] in the equation of the given curve, to estimate the points of intersection of the curve with $\text{x-}$axis
(ii) Find out the corresponding values of $\text{y}$ by putting \[\text{x}=\text{0}\] in the equation of the given curve, to estimate the points of intersection of the curve with $\text{y-}$axis
Step 4: Asymptotes
Find out the asymptotes of the curve.
(i) The vertical asymptotes of the given algebraic curve, or asymptotes parallel to the $\text{y-}$axis, are derived by equating the coefficient of the highest power of $\text{y}$ in the equation of the supplied curve to zero.
(ii) The horizontal asymptotes of the given algebraic curve, or asymptotes parallel to the $\text{x-}$axis, are derived by equating the coefficient of the highest power of $\text{x}$ in the equation of the supplied curve to zero.
Step 5: Region
Find out the regions of the plane in which no part of the curve lies. To determine such regions we solve the given equation for $\text{y}$ in terms of $\text{x}$ or vice-versa. Suppose that y becomes imaginary for\[\text{x}>\text{a}\], the curve does not lie in the region\[\text{x}>\text{a}\].
Step 6: Critical Points
Find out the values of $\text{x}$ at which $\dfrac{\text{dy}}{\text{dx}}=0$
At such points $\text{y}$ generally changes its character from an increasing function of $\text{x}$to a decreasing function of $\text{x}$ or vice-versa.
Step 7:
Trace the curve with the help of the above points.
Solved Examples
Definite Integration
Example - 1
Evaluate the Following Integrals:
(i) $\int\limits_{\text{2}}^{\text{3}}{{{\text{x}}^{\text{2}}}\text{dx}}$
(ii) $\int\limits_{\text{1}}^{\text{3}}{\dfrac{\text{x}}{\left( \text{x}+\text{1} \right)\left( \text{x}+\text{2} \right)}}\text{dx}$
Ans:
(i) $\int\limits_{\text{2}}^{\text{3}}{{{\text{x}}^{\text{2}}}\text{dx}}$
$=\left[ \dfrac{{{\text{x}}^{\text{3}}}}{\text{3}} \right]_{\text{2}}^{\text{3}}$
$=\dfrac{27}{3}-\dfrac{8}{3}$
$=\dfrac{19}{3}$
(ii) $\dfrac{\text{x}}{\left( \text{x}+\text{1} \right)\left( \text{x}+\text{2} \right)}=\dfrac{-\text{1}}{\text{x}+\text{1}}+\dfrac{\text{2}}{\text{x}+\text{2}}$ [Partial Fractions]
$\int\limits_{\text{1}}^{\text{3}}{\dfrac{\text{x}}{\left( \text{x}+\text{1} \right)\left( \text{x}+\text{2} \right)}\text{dx}}$
$=\left[ -\log \left| \text{x}+1 \right|+2\log \left| \text{x}+2 \right| \right]_{1}^{3}$
$=\left[ -\log \left| 4 \right|+2\log \left| 5 \right| \right]-\left[ -\log \left| 2 \right|+2\log \left| 3 \right| \right]$
$=\left[ -\log 4+2\log 5 \right]-\left[ -\log 2+2\log 3 \right]$
$=-2\log 2+2\log 5+\log 2-2\log 3$
$=-\log 2+\log 25-\log 9=\log 25-\log 18$
$=\log \dfrac{25}{18}$
Example - 2
Evaluate: $\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}}{\text{secx}\text{.}\sqrt{\dfrac{\text{1}-\text{sinx}}{\text{1}+\text{sinx}}}}\text{dx}$
Ans:
$\text{I}=\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}}{\text{secx}\text{.}\sqrt{\dfrac{\text{1}-\text{sinx}}{\text{1}+\text{sinx}}}}\text{dx}$
$=\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}}{\text{secx}\text{.}\sqrt{\dfrac{\text{1}-\text{sinx}}{\text{1}+\text{sinx}}}.\sqrt{\dfrac{\text{1}-\text{sinx}}{\text{1}+\text{sinx}}}}\text{dx}$
$=\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}}{\text{secx}\dfrac{\text{1}-\text{sinx}}{\sqrt{\text{1}-\text{si}{{\text{n}}^{\text{2}}}\text{x}}}}\text{dx}$
$=\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}}{\text{secx}\dfrac{\text{1}-\text{sinx}}{\text{cosx}}}\text{dx}$
$=\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}}{\left( \text{se}{{\text{c}}^{\text{2}}}\text{x}-\text{secxtanx} \right)\text{dx}}$
$=\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}}{\text{se}{{\text{c}}^{\text{2}}}\text{xdx}-\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}}{\text{secxtanxdx}}}$
$=\left[ \text{tanx} \right]_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}}-\left[ \text{secx} \right]_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}}$
$=\left( \text{tan}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}-\text{tan0} \right)-\left( \text{sec}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}-\text{sec0} \right)$
$=\left( 1-0 \right)-\left( \sqrt{2}-1 \right)=2-\sqrt{2}$.
Example - 3
Evaluate: $\int\limits_{\text{-1}}^{\text{1}}{\text{5}{{\text{x}}^{\text{4}}}\sqrt{{{\text{x}}^{\text{5}}}\text{+1}}\text{dx}}$
Ans:
Let $\text{I}=\int\limits_{\text{-1}}^{\text{1}}{\text{5}{{\text{x}}^{\text{4}}}\sqrt{{{\text{x}}^{\text{5}}}\text{+1}}\text{dx}}$
Put ${{\text{x}}^{\text{5}}}=\text{t}$ so that $\text{5}{{\text{x}}^{\text{4}}}\text{dx}=\text{dt}$.
When $\text{x}=-1,\,\text{t}=-1$. When $\text{x}=1,\,\text{t}=1$.
$\text{I}=\int\limits_{\text{-1}}^{\text{1}}{\sqrt{\text{t+1}}\text{dt}}$
$=\left[ \dfrac{{{\left( \text{t}+\text{1} \right)}^{\dfrac{3}{2}}}}{\dfrac{3}{2}} \right]_{-1}^{1}=\dfrac{2}{3}\left[ {{\left( \text{t}+\text{1} \right)}^{\dfrac{3}{2}}} \right]_{-1}^{1}$
$=\dfrac{2}{3}\left[ {{2}^{\dfrac{3}{2}}}-0 \right]=\dfrac{4\sqrt{2}}{3}$.
Example - 4
Prove that $\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}}{\sqrt{\text{sin}\phi }}\text{co}{{\text{s}}^{\text{5}}}\phi \,\text{d}\phi =\dfrac{\text{64}}{\text{231}}$
Ans:
$\text{I}=\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}}{\sqrt{\text{sin}\phi }}\text{co}{{\text{s}}^{\text{5}}}\phi \,\text{d}\phi $
$=\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}}{\sqrt{\text{sin}\phi }}\text{co}{{\text{s}}^{4}}\phi \cos \phi \,\text{d}\phi $
$=\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}}{\sqrt{\text{sin}\phi }}{{\left( \text{1}-\text{si}{{\text{n}}^{\text{2}}}\phi \right)}^{\text{2}}}\text{cos}\phi \,\text{d}\phi $
Put $\sin \phi =\text{t}$ so that $\cos \phi \,\text{d}\phi =\text{dt}$.
When $\phi =0,\,\sin 0=\text{t}\Rightarrow \text{t=0}$
When $\phi =\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}},\,\text{sin}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}=\text{t}\Rightarrow \text{t}=\text{1}$
$\text{I}=\int\limits_{\text{0}}^{\text{1}}{\sqrt{\text{t}}}{{\left( \text{1}-{{\text{t}}^{\text{2}}} \right)}^{\text{2}}}\text{dt}=\int\limits_{\text{0}}^{\text{1}}{\sqrt{\text{t}}\left( -\text{2}{{\text{t}}^{\text{2}}}+{{\text{t}}^{\text{4}}} \right)\text{dt}}$
$=\int\limits_{0}^{1}{\left( {{\text{t}}^{\dfrac{\text{1}}{\text{2}}}}-\text{2}{{\text{t}}^{\dfrac{\text{5}}{\text{2}}}}+{{\text{t}}^{\dfrac{\text{9}}{\text{2}}}} \right)}\text{dt}$
$=\left[ \dfrac{{{\text{t}}^{\dfrac{\text{3}}{\text{2}}}}}{\dfrac{\text{3}}{\text{2}}}-\text{2}\dfrac{{{\text{t}}^{\dfrac{\text{7}}{\text{2}}}}}{\dfrac{\text{7}}{\text{2}}}+\dfrac{{{\text{t}}^{\dfrac{\text{11}}{\text{2}}}}}{\dfrac{\text{11}}{\text{2}}} \right]_{\text{0}}^{\text{1}}$
$=\left[ \dfrac{\text{2}}{\text{3}}{{\text{t}}^{\dfrac{\text{3}}{\text{2}}}}-\dfrac{\text{4}}{\text{7}}{{\text{t}}^{\dfrac{\text{7}}{\text{2}}}}+\dfrac{\text{2}}{\text{11}}{{\text{t}}^{\dfrac{\text{11}}{\text{2}}}} \right]_{\text{0}}^{\text{1}}$
$=\left[ \dfrac{2}{3}\left( 1 \right)-\dfrac{4}{7}\left( 1 \right)+\dfrac{2}{11}\left( 1 \right) \right]-\left[ 0-0+0 \right]$
$=\dfrac{2}{3}-\dfrac{4}{7}+\dfrac{2}{11}$
$=\dfrac{154-132+42}{231}=\dfrac{64}{231}$
Example-5
Evaluate:$\int\limits_{\text{1}}^{\text{2}}{\left( \dfrac{\text{x}-\text{1}}{{{\text{x}}^{\text{2}}}} \right)}{{\text{e}}^{\text{x}}}\text{dx}$ or $\int\limits_{\text{1}}^{\text{2}}{{{\text{e}}^{\text{x}}}\left( \dfrac{\text{1}}{\text{x}}-\dfrac{\text{1}}{{{\text{x}}^{\text{2}}}} \right)}\text{dx}$
Ans:
$\int{\left( \dfrac{\text{x}-\text{1}}{{{\text{x}}^{\text{2}}}} \right){{\text{e}}^{\text{x}}}\text{dx}=\int{{{\text{e}}^{\text{x}}}\left( \dfrac{\text{1}}{\text{x}}-\dfrac{\text{1}}{{{\text{x}}^{\text{2}}}} \right)\text{dx}}}$
$=\int{\dfrac{\text{1}}{\text{x}}}\text{.}{{\text{e}}^{\text{x}}}\text{dx}-\int{\dfrac{\text{1}}{{{\text{x}}^{\text{2}}}}}\text{.}{{\text{e}}^{\text{x}}}\text{dx}$
$=\dfrac{\text{1}}{\text{x}}\text{.}{{\text{e}}^{\text{x}}}-\int{\left( -\dfrac{\text{1}}{{{\text{x}}^{\text{2}}}} \right){{\text{e}}^{\text{x}}}\text{dx}-\int{\dfrac{\text{1}}{{{\text{x}}^{\text{2}}}}\text{.}{{\text{e}}^{\text{x}}}\text{dx}}}$ [Integrating first integral by parts]
$=\dfrac{\text{1}}{\text{x}}\text{.}{{\text{e}}^{\text{x}}}=\text{F}\left( \text{x} \right)$
$\int\limits_{\text{1}}^{\text{2}}{\left( \dfrac{\text{x}-\text{1}}{{{\text{x}}^{\text{2}}}} \right){{\text{e}}^{\text{x}}}\text{dx}=\left[ \dfrac{{{\text{e}}^{\text{x}}}}{\text{x}} \right]}_{\text{1}}^{\text{2}}$
$=\dfrac{\text{1}}{\text{2}}\text{.}{{\text{e}}^{\text{2}}}-\dfrac{\text{1}}{\text{1}}{{\text{e}}^{\text{1}}}=\dfrac{\text{1}}{\text{2}}{{\text{e}}^{\text{2}}}-\text{e}$.
Area Under the Curves
Example - 1
Find the area bounded by the curve $\text{y}={{\text{x}}^{\text{2}}}-\text{5x}+\text{6}$, $\text{X-}$axis and the lines $\text{x}=\text{1}$ and 4.
Ans:
For $\text{y}=\text{0}$, we get ${{\text{x}}^{\text{2}}}+5\text{x}+6=0\Rightarrow \text{x}=2,3$
Hence the curve crosses $\text{X-}$axis at $\text{x}=\text{2,3}$ in the interval $\left[ 1,4 \right]$.
Bounded Area$\text{=}\left| \int\limits_{\text{1}}^{\text{2}}{\text{ydx}} \right|\text{+}\left| \int\limits_{\text{2}}^{\text{3}}{\text{ydx}} \right|\text{+}\left| \int\limits_{\text{3}}^{\text{4}}{\text{ydx}} \right|$

$\Rightarrow \text{A=}\left| \int\limits_{\text{1}}^{\text{2}}{\left( {{\text{x}}^{\text{2}}}-\text{5x+6} \right)\text{dx}} \right|\text{+}\left| \int\limits_{\text{2}}^{\text{3}}{\left( {{\text{x}}^{\text{2}}}-\text{5x+6} \right)\text{dx}} \right|\text{+}\left| \int\limits_{\text{3}}^{\text{4}}{\left( {{\text{x}}^{\text{2}}}-\text{5x}+\text{6} \right)\text{dx}} \right|$
${{\text{A}}_{\text{1}}}=\left[ \dfrac{{{2}^{3}}-{{1}^{3}}}{3} \right]-5\left( \dfrac{{{2}^{2}}-{{1}^{2}}}{2} \right)+\left[ 6\left( 2-1 \right) \right]=\dfrac{5}{6}$
${{\text{A}}_{\text{2}}}=\dfrac{{{3}^{3}}-{{2}^{3}}}{3}-5\left( \dfrac{{{3}^{2}}-{{2}^{2}}}{2} \right)+6\left( 3-2 \right)=-\dfrac{1}{6}$
${{\text{A}}_{\text{3}}}=\dfrac{{{4}^{3}}-{{3}^{3}}}{3}-5\left( \dfrac{{{4}^{2}}-{{3}^{2}}}{2} \right)+6\left( 4-3 \right)=\dfrac{5}{6}$
$\Rightarrow \text{A}=\dfrac{5}{6}+\left| -\dfrac{1}{6} \right|+\dfrac{5}{6}=\dfrac{11}{6}\,\text{sq}\text{.}\,\text{units}$
Example - 2
Find the area bounded by the curve: $\text{y}=\sqrt{\text{4}-\text{x}}\text{,}$ $\text{X-}$axis and $\text{Y-}$axis.
Ans:
Trace the curve $\text{y}=\sqrt{\text{4}-\text{x}}$.
Put $\text{y}=\text{0}$ in the given curve to get $\text{x}=\text{4}$ as the point of intersection with X-axis.
Put $\text{x}=\text{0}$ in the given curve to get $\text{y}=2$ as the point of intersection with Y-axis.
For the curve, $\text{y}=\sqrt{\text{4}-\text{x}}\text{,}\,\text{4}-\text{x}\ge \text{0}$
$\Rightarrow \text{x}\le \text{4}$
$\Rightarrow $ curve lies only to the left of $\text{x}=4$ line.
As any $\text{y}$ is positive, curve is above X-axis.

Using step $1$ to $3$, we can draw the rough sketch of $\text{y}=\sqrt{\text{4}-\text{x}}$
In figure, Bounded area$=\int\limits_{\text{0}}^{\text{4}}{\sqrt{\text{4}-\text{x}}\text{dx}=\left| \dfrac{-\text{2}}{\text{3}}\left( \text{4}-\text{x} \right)\sqrt{\text{4}-\text{x}} \right|}_{\text{0}}^{\text{4}}=\dfrac{\text{16}}{\text{3}}\,\text{sq}\text{.}\,\text{units}$
Example - 3
$\text{AOBA}$ is the part of the ellipse $\text{9}{{\text{x}}^{\text{2}}}+{{\text{y}}^{\text{2}}}=\text{36}$ in the first quadrant such that $\text{OA}=\text{2}$ and \[\text{OB}=6\]. Find the area between the arc $\text{AB}$ and the chord $\text{AB}$.
Ans:
The given equation of the ellipse can be written as
$\dfrac{{{\text{x}}^{\text{2}}}}{\text{4}}+\dfrac{{{\text{y}}^{\text{2}}}}{\text{36}}=1\,\text{i}\text{.e}\text{.}\,\dfrac{{{\text{x}}^{\text{2}}}}{{{\text{2}}^{\text{2}}}}+\dfrac{{{\text{y}}^{\text{2}}}}{{{\text{6}}^{\text{2}}}}=1$

$\text{A}$ is $\left( 2,0 \right)$ and $\text{B}$ is $\left( 0,6 \right)$.
The equation of chord $\text{AB}$ is:
$\text{y}-0=\dfrac{6-0}{0-2}\left( \text{x}-\text{2} \right)$
$\Rightarrow \text{y}=-3\text{x}+6$.
Reqd. area (shown shaded)
$=\int\limits_{0}^{2}{3\sqrt{4-{{\text{x}}^{\text{2}}}}\text{dx}-\int\limits_{0}^{2}{\left( 6-3\text{x} \right)}}\text{dx}$
$=\text{3}\left[ \dfrac{\text{x}\sqrt{\text{4}-{{\text{x}}^{\text{2}}}}}{\text{2}}+\dfrac{\text{4}}{\text{2}}\text{si}{{\text{n}}^{-\text{1}}}\dfrac{\text{x}}{\text{2}} \right]_{\text{0}}^{\text{2}}-\left[ \text{6x}-\dfrac{\text{3}{{\text{x}}^{\text{2}}}}{\text{2}} \right]_{\text{0}}^{\text{2}}$
$=3\left[ \dfrac{2}{2}\left( 0 \right)+2{{\sin }^{-1}}\left( 1 \right) \right]-\left[ 6\left( 2 \right)-\dfrac{3\left( 4 \right)}{2} \right]$
$=3\left[ 2\times \dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}} \right]-\left[ 12-6 \right]$
$=\left( \text{3 }\!\!\pi\!\!\text{ }-\text{6} \right)\,\text{sq}\text{.}\,\text{units}$
Example - 4
Find the area bounded by the curves $\text{y}={{\text{x}}^{\text{2}}}$ and ${{\text{x}}^{\text{2}}}+{{\text{y}}^{\text{2}}}=2$ above X-axis.
Ans:
Let us first find the points of intersection of curves.
Solving $\text{y}={{\text{x}}^{\text{2}}}$ and ${{\text{x}}^{\text{2}}}+{{\text{y}}^{\text{2}}}=2$ simultaneously, we get:
${{\text{x}}^{\text{2}}}+{{\text{x}}^{\text{4}}}=2$
$\Rightarrow \left( {{\text{x}}^{\text{2}}}-1 \right)\left( {{\text{x}}^{\text{2}}}+2 \right)=0$
$\Rightarrow {{\text{x}}^{\text{2}}}=\text{1}\,\,\text{and}\,\,{{\text{x}}^{\text{2}}}=-\text{2}$ [reject]
$\Rightarrow \text{x}=\pm 1$
$\Rightarrow \text{A}=\left( -\text{1,1} \right)$ and $\text{B}=\left( 1,1 \right)$
Shaded Area$=\int\limits_{-\text{1}}^{\text{+1}}{\left( \sqrt{\text{2}-{{\text{x}}^{\text{2}}}}-{{\text{x}}^{\text{2}}} \right)\text{dx}}$
$=\int\limits_{-1}^{+1}{\sqrt{\text{2}-{{\text{x}}^{\text{2}}}}\text{dx}-\int\limits_{\text{-1}}^{\text{+1}}{{{\text{x}}^{\text{2}}}\text{dx}}}$
$=2\int\limits_{0}^{1}{\sqrt{\text{2}-{{\text{x}}^{\text{2}}}}\text{dx}-2\int\limits_{\text{0}}^{\text{1}}{{{\text{x}}^{\text{2}}}\text{dx}}}$
$=\text{2}\left[ \dfrac{\text{x}}{\text{2}}\sqrt{\text{2}-{{\text{x}}^{\text{2}}}}\text{+}\dfrac{\text{2}}{\text{2}}\text{si}{{\text{n}}^{-\text{1}}}\dfrac{\text{x}}{\sqrt{\text{2}}} \right]_{\text{0}}^{\text{1}}-\text{2}\left( \dfrac{\text{1}}{\text{3}} \right)$
$=\text{2}\left( \dfrac{\text{1}}{\text{2}}+\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}} \right)-\dfrac{\text{2}}{\text{3}}=\dfrac{\text{1}}{\text{3}}\text{+}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}\,\,\text{sq}\text{.}\,\,\text{units}$

This was the complete discussion on the Application of Integrals Class 12 Notes CBSE Maths Chapter 8. Students are given all the key ideas in the Class 12 Maths Chapter 8 Notes in an easy-to-understand format. These ideas are specifically created to assist students in achieving exceptional results. Download the Vedantu Revision notes PDF to be ready for your examinations.
Other Chapters Revision Notes
Find here CBSE Class 12 Maths revision notes for other chapters:
Other Related Links














