Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 12 Maths Chapter 6 Application Of Derivatives Ex 6.2

ffImage
widget title icon
Latest Updates

widget icon
Start Your Preparation Now :
CBSE Date Sheet 2025 Class 12 Released

NCERT Solutions for Class 12 Maths Chapter 6 Exercise 6.2 - FREE PDF Download

Exercise 6.2 Class 12 Maths journey, explore the fascinating world of derivatives and their applications. In this chapter, students will discover how derivatives can be used to solve real-world problems and gain deeper insights into various mathematical concepts.

toc-symbol
Table of Content
1. NCERT Solutions for Class 12 Maths Chapter 6 Exercise 6.2 - FREE PDF Download
2. Glance on NCERT Solutions Class 12 Maths Chapter 6 Exercise 6.2 | Vedantu
3. Access NCERT Solutions for Class 12 Maths Chapter 6 Application of Derivatives Exercise 6.2
4. Conclusion
5. Class 12 Maths Chapter 6: Exercises Breakdown
6. CBSE Class 12 Maths Chapter 6 Other Study Materials
7. NCERT Solutions for Class 12 Maths | Chapter-wise List
8. Related Links for NCERT Class 12 Maths in Hindi
9. Important Related Links for NCERT Class 12 Maths
FAQs


Ex 6.2 class 12 focuses on some key applications of derivatives, such as finding the equations of tangents and normals to curves. NCERT Solutions for Class 12 Maths Chapter 6 Application of Derivatives Exercise 6.2 will help students understand how derivatives are used to determine the slope of a curve at a given point, which is crucial for solving problems related to rates of change and optimisation. Working through this exercise Enhances student's ability to apply derivatives in practical scenarios, laying a solid foundation for more advanced topics in calculus.


Glance on NCERT Solutions Class 12 Maths Chapter 6 Exercise 6.2 | Vedantu

  • In class 12 Ex 6.2 deals with analyzing how a function's output values change along with its input values. In simpler terms, it helps you determine if the function is increasing, decreasing, or constant over a specific interval.

  • The core concept revolves around using the derivative of a function to understand its increasing/decreasing behavior. The derivative essentially tells you the slope of the function's graph at any point.

  • A function f(x) is increasing in an interval I if its derivative f'(x) is positive for all x-values in that interval.

  • Conversely, a function f(x) is decreasing in an interval I if its derivative f'(x) is negative for all x-values in that interval.

  • There are 19 questions in Class 12 Maths Ex 6.2 which are fully solved by experts at Vedantu.

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access NCERT Solutions for Class 12 Maths Chapter 6 Application of Derivatives Exercise 6.2

1. Show, that the function given by $f\left( x \right)=3x+17$ is strictly increasing on $R$.

Ans: Let the two numbers in $R$be ${{x}_{1}}$ and ${{x}_{2}}$.

$ {{x}_{1}}<{{x}_{_{2}}}\Rightarrow 3{{x}_{1}}<3{{x}_{2}} $ 

$ \Rightarrow 3{{x}_{1}}+17<3{{x}_{2}}+17 $ 

$ =f\left( {{x}_{1}} \right)<f\left( {{x}_{2}} \right)$ 

Thus, the function is strictly increasing on $R.$ 

2. Show that the function given $f\left( x \right)={{e}^{2x}}$ is strictly increasing on $R$.

Ans: Let the two numbers in $R$be ${{x}_{1}}$ and ${{x}_{2}}$.

Then, we have: 

$ {{x}_{1}}<{{x}_{2}}\Rightarrow 2{{x}_{1}}<2{{x}_{2}} $ 

$ \Rightarrow {{e}^{2{{x}_{1}}}}<{{e}^{2{{x}_{2}}}} $ 

$ \Rightarrow f\left( {{x}_{1}} \right)<f\left( {{x}_{2}} \right)$ 

Hence, $f$ is strictly increasing on $R.$ 

3. Show that the function given by $f\left( x \right)=\sin x$ is

A) Strictly increasing in $\left( 0,\frac{\pi }{2} \right)$ 

B) Strictly decreasing in $\left( \frac{\pi }{2},\pi  \right)$ 

C) Neither increasing nor decreasing in $\left( 0,n \right)$ 

Ans: The given function is $f\left( x \right)=\sin x$.

$\therefore f'\left( x \right)=\cos x$ 

A) Since for each $x\in \left( 0,\frac{\pi }{2} \right)$, $\cos x>0$, we have $f'\left( x \right)>0$.

Hence, $f$ is strictly increasing in $\left( 0,\frac{\pi }{2} \right)$.

B) Since for each $x\in \left( \frac{\pi }{2},\pi  \right),\cos x<0,$ we have $f'\left( x \right)<0$.

Hence, $f$ is strictly increasing in $\left( \frac{\pi }{2},\pi  \right)$ 

C) It is clear from the results obtained in (A) and (B) that $f$ is neither increasing nor decreasing in $\left( 0,n \right)$.

4. Find the intervals in which the function $f$ given by $f\left( x \right)=2{{x}^{2}}-3x$ is

(A) Strictly increasing

(B) Strictly decreasing

Ans: The function provided is $f\left( x \right)=2{{x}^{2}}-3x$.

  $ f'\left( x \right)=4x-3 $ 

  $ \therefore f'\left( x \right)=0 $ 

  $ \Rightarrow x=\frac{3}{4} $ 

Now, the point $\frac{3}{4}$ divides the real line into two disjoint intervals i.e.,  

$\left( -\infty ,\frac{3}{4} \right)$  and $\left( \frac{3}{4},\infty  \right)$ .

divides the real line into two disjoint intervals

In interval, $\left( -\infty ,\frac{3}{4} \right),f'\left( x \right)=4x-3<0$ 

Hence, the given function $\left( f \right)$ is strictly decreasing in interval $\left( -\infty ,\frac{3}{4} \right)$

In interval, $\left( \frac{3}{4},\infty  \right),f'\left( x \right)=4x-3>0$ 

Hence, the given function $\left( f \right)$ is strictly decreasing in interval $\left( \frac{3}{4},\infty  \right)$

5. Find the intervals in which the function $f$ is given as $f\left( x \right)=2{{x}^{2}}-3{{x}^{2}}-36x+7$ 

(A) strictly increasing

(B) strictly decreasing

 Ans: The given function is

 $ f\left( x \right)=2{{x}^{3}}-3{{x}^{2}}-36x+7 $ 

 $ f'\left( x \right)=6{{x}^{2}}-6x-36 $ 

 $ =6\left( {{x}^{2}}-x-6 \right) $ 

 $ =6\left( x+2 \right)\left( x-3 \right) $ 

 $ \therefore f'\left( x \right)=0 $ 

 $ \Rightarrow x=-2,3 $ 

The points $x=-2,3$ divide the real line into three disjoints intervals 

i.e., $\left( -\infty ,-2 \right),\left( -2,3 \right),$and $\left( 3,\infty  \right)$.

divide the real line into three disjoints intervals

In intervals $\left( -\infty ,-2 \right)$ and $\left( 3,\infty  \right)$, ${f}'\left( x \right)$ is positive while in the interval $\left( -2,3 \right),f'\left( x \right)$ is negative.

Hence, the given function $\left( f \right)$is strictly increasing in intervals $\left( -\infty ,-2 \right)\cup \left( 3,\infty  \right)$ while the function $\left( f \right)$ is strictly decreasing in interval $\left( -2,3 \right)$.

6. Find the intervals in which the following functions are strictly 

increasing or decreasing:

 $ \left( a \right){{x}^{2}}+2x-5 $ 

 $ \left( b \right)10-6x-2{{x}^{2}} $ 

 $ \left( c \right)-2{{x}^{3}}-9{{x}^{2}}-12x+1 $ 

 $ \left( d \right)6-9x-{{x}^{2}} $ 

 $ \left( e \right){{\left( x+1 \right)}^{3}}{{\left( x-3 \right)}^{3}} $ 

Ans:  

a) Given that

$ f\left( x \right)={{x}^{2}}+2x-5 $ 

$ \therefore f'\left( x \right)=2x+2 $ 

Now, 

 $ f'\left( x \right)=0 $ 

 $ \Rightarrow x=-1 $

The real line is divided into two disjoint intervals $\left( -\infty ,-1 \right)and\left( -1,\infty  \right)$ by the point $x=-1$.

In interval $\left( -\infty ,-1 \right),$ 

$\therefore f'\left( x \right)=2x+2<0$ 

Therefore, $f$ is strictly decreasing in the interval $\left( -\infty ,-1 \right)$.

Thus $f$ is strictly decreasing for $x<-1$ 

In interval $\left( -1,\infty  \right),$ 

$\therefore f'\left( x \right)=2x+2>0$ 

Therefore, $f$ is strictly decreasing in interval $\left( -1,\infty  \right)$ 

Thus $f$ is strictly increasing for $x>-1$.

b) Given that,

$ f\left( x \right)=10-6x-2{{x}^{2}} $ 

$ \therefore f'\left( x \right)=-6-4x $ 

Now,

$ f'\left( x \right)=0 $ 

$ \Rightarrow x=\frac{-3}{2} $ 

The real line is divided into two disjoint intervals  $\left( -\infty ,-\frac{3}{2} \right)and\left( -\frac{3}{2},\infty  \right)$ by the point $x=-\frac{3}{2}$.

In interval $\left( -\infty ,-\frac{3}{2} \right)$ i.e., when $x<-\frac{3}{2},f'\left( x \right)=-6-4x<0.$ 

$\therefore f$ is strictly increasing for $x<-\frac{3}{2}$ 

In interval $\left( -\frac{3}{2},\infty  \right)$ i.e., when $x>\frac{3}{2},f'\left( x \right)=-6-4x<0$.

$\therefore f$ is strictly increasing for $x<-\frac{3}{2}$ 

c) Given that,

 $ f\left( x \right)=-2{{x}^{3}}-9{{x}^{2}}-12x+1 $ 

 $ \therefore f'\left( x \right)=-6{{x}^{2}}-18x-12 $ 

 $ =-6\left( {{x}^{2}}+3x+2 \right) $ 

 $ =-6\left( x+1 \right)\left( x+2 \right) $ 

Now,

 $ f'\left( x \right)=0 $ 

 $ \Rightarrow x=-1 $ 

and $x=-2$ 

The real line is divided into three disjoint interval $\left( -\infty ,-2 \right),\left( -2,-1 \right)and\left( -1,\infty  \right)$ by the points $x=-1,-2$  when $x<-2$ and $x>-1$,

$f'\left( x \right)=-6\left( x+1 \right)\left( x+2 \right)<0$ 

$\therefore f$ is strictly increasing for $x<-2<x>-1$ 

Now, in interval $\left( -2,-1 \right)$ i.e., when $-2<x<-1$,

$f'\left( x \right)=-6\left( x+1 \right)\left( x+2 \right)>0$ 

$\therefore f$ is strictly increasing for $-2<x<-1$

d) Given that,

$ f\left( x \right)=6-9x-{{x}^{2}} $ 

$ \therefore f'\left( x \right)=-9-2x $ 

Now, $f'\left( x \right)=0$ gives $x=-\frac{9}{2}$ 

The real line is divided into two disjoint intervals $\left( -\infty ,-\frac{9}{2} \right)and\left( -\frac{9}{2},\infty  \right)$ by the point $x=-\frac{9}{2}$.

In interval $\left( -\infty ,-\frac{9}{2} \right)$ i.e., for $x<\frac{9}{2},$ 

$\therefore f$  is strictly increasing for $x<\frac{9}{2}$

In interval $\left( \frac{9}{2},\infty  \right)$ i.e., for $x<-\frac{9}{2},f'\left( x \right)=-9-2x>0$ 

$\therefore f$  is strictly increasing for $x<-\frac{9}{2}$

In interval $\left( -\frac{9}{2},\infty  \right)$ i.e., for $x>-\frac{9}{2},f'\left( x \right)=-9-2x<0$ 

$\therefore f$  is strictly increasing for $x>-\frac{9}{2}$

e) Given that,

$ f\left( x \right)={{\left( x+1 \right)}^{3}}{{\left( x-3 \right)}^{3}} $ 

$ f'\left( x \right)=3x{{\left( x+1 \right)}^{2}}{{\left( x-3 \right)}^{3}}+3{{\left( x-3 \right)}^{2}}{{\left( x+1 \right)}^{3}} $ 

$ =3{{\left( x+1 \right)}^{2}}{{\left( x-3 \right)}^{2}}\left[ x-3+x+1 \right] $ 

$ =6{{\left( x+1 \right)}^{2}}{{\left( x-3 \right)}^{2}}\left( x-1 \right) $ 

Now, 

$ f'\left( x \right)=0 $ 

$ \Rightarrow x=-1,3,1 $  

The points $x=-1,1,3$ divided the real line into four disjoint intervals. i.e., $\left( -\infty ,-1 \right),\left( -1,1 \right),\left( 1,3 \right)and\left( 3,\infty  \right)$ 

In intervals $\left( -\infty ,-1 \right)and\left( -1,1 \right),f'\left( x \right)=6{{\left( x+1 \right)}^{2}}{{\left( x-3 \right)}^{2}}\left( x-1 \right)<0$ 

$\therefore f$ is strictly decreasing in interval $\left( -\infty ,-1 \right)and\left( -1,1 \right)$ 

In intervals $\left( 1,3 \right)and\left( 3,\infty  \right),f'\left( x \right)=6{{\left( x+1 \right)}^{2}}{{\left( x-3 \right)}^{2}}\left( x-1 \right)>0$ 

$\therefore f$ is strictly decreasing in the interval $\left( 1,3 \right)and\left( 3,\infty  \right)$.

7. Show that $y=\log \left( 1+x \right)-\frac{2x}{2+x},x>-1,$ is an increasing function of 

$x$ throughout its domain.

Ans: We are given that,

$ y=\log \left( 1+x \right)-\frac{2x}{2+x} $ 

$ \therefore \frac{dy}{dx}=\frac{1}{1+x}-\frac{\left( 2+x \right)\left( 2 \right)-2x\left( 1 \right)}{{{\left( 2+x \right)}^{2}}} $ 

 $ =\frac{{{x}^{2}}}{{{\left( 2+x \right)}^{2}}} $ 

Now,

$ \frac{dy}{dx}=0 $ 

 $ \Rightarrow \frac{{{x}^{2}}}{{{\left( 2+x \right)}^{2}}}=0 $ 

 $ \Rightarrow {{x}^{2}}=0 $ 

$ \Rightarrow x=0 $  

Since $x>-1$ point $x=0$ divides the domain $\left( -1,\infty  \right)$ in two disjoint 

intervals i.e., $-1<x<0$ and $x>0.$ 

 When $-1<x<0$we have:

  $ x<0\Rightarrow {{x}^{2}}>0 $ 

 $ x>-1\Rightarrow \left( 2+x \right)>0 $ 

 $ \Rightarrow {{\left( 2+x \right)}^{2}}>0 $ 

 \[\therefore y=\frac{{{x}^{2}}}{{{\left( 2+x \right)}^{2}}}>0\]

Also, when $x>0$ 

 $ x<0\Rightarrow {{x}^{2}}>0, $ 

 $ {{\left( 2+x \right)}^{2}}>0 $ 

 $ \therefore y=\frac{{{x}^{2}}}{{{\left( 2+x \right)}^{2}}}>0 $ 

 Hence, the function $f$ is increasing throughout this domain.

8. Find the values of $x$ for which $y={{\left[ x\left( x-2 \right) \right]}^{2}}$ is an increasing function.

Ans: We have,         

  $ y={{\left[ x\left( x-2 \right) \right]}^{2}} $ 

 $ ={{\left[ {{x}^{2}}-2x \right]}^{2}} $ 

 $ \therefore \frac{dy}{dx}=2\left( {{x}^{2}}-2x \right)\left( 2x-2 \right) $ 

 $ =4x\left( x-2 \right)\left( x-1 \right) $ 

 $ \therefore \frac{dy}{dx}=0 $ 

 $ \Rightarrow x=0,1,2 $ 

The points $x=0,1,2$ divide the real line into four disjoint intervals i.e., 

$\left( -\infty ,0 \right),\left( 0,1 \right),\left( 1,2 \right)and\left( 2,\infty  \right).$ 

In intervals $\left( -\infty ,0 \right)and\left( 1,2 \right),\frac{dy}{dx}<0$ 

$\therefore y$ is strictly decreasing in intervals $\left( -\infty ,0 \right)and\left( 1,2 \right)$ 

However, in intervals $\left( 0,1 \right)and\left( 2,\infty  \right)$, $\frac{dy}{dx}>0$ 

$\therefore y$ is strictly decreasing in intervals $\left( 0,1 \right)and\left( 2,\infty  \right)$

$\therefore y$ is strictly decreasing in intervals $0<x<1$  and $x>2$.

9. Prove that $y=\frac{4\sin \theta }{\left( 2+\cos \theta  \right)}-\theta $ is an increasing function of $\theta $ in $\left[ 0,\frac{\pi }{2} \right]$.

Ans: We have,

 $ y=\frac{4\sin \theta }{\left( 2+\cos \theta  \right)}-\theta  $ 

 $ \therefore \frac{dy}{d\theta }=\frac{\left( 2+\cos \theta  \right)\left( 4\cos \theta  \right)-4\sin \theta \left( -\sin \theta  \right)}{{{\left( 2+\cos \theta  \right)}^{2}}}-1 $ 

 $ =\frac{8\cos \theta +4{{\cos }^{2}}\theta +4{{\sin }^{2}}\theta }{{{\left( 2+\cos \theta  \right)}^{2}}}-1 $ 

 $ =\frac{8\cos \theta +4}{{{\left( 2+\cos \theta  \right)}^{2}}}-1 $ 

Now,           

$ \frac{dy}{d\theta }=0 $ 

$ \Rightarrow \frac{8\cos \theta +4}{{{\left( 2+\cos \theta  \right)}^{2}}}=1 $ 

$ \Rightarrow 8\cos \theta +4=4+{{\cos }^{2}}\theta +4\cos \theta  $ 

$ \Rightarrow {{\cos }^{2}}\theta -4\cos \theta =0 $ 

$ \Rightarrow \cos \theta =0,4 $ 

Since, 

$ \cos \theta \ne 4, $ 

$ \cos \theta =0 $ 

$ \Rightarrow \theta =\frac{\pi }{2} $ 

Now, $\frac{dy}{d\theta }=\frac{\cos \left( 4-\cos \theta  \right)}{{{\left( 2+\cos  \right)}^{2}}}$ 

In the interval $\left[ 0,\frac{\pi }{2} \right]$, we have $\cos \theta >0$,

Also, $4>\cos \theta \Rightarrow 4-\cos \theta >0$ 

$\therefore \cos \theta \left( 4-\cos \theta  \right)>0$ and also ${{\left( 2+\cos \theta  \right)}^{2}}>0$ 

$ \Rightarrow \frac{\cos \theta \left( 4-\cos \theta  \right)}{{{\left( 2+\cos \theta  \right)}^{2}}}>0 $ 

$ \Rightarrow \frac{dy}{dx}>0 $  

Therefore $y$ is strictly increasing in the interval $\left( 0,\frac{\pi }{2} \right)$ 

Hence, $y$ is increasing in the interval $\left( 0,\frac{\pi }{2} \right)$.

10. Prove that the logarithmic function is strictly increasing on $\left( 0,\infty  \right)$.

Ans: The given function is $f\left( x \right)\log x$.

\[f'\left( x \right)=\frac{1}{x}\] 

It is clear that for $x>0,f'\left( x \right)=\frac{1}{x}>0$ 

Hence, $f\left( x \right)\log x$ is strictly increasing in the interval $\left( 0,\infty  \right)$.

11. Prove that the function $f$ is given by $f\left( x \right)={{x}^{2}}-x+1$ is neither strictly increasing nor strictly decreasing on $\left( -1,1 \right)$.

Ans: The given function is $f\left( x \right)={{x}^{2}}-x+1$ 

$\therefore f'\left( x \right)=2x-1$ 

Now,

$ f'\left( x \right)=0 $ 

 $ \Rightarrow x=\frac{1}{2}. $ 

The point $\frac{1}{2}$ divides the interval $\left( -1,1 \right)$ into two disjoint intervals i.e.,    

$\left( -1,\frac{1}{2} \right)and\left( \frac{1}{2},1 \right).$ 

Now, in the interval $\left( -1,\frac{1}{2} \right),f'\left( x \right)=2x-1<0$ 

Therefore, $f$ is strictly decreasing in the interval $\left( -1,\frac{1}{2} \right)$,

However, in the interval $\left( \frac{1}{2},1 \right),f'\left( x \right)=2x-1>0$     

Therefore, $f$ is strictly decreasing in the interval $\left( \frac{1}{2},1 \right)$,

Hence, $f$ is neither strictly increasing nor decreasing in interval 

$\left( -1,1 \right)$.

12. Which of the following functions are strictly decreasing on $\left( 0,\frac{\pi }{2} \right)$?

(A) \[\mathbf{cosx}\] (B) $\cos 2x$  (C) $\cos 3x$  (D) $\tan x$ 

 Ans. 

A) Let ${{f}_{1}}\left( x \right)=\cos x$ 

$\therefore {{f}_{1}}^{\prime }\left( x \right)=-\sin x$ 

In interval, $\left( 0,\frac{\pi }{2} \right),{{f}_{1}}^{\prime }\left( x \right)=-\sin x<0$ 

$\therefore {{f}_{1}}\left( x \right)=\cos x$ is strictly decreasing in the interval $\left( 0,\frac{\pi }{2} \right)$.

B) Let ${{f}_{2}}\left( x \right)=\cos 2x$ 

$\therefore {{f}_{2}}^{\prime }\left( x \right)=-2\sin 2x$ 

Now,

$ 0<x<\frac{\pi }{2}\Rightarrow 0<2x<\pi  $ 

$ \Rightarrow \sin 2x>0\Rightarrow -2\sin 2x<0 $ 

$\therefore {{f}_{2}}^{\prime }\left( x \right)=-2\sin 2x<0$  on $\left( 0,\frac{\pi }{2} \right)$ 

$\therefore {{f}_{2}}\left( x \right)=\cos 2x$ is strictly decreasing in interval $\left( 0,\frac{\pi }{2} \right)$$$ 

C) Let ${{f}_{3}}\left( x \right)=\cos 3x$ 

$\therefore {{f}_{3}}^{\prime }\left( x \right)=-3\sin 3x$ 

Now,

  $ {{f}_{3}}^{\prime }\left( x \right)=0 $ 

 $ \Rightarrow \sin 3x=0 $ 

 $ \Rightarrow 3x=\pi ,x\in \left( 0,\frac{\pi }{2} \right) $ 

 $ \Rightarrow x=\frac{\pi }{3} $ 

The point $x=\frac{\pi }{3}$  divides the interval $\left( 0,\frac{\pi }{2} \right)$  into two disjoint intervals i.e., $\left( 0,\frac{\pi }{3} \right)$  and $\left( \frac{\pi }{3},\frac{\pi }{2} \right)$.

Now, in the interval $\left( 0,\frac{\pi }{3} \right)$, ${{f}_{3}}\left( x \right)=-3\sin 3x<0\left[ 0<x<\frac{\pi }{3}\Rightarrow 0<3x<\pi  \right]$ 

$\therefore {{f}_{3}}$ is strictly decreasing in interval x$\left( 0,\frac{\pi }{3} \right)$ 

However, in the interval $\left( \frac{\pi }{3},\frac{\pi }{2} \right)$, ${{f}_{3}}\left( x \right)=-3\sin 3x>0\left[ \frac{\pi }{3}<x<\frac{\pi }{2}\Rightarrow \pi <3x<\frac{3\pi }{2} \right]$ 

$\therefore {{f}_{3}}$ is strictly increasing in the interval $\left( \frac{\pi }{3},\frac{\pi }{2} \right)$ 

Hence, ${{f}_{3}}$ is neither increasing nor decreasing in interval $\left( 0,\frac{\pi }{2} \right)$

D) Let ${{f}_{4}}\left( x \right)=\tan x$ 

$\therefore {{f}_{4}}^{\prime }\left( x \right)={{\sec }^{2}}x$ 

In interval $\left( 0,\frac{\pi }{2} \right)$,${{f}_{4}}^{\prime }\left( x \right)={{\sec }^{2}}x>0$ 

\[∴f_4\] is strictly increasing in the interval $\left( 0,\frac{\pi }{2} \right)$.

Therefore, functions $\cos x$and $\cos 2x$  are strictly decreasing in $\left( 0,\frac{\pi }{2} \right)$.

Hence, the correct options are A and B.

13. On which of the following intervals is the function $f$ is given by 

$f\left( x \right)={{x}^{100}}+\sin x-1$ strictly decreasing?

A. $\left( 0,1 \right)$ 

B. $\left( \frac{\pi }{2},\pi  \right)$ 

C. $\left( 0,\frac{\pi }{2} \right)$ 

D. None of these

Ans: We have,

$ f\left( x \right)={{x}^{100}}+\sin x-1 $ 

$ \therefore {f}'\left( x \right)=100{{x}^{90}}+\cos x $ 

In interval $\left( 0,1 \right),\cos x>0$ and $100{{x}^{90}}>0$ 

$\therefore f'\left( x \right)>0$ 

Thus, the function $f$ is strictly increasing in the interval $\left( 0,1 \right)$.

In interval $\left( \frac{\pi }{2},\pi  \right),\cos x<0$  and \[\text{100}{{\text{x}}^{90}}>0\].

Also, $100{{x}^{90}}>\cos x$ 

$\therefore f'\left( x \right)>0in\left( \frac{\pi }{2},\pi  \right)$ 

Thus, the function $f$ is strictly increasing in the interval $\left( \frac{\pi }{2},\pi  \right)$.

In the interval $\left( 0,\frac{\pi }{2} \right)$, $\cos x<0$ and $100{{x}^{90}}>0$ 

$ \therefore 100{{x}^{90}}+\cos x>0 $ 

$ \Rightarrow f'\left( x \right)>0on\left( 0,\frac{\pi }{2} \right) $ 

$\therefore f$ is strictly increasing in the interval $\left( 0,\frac{\pi }{2} \right)$

Hence, the function $f$ is strictly decreasing in none of the intervals. The correct option is D.

14. Find the least value of $a$ such that the function $f$ given 

$f\left( x \right)={{x}^{2}}+ax+1$ is strictly increasing on $\left( 1,2 \right)$.

Ans: We have,

$ f\left( x \right)={{x}^{2}}+ax+1 $ 

$ \therefore {f}'\left( x \right)=2x+a $ 

Now, the function $f$ will be increasing in $\left( 1,2 \right)$ if ${f}'\left( x \right)>0$ in $\left( 1,2 \right)$.

  $ \Rightarrow 2x+a>0 $ 

 $ \Rightarrow 2x>-a $ 

 $ \Rightarrow x>\frac{-a}{2} $ 

 As a result, we must determine the smallest value of $a$ such that 

 $x>\frac{-a}{2},x\in \left( 1,2 \right)$ 

 $\Rightarrow x>\frac{-a}{2}\left( 1<x<2 \right)$ 

 Thus, the least value is given by

  $ \frac{-a}{2}=1 $ 

 $ \Rightarrow a=-2 $ 

Hence, the required value of $a$ is $-2$.

15. Let I be any interval disjoint from $\left( -1,1 \right)$, prove that the function $f$ given by $f\left( x \right)=x+\frac{1}{x}$ is strictly increasing on I.

Ans: We have,

$ f\left( x \right)=x+\frac{1}{x} $ 

 $ \therefore {f}'\left( x \right)=1-\frac{1}{{{x}^{2}}} $ 

Now, 

$ f\left( x \right)=0 $ 

$ \Rightarrow x=\pm 1 $ 

The real line is divided into three disjoint intervals i.e., 

$\left( -\infty ,-1 \right),\left( -1,1 \right),\left( 1,\infty  \right)$ by the points $x=1,-1$.

In the interval $\left( -1,1 \right)$ we observe,

$ -1<x<1 $ 

$ \Rightarrow {{x}^{2}}<1 $ 

$ \Rightarrow 1<\frac{1}{{{x}^{2}}},x\ne 0 $ 

$ \therefore f'\left( x \right)=1-\frac{1}{{{x}^{2}}}<0on\left( -1,1 \right)\sim \left\{ 0 \right\}. $ 

$\therefore f$ is strictly decreasing on $\left( -1,1 \right)\sim \left\{ 0 \right\}$.

In the interval, $\left( -\infty ,-1 \right)and\left( 1,\infty  \right),$ it is observed that:

$ x<-1 $ 

$ \Rightarrow {{x}^{2}}>1 $ 

$ \Rightarrow 1>\frac{1}{{{x}^{2}}} $ 

$ \Rightarrow 1-\frac{1}{{{x}^{2}}}>0 $ 

$\therefore f'\left( x \right)=1-\frac{1}{{{x}^{2}}}>0$  on $\left( -\infty ,-1 \right)and\left( 1,\infty  \right).$

$\therefore f$ is strictly increasing on $\left( -\infty ,-1 \right)and\left( 1,\infty  \right).$

Hence, the function $f$is strictly increasing in the interval I disjoint  

from $\left( -1,1 \right)$.

Hence, the given result is proved.

16. Prove that the function $f$ given by $f\left( x \right)=\log \sin x$ is strictly increasing on $\left( 0,\frac{\pi }{2} \right)$ and strictly decreasing on $\left( \frac{\pi }{2},\pi  \right)$.

Ans: We have,

$ f\left( x \right)=\log \sin x $ 

 $ \therefore f'\left( x \right)=\frac{1}{\sin x}\cos x=\cot x $ 

In interval, $\left( 0,\frac{\pi }{2} \right),f'\left( x \right)=\cot x>0$ 

$\therefore f$ is strictly increasing in $\left( 0,\frac{\pi }{2} \right)$ 

In interval, $\left( \frac{\pi }{2},\pi  \right),f'\left( x \right)=\cot x<0$ 

$\therefore f$ is strictly increasing in $\left( \frac{\pi }{2},\pi  \right)$.

17. Prove that the function $f$ is given by $f\left( x \right)=\log \cos x$ is strictly decreasing on $\left( 0,\frac{\pi }{2} \right)$ and strictly increasing on $\left( \frac{\pi }{2},\pi  \right)$.

Ans: We have,

$ f\left( x \right)=\log \cos x $ 

$ \therefore f'\left( x \right)=\frac{1}{\cos x}\left( -\sin x \right)=-\tan x $ 

In interval $\left( 0,\frac{\pi }{2} \right)$,

$ \tan x>0\Rightarrow -\tan x<0 $ 

$ \therefore f'\left( x \right)<0on\left( 0,\frac{\pi }{2} \right) $ 

$\therefore f$ is strictly decreasing on $\left( 0,\frac{\pi }{2} \right)$ 

In interval $\left( \frac{\pi }{2},\pi  \right)$,

$ \tan x<0\Rightarrow -\tan x>0 $ 

$ \therefore f'\left( x \right)>0on\left( \frac{\pi }{2},\pi  \right) $ 

$\therefore f$ is strictly decreasing on $\left( \frac{\pi }{2},\pi  \right)$. 

18. Prove that the function given by $f\left( x \right)={{x}^{3}}-3{{x}^{2}}+3x=100$ is increasing in R.

Ans: We have,

$ f\left( x \right)={{x}^{3}}-3{{x}^{2}}+3x=100 $ 

$ f'\left( x \right)=3{{x}^{2}}-6x+3 $ 

$ =3\left( {{x}^{2}}-2x+1 \right) $ 

$ =3{{\left( x-1 \right)}^{2}} $ 

For any $x\in R$ 

${{\left( x-1 \right)}^{2}}>0$ 

Thus, $f'\left( x \right)$ is always positive in R.

Hence, the given function $f$ is increasing in R.

19. The interval in which $y={{x}^{2}}{{e}^{-x}}$ is increasing is

A) $\left( -\infty ,\infty  \right)$ 

B) $\left( -2,0 \right)$ 

C) $\left( 2,\infty  \right)$ 

D) $\left( 0,2 \right)$ 

Ans: We have,        

$ y={{x}^{2}}{{e}^{-x}} $ 

 $ \therefore \frac{dy}{dx}=2x{{e}^{-x}}-{{x}^{2}}{{e}^{-x}}=x{{e}^{-x}}\left( 2-x \right) $ 

Now,

$ \frac{dy}{dx}=0 $ 

 $ \Rightarrow x=0,2 $ 

 The points $x=0,2$ divided the real line into the three disjoint intervals 

 i.e., $\left( -\infty ,0 \right),\left( 0,2 \right),\left( 2,\infty  \right).$ 

 In intervals $\left( -\infty ,0 \right)and\left( 2,\infty  \right),f'\left( x \right)<0$ as ${{e}^{-x}}$ is always positive.

 $\therefore f$ is decreasing on $\left( -\infty ,0 \right)and\left( 2,\infty  \right)$.

 In interval $\left( 0,2 \right),f'\left( x \right)>0$ 

 $\therefore f$is strictly increasing on $\left( 0,2 \right)$.

Hence $f$ is strictly increasing in the interval $\left( 0,2 \right)$

Thus, D is the correct option.

Conclusion

In conclusion, Class 12 Maths Exercise 6.2 serves as a valuable practice ground for wielding derivatives to analyze the monotonic behavior of functions. By working through these problems, Students will solidify their understanding of how a function's rate of change (represented by the derivative) dictates its increasing or decreasing nature across different intervals. Ex 6.2 Class 12 Maths NCERT Solutions equips students to move beyond simply calculating derivatives and leverage them to gain deeper insights into the characteristics of functions - a crucial skill for higher mathematics and various scientific applications.


Class 12 Maths Chapter 6: Exercises Breakdown

S.No.

Chapter 6 - Application of Derivatives Exercises in PDF Format

1

Class 12 Maths Chapter 6 Exercise 6.1 - 18 Questions & Solutions (6 Short Answers, 10 Long Answers, 2 MCQs)

2

Class 12 Maths Chapter 6 Exercise 6.3 - 27 Questions & Solutions (25 Short Answers, 2 MCQs)

3

Class 12 Maths Chapter 6 Miscellaneous Exercise - 16 Questions & Solutions



CBSE Class 12 Maths Chapter 6 Other Study Materials



NCERT Solutions for Class 12 Maths | Chapter-wise List

Given below are the chapter-wise NCERT 12 Maths solutions PDF. Using these chapter-wise class 12th maths ncert solutions, you can get clear understanding of the concepts from all chapters.




Related Links for NCERT Class 12 Maths in Hindi

Explore these essential links for NCERT Class 12 Maths in Hindi, providing detailed solutions, explanations, and study resources to help students excel in their mathematics exams.




Important Related Links for NCERT Class 12 Maths

FAQs on NCERT Solutions for Class 12 Maths Chapter 6 Application Of Derivatives Ex 6.2

1. What is the primary focus of Exercise 6.2 in Chapter 6?

The primary focus of Exercise 6.2 is on the applications of derivatives, specifically finding the equations of tangents and normals to curves.

2. What is a tangent to a curve?

A tangent to a curve at a given point is a straight line that touches the curve at that point without crossing it. The slope of the tangent is equal to the derivative of the curve's equation at that point.

3. What is a normal to a curve?

In Class 12 Maths Ch 6 Ex 6.2, A normal curve at a given point is a straight line perpendicular to the tangent at that point. Its slope is the negative reciprocal of the tangent's slope.