Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions For Class 9 Maths Chapter 7 Triangles Exercise 7.2 (2025-26)

ffImage
banner
widget title icon
Latest Updates

Practice-ready answers for Class 9 Chapter 7 Triangles Maths Exercise 7.2: FREE PDF download

Exercise 7.2 of Class 9 Maths Chapter 7 Triangles deals with the properties of triangles and the theorems related to them. Many students find this topic boring because it involves more proofs and fewer numerical problems.

toc-symbolTable of Content
toggle-arrow


To help students, we have provided the NCERT Solutions for Class 9 Maths Chapter 7, Exercise 7.2. These solutions make it easier to understand the methods used to solve the questions. After going through them, students can learn how to write answers in a clear, step-by-step manner, which is important for scoring good marks in the CBSE Maths examination.


The NCERT Solutions have been prepared by a team of experienced teachers and follow the latest CBSE Class 9 Maths syllabus and guidelines. Students can download the Exercise 7.2 NCERT Solutions PDF from the link given below for easy reference.

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
Watch videos on

NCERT Solutions For Class 9 Maths Chapter 7 Triangles Exercise 7.2 (2025-26)
Previous
Next
Vedantu 9&10
Subscribe
Download Notes
iconShare
TRIANGLES L-1 (๐‚๐จ๐ง๐ ๐ซ๐ฎ๐ž๐ง๐œ๐ž ๐จ๐Ÿ ๐“๐ซ๐ข๐š๐ง๐ ๐ฅ๐ž๐ฌ & ๐‚๐ซ๐ข๐ญ๐ž๐ซ๐ข๐š ๐Ÿ๐จ๐ซ ๐‚๐จ๐ง๐ ๐ซ๐ฎ๐ž๐ง๐œ๐ž ๐จ๐Ÿ ๐“๐ซ๐ข๐š๐ง๐ ๐ฅ๐ž๐ฌ) CBSE 9 Maths -Term 1
3K likes
90.9K Views
4 years ago
Vedantu 9&10
Subscribe
iconShare
Triangles in 30 Minutes | Crash Course | Maths | Gopal Sir | Vedantu Class 9
11.2K likes
364.2K Views
6 years ago

Class 9 Maths Triangles Exercise 7.2 Solutions

Exercise 7.2

1. In an isosceles triangle $\text{ABC}$, with $\text{AB}=\text{AC}$, the bisectors of $\angle \text{B}$ and $\angle \text{C}$ intersect each other at $O$. Join $\text{A}$ to $\text{O}$. Show that:

(i) $\text{OB}=\text{OC}$

(ii) $AO$ bisects $\angle \text{A}$


An isosceles triangle ABC


Ans:

(i) It is given that in triangle $\text{ABC}$ is an isosceles triangle with $\text{AB}=\text{AC}$.

$\therefore \,\,\angle \text{ACB}=\angle \text{ABC}$ (Angles opposite to equal sides of a triangle are equal) 

Multiplying $\frac{1}{2}$ on both sides, we get

$\frac{1}{2}\angle \text{ACB}=\frac{1}{2}\angle \text{ABC}$

$\angle \text{OCB}=\angle \text{OBC}$

$\therefore \text{OB}=\text{OC}$ (Sides opposite to equal angles of a triangle are also equal)

(ii) In $\Delta \text{OAB}$ and $\Delta \text{OAC}$,

Side AO is present in both triangle. Therefore,

$\text{AO}=\text{AO}$ (Common)

Length of side AB is equal to AC, i.e., $\text{AB}=\text{AC}$ (Given)

$\text{OB}=\text{OC}$ (Proved above)

Therefore,

$\Delta \text{OAB}\cong \Delta \text{OAC}$ (By SSS axiom of congruency)

Therefore, $\angle \text{BAO}=\angle \text{CAO}$.

As they are corresponding parts of the corresponding triangle.

$\therefore $ AO bisects $\angle \text{A}$.     ($\angle \text{BAO}=\angle \text{CAO}$)


2. In $\Delta \text{ABC},\text{AD}$ is the perpendicular bisector of $\text{BC}$ (see the given figure). Show that $\vartriangle \text{ABC}$ is an isosceles triangle in which $\text{AB}=\text{AC}$.


ABC   is an isosceles triangle in which AB=AC


Ans:

In $\Delta \text{ADC}$ and $\Delta \text{ADB}$,

Side AD is present in both triangle. 

$\therefore \,\,\text{AD}=\text{AD}$ (Common)

Since AD is the perpendicular bisector of BC.

$\angle ADC=\angle ADB={{90}^{{}^\circ }}$ and

$\text{CD}=\text{BD}$

$\therefore \Delta \text{ADC}\cong \Delta \text{ADB}$ (By SAS axiom of congruency)

Therefore, $\text{AB}=\text{AC}$.

As they are corresponding parts of the corresponding triangle.

Hence, $\Delta ABC$ is an isosceles triangle as two of itโ€™s sides are equal, i.e., $AB=AC$.


3. $\text{ABC}$ is an isosceles triangle in which altitudes $\text{BE}$ and $\text{CF}$ are drawn to equal sides $\text{AC}$ and $\text{AB}$ respectively (see the given figure). Show that these altitudes are equal.


ABC is an isosceles triangle in which altitudes BE  and CF


Ans:

In $\Delta \text{AEB}$ and $\Delta \text{AFC}$,

Since $\text{BE}$ and $\text{CF}$ are drawn to equal sides $\text{AC}$ and $\text{AB}$. Therefore,

$\angle \text{AEB}$ and $\angle \text{AFC}$ (Each \[{{90}^{{}^\circ }}\])

As $\angle A$ lies in both the triangles. Therefore,

$\angle \text{A}=\angle \text{A}$ (Common angle)

Length of side AB is equal to AC, i.e.,$\text{AB}=\text{AC}$ (Given)

$\therefore \Delta \text{AEB}\cong \Delta \text{AFC}$ (By AAS axiom of congruency) 

Therefore, $\text{BE}=\text{CF}$.

As they are corresponding parts of the corresponding triangle.


4.$\text{ABC}$ is a triangle in which altitudes $\text{BE}$ and $\text{CF}$ to sides $\text{AC}$ and $\text{AB}$ are equal (see the given figure). Show that

(i) $\Delta \text{ABE}\cong \Delta \text{ACF}$

(ii) $\text{AB}=\text{AC}$, ie., $\text{ABC}$ is an isosceles triangle.


ABC is a triangle in which altitudes BE  and CF  to sides AC  and AB  are equal


Ans:

(i) In $\Delta \text{ABE}$ and $\Delta \text{ACF}$,

$\text{ABC}$ is a triangle in which altitudes $\text{BE}$ and $\text{CF}$ to sides $\text{AC}$ and $\text{AB}$.

Therefore, $\angle \text{ABE}$ and $\angle ACF={{90}^{{}^\circ }}$

Since $\angle A$ is present in both triangles,

$\therefore \,\,\angle \text{A}=\angle \text{A}$ (Common angle)

Length of side BE is equal to CF, i.e., $\text{BE}=\text{CF}$ (Given)

$\therefore \Delta \text{ABE}\cong \Delta \text{ACF}$ (By AAS axiom of congruency)

(ii) Since $\Delta \text{ABE}\cong \Delta \text{ACF}$   (proved above)

Therefore, $\text{AB}=\text{AC}$.

As they are corresponding parts of the corresponding triangle.


5. $\text{ABC}$ and $\text{DBC}$ are two isosceles triangles on the same base $\text{BC}$ (see the given figure). Show that $\angle \text{ABD}=\angle \text{ACD}$.


ABC   and DBC  are two isosceles triangles on the same base BC


Ans:


โˆ ABD=โˆ ACD


Construction: join $\text{AD}$.

In $\Delta \text{ABD}$ and $\Delta \text{ACD}$,

Length of side AB is equal to AC, i.e., $\text{AB}=\text{AC}$ (Given)

Length of side BD is equal to CD, i.e., $\text{BD}=\text{CD}$ (Given)

As side AD is present in both triangles. Therefore,

$\text{AD}=\text{AD}$ (Common side)

$\therefore \Delta \text{ABD}\cong \Delta \text{ACD}$ (By SSS axiom of congruency)

Therefore, $\angle \text{ABD}=\angle \text{ACD}$.

As they are corresponding parts of the corresponding triangle.


6. $\Delta \text{ABC}$ is an isosceles triangle in which $\text{AB}=\text{AC}$. Side $\text{BA}$ is produced to $\text{D}$ such that $\text{AD}=\text{AB}$ (see the given figure). Show that $\angle \text{BCD}$ is a right angle.


ABC   is an isosceles triangle in which AB=AC . Side BA  is produced to D  such that AD=AB


Ans:

In $\Delta \text{ABC}$,

Length of side AB is equal to AC, i.e., $\text{AB}=\text{AC}$ (Given)

$\therefore \angle \text{ACB}=\angle \text{ABC}$ (Angles opposite to equal sides of a triangle are also equal)

In $\Delta \text{ACD}$,

Length of side AC is equal to AD, i.e., $\text{AC}=\text{AD}$  (Given)

$\therefore \angle \text{ADC}=\angle \text{ACD}$ (Angles opposite to equal sides of a triangle are also equal)

In $\Delta \text{BCD}$,

$\angle \text{ABC}+\angle \text{BCD}+\angle \text{ADC}={{180}^{{}^\circ }}$ (Sum of angles in a triangle is ${{180}^{{}^\circ }}$)

$\angle \text{ACB}+\angle \text{ACB}+\angle \text{ACD}+\angle \text{ACD}={{180}^{{}^\circ }}$  ($\angle BCD=\angle BCA+\angle ACD$)

$2(\angle \text{ACB}+\angle \text{ACD})={{180}^{{}^\circ }}$

$2(\angle \text{BCD})={{180}^{{}^\circ }}$

$\therefore \angle \text{BCD}={{90}^{{}^\circ }}$


7. $\text{ABC}$ is a right-angled triangle in which $\angle \text{A}={{90}^{{}^\circ }}$ and $\text{AB}=\text{AC}$. Find $\angle \text{B}$ and $\angle \text{C}$.

Ans:


ABC is a right-angled triangle in which โˆ A=90' and AB=AC


It is given that the side $\text{AB}=\text{AC}$

Angles opposite to equal sides are also equal

$\therefore \angle \text{C}=\angle \text{B}$  โ€ฆ(i)

In $\Delta \text{ABC}$,

$\angle \text{A}+\angle \text{B}+\angle \text{C}={{180}^{{}^\circ }}$ (Sum of angles in a triangle is ${{180}^{{}^\circ }}$)${{90}^{{}^\circ }}+\angle \text{B}+\angle \text{C}={{180}^{{}^\circ }}$  โ€ฆfrom equation (i)

${{90}^{{}^\circ }}+\angle \text{B}+\angle \text{B}={{180}^{{}^\circ }}$

$2\angle \text{B}={{90}^{{}^\circ }}$

$\angle \text{B}={{45}^{{}^\circ }}$

$\begin{align} & \because \angle \text{B}=\angle \text{C}\,\,\,\,\,\,\,\,\,\,\,...\text{from equation}\,\left( i \right) \\  & \therefore \angle \text{C}={{45}^{{}^\circ }} \\ \end{align}$


8. Show that the angles of an equilateral triangle are ${{60}^{{}^\circ }}$ each.

Ans:


An equilateral triangle with 60'


Consider that $\text{ABC}$ is an equilateral triangle in which all sides are equal.

Therefore, $\text{AB}=\text{BC}=\text{AC}$

$\text{AB}=\text{AC}$

Angles opposite to equal sides of a triangle are equal

$\therefore \angle \text{C}=\angle \text{B}\,\,\,\,\,\,...\left( i \right)$ 

Also, $\text{AC}=\text{BC}$

Angles opposite to equal sides of a triangle are equal

$\therefore \angle \text{B}=\angle \text{A}\,\,\,\,\,\,\,\,\,...\left( ii \right)$ 

Therefore, from equation (i) and (ii), we get

$\angle \text{A}=\angle \text{B}=\angle \text{C}\,\,\,\,\,\,\,\,...\left( iii \right)$

In $\Delta \text{ABC}$,

$\angle \text{A}+\angle \text{B}+\angle \text{C}={{180}^{{}^\circ }}$   (Sum of angles in a triangle is ${{180}^{{}^\circ }}$)

$\angle \text{A}+\angle \text{A}+\angle \text{A}={{180}^{{}^\circ }}$     โ€ฆfrom equation (iii)

$3\angle \text{A}={{180}^{{}^\circ }}$

$\angle \text{A}={{60}^{{}^\circ }}$

$\therefore \angle \text{A}=\angle \text{B}=\angle \text{C}={{60}^{{}^\circ }}$

From above we can conclude that all the interior angles of an equilateral triangle has an angle of ${{60}^{{}^\circ }}$.


Conclusion

In Class 9 Maths Ch 7 Ex 7.2 it is important to understand and focus on the properties and criteria for triangle congruence, such as SAS (Side-Angle-Side), ASA (Angle-Side-Angle), and SSS (Side-Side-Side). These concepts are crucial for solving problems related to triangle congruence. Pay attention to how these criteria are applied to different questions to prove that two triangles are congruent. Understanding these principles will help you tackle various geometric problems and establish a solid foundation for future studies in geometry.


Class 9 Maths Chapter 7: Exercises Breakdown

Chapter 7 - Triangles Exercises in PDF Format

Exercise 7.1

8 Questions (6 Short Answer Questions, 2 Long Answer Questions)

Exercise 7.3

5 Questions (3 Short Answer Questions, 2 Long Answer Questions)


CBSE Class 9 Maths Chapter 7 Other Study Materials

Other than Maths Class 9 Chapter 7 Exercise 7.2  you can also check on the additional study materials provided for Class 9 Maths Chapter 7.



Chapter-Specific NCERT Solutions for Class 9 Maths

Given below are the chapter-wise NCERT Solutions for Class 9 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.



Important Study Materials for Class 9 Maths

WhatsApp Banner
Best Seller - Grade 11 - JEE
View More>
Previous
Next

FAQs on NCERT Solutions For Class 9 Maths Chapter 7 Triangles Exercise 7.2 (2025-26)

1. Are NCERT Solutions for Class 9 Maths Chapter 7 Exercise 7.2 useful for homework?

Yes, the NCERT Solutions for Class 9 Maths Chapter 7 Exercise 7.2 available on Vedantu provide clear answers that can be used for homework and written practice.

2. Do Class 9 Triangles Exercise 7.2 solutions follow the NCERT book order?

Yes, Class 9 Triangles Exercise 7.2 solutions on Vedantu follow the exact question order given in the NCERT textbook.

3. Can Class 9 Maths Chapter 7 Exercise 7.2 NCERT Solutions help with school tests?

Yes, Class 9 Maths Chapter 7 Exercise 7.2 NCERT Solutions on Vedantu are written in a way that helps students prepare for school tests and assessments.

4. Are all questions included in the Class 9th Maths Chapter 7 Exercise 7.2 solutions?

Yes, all textbook questions from Class 9th Maths Chapter 7 Exercise 7.2 are solved step-by-step in the NCERT Solutions on Vedantu.

5. Are the answers in Class 9 Maths Chapter 7 Exercise 7.2 easy to understand?

Yes, the answers in Class 9 Maths Chapter 7 Exercise 7.2 provided on Vedantu are written in clear and student-friendly steps.

6. Do Class 9 Maths Chapter 7 Exercise 7.2 solutions align with the latest syllabus?

Yes, the Class 9 Maths Chapter 7 Exercise 7.2 solutions on Vedantu are aligned with the latest NCERT and CBSE syllabus.

7. Are Class 9 Triangles Exercise 7.2 solutions helpful before exams?

Yes, Class 9 Triangles Exercise 7.2 solutions on Vedantu are useful for quick review before school or board exams.

8. Can private candidates use Class 9 Maths Exercise 7.2 solutions?

Yes, private candidates following the NCERT syllabus can use Class 9 Maths Exercise 7.2 solutions available on Vedantu.

9. Do the NCERT Solutions for Exercise 7.2 Class 9 show step-by-step workings?

Yes, the NCERT Solutions for Exercise 7.2 Class 9 on Vedantu include step-by-step answers demonstrating the solving approach.