# NCERT Solutions for Class 12 Maths Chapter 7 Integrals (Ex 7.10) Exercise 7.10

## NCERT Solutions for Class 12 Maths Chapter 7 Integrals (Ex 7.10) Exercise 7.10

NCERT Solutions for Class 12 Maths Chapter 7 Integrals Exercise 7.10 answers all the questions that must be studied. NCERT Maths Class 12 Exercise 7.10 Solutions are simple to understand with the right notes. Vedantu’s Class 12 Maths Chapter 7 Exercise 7.10 Solutions are highly effective. Vedantu has prepared easy-to-understand notes for students who want to score high marks in examinations. Download the Free PDF of CBSE Class 12 Maths Chapter 7 Integrals.

Do you need help with your Homework? Are you preparing for Exams?
Study without Internet (Offline) Book your Free Demo session
Get a flavour of LIVE classes here at Vedantu Vedantu Improvement Promise
We promise improvement in marks or get your fees back. T&C Apply*

## Access NCERT Solutions for Class 12 Maths Chapter 7- Integrals

### Exercise 7.10

1.Integrate the given integral $\int\limits_0^1 {\dfrac{x}{{{x^2} + 1}}} dx$.

Ans: To simplify the question Let us suppose ${x^2} + 1 = t$

Derivative of it will be, $2xdx = dt$

When $x = 0$, then $t = 1$ again when $x = 1$ then $t = 2$.

$\therefore \int\limits_0^1 {\dfrac{x}{{{x^2} + 1}}} dx = \dfrac{1}{2}\int\limits_1^2 {\dfrac{{dt}}{t}}$

$= \dfrac{1}{2}[\log \left| t \right|]_1^2$

$= \dfrac{1}{2}[\log 2 - \log 1]$

$= \dfrac{1}{2}\log 2(\because \log 1 = 0)$

Thus, the answer is $\dfrac{1}{2}\log 2$.

2.Integrate the given integral $\int\limits_0^{\dfrac{\pi }{2}} {\sqrt {\sin \phi {{\cos }^5}\phi d\phi } }$

Ans:To simplify the question, let us suppose

$\sin \phi = t \Rightarrow \cos \phi d\phi = dt$

When, $\phi = 0,t = 0$and when $\phi = \dfrac{\pi }{2},t = 1$

$\therefore I = \int\limits_0^1 {\sqrt t {{(1 - {t^2})}^2}dt}$

$= \int\limits_0^1 {\sqrt t {{(1 - {t^2})}^2}dt}$

$= \int\limits_0^1 {\sqrt t {{(1 - {t^2})}^2}dt}$

$= \int\limits_0^1 {{t^{\dfrac{1}{2}}}(1 + {t^4} - 2{t^2})dt}$

$= \int\limits_0^1 {[{t^{\dfrac{1}{2}}} + {t^{\dfrac{9}{2}}} - 2{t^{\dfrac{5}{2}}}]dt}$

$= [\dfrac{{{t^{\dfrac{3}{2}}}}}{{\dfrac{3}{2}}} + \dfrac{{{t^{\dfrac{{11}}{2}}}}}{{\dfrac{{11}}{2}}} + \dfrac{{2{t^{\dfrac{7}{2}}}}}{{\dfrac{7}{2}}}]_0^1$

$= \dfrac{2}{3} + \dfrac{2}{{11}} - \dfrac{4}{7}$

$= \dfrac{{154 + 42 - 132}}{{231}}$

$= \dfrac{{64}}{{231}}$

3.$\int\limits_0^1 {{{\sin }^{ - 1}}} (\dfrac{{2x}}{{1 + {x^3}}})dx$

Ans: To simplify the question, let us suppose$x = \tan \theta$

After differentiating both side we get, $dx = {\sec ^2}\theta d\theta$

$I = \int\limits_0^{\dfrac{\pi }{4}} {{{\sin }^{ - 1}}(\dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }})} {\sec ^2}\theta d\theta$

$= \int\limits_0^{\dfrac{\pi }{4}} {{{\sin }^{ - 1}}(\sin 2\theta )} {\sec ^2}\theta d\theta$

$= \int\limits_0^{\dfrac{\pi }{4}} {2\theta } {\sec ^2}\theta d\theta$

$= 2\int\limits_0^{\dfrac{\pi }{4}} \theta {\sec ^2}\theta d\theta$

Taking θ as first function and ${\sec ^2}\theta$ as second function and integrating by parts, we obtain

$I = 2[\theta \int {{{\sec }^2}} \theta d\theta - \int {\{ (\dfrac{d}{{dx}}\theta )\int {{{\sec }^2}\theta d\theta } \} d\theta } ]_0^{\dfrac{\pi }{4}}$

$= 2[\theta \tan \theta - \int {\tan \theta d\theta } ]_0^{\dfrac{\pi }{4}}$

$= 2[\theta \tan \theta + \log \left| {\cos \theta } \right|]_0^{\dfrac{\pi }{4}}$

$= 2[\dfrac{\pi }{4}\tan \dfrac{\pi }{4} + \log \left| {\cos \dfrac{\pi }{4}} \right| - \log \left| {\cos 0} \right|]$

$= 2[\dfrac{\pi }{4} + \log (\dfrac{1}{{\sqrt 2 }}) - \log 1]$

$= 2[\dfrac{\pi }{4} - \dfrac{1}{2}\log 2]$

$= \dfrac{\pi }{2} - \log 2$

4.Integrate the given integral $\int\limits_0^2 {x\sqrt {x + 2} } (Put(x + 2 = {t^2}))$

Ans: To simplify the question let us suppose

$x + 2 = {t^2}$

After differentiating both side we get,

$dx = 2tdt$

When $x = 0$, then t=$t = \sqrt 2$and when $x = 2$ , $t = 2$

$\int\limits_0^2 {x\sqrt {x + 2} dx}$

$= \int\limits_{\sqrt 2 }^2 {({t^2} - 2)\sqrt {{t^2}} 2dt}$

$= 2\int\limits_{\sqrt 2 }^2 {({t^3} - 2t)dt}$

$= 2[\dfrac{{{t^4}}}{4} - {t^2}]_{\sqrt 2 }^2$

$= 2[(4 - 4) - (1 - 2)]$

$= 2$

5.Integrate the given integral $\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sin x}}{{1 + {{\cos }^2}x}}dx}$

Ans: To simplify the question, let us suppose

$\cos x = t$

After differentiating both side we get, $- \sin xdx = dt$

$\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sin x}}{{1 + {{\cos }^2}x}}dx} = - \int\limits_1^0 {\dfrac{{dt}}{{1 + {t^2}}}}$

$= - [{\tan ^{ - 1}}0 - {\tan ^{ - 1}}1]$

$= - [ - \dfrac{\pi }{4}]$

$= \dfrac{\pi }{4}$

6.Integrate the given integral $\int\limits_0^2 {\dfrac{{dx}}{{x + 4 - {x^2}}}}$

Ans: To simplify the question it is written as $\int\limits_0^2 {\dfrac{{dx}}{{x + 4 - {x^2}}} = \int\limits_0^2 {\dfrac{{dx}}{{ - ({x^2} - x - 4)}}} }$

Thus,

$\int\limits_0^2 {\dfrac{{dx}}{{x + 4 - {x^2}}} = \int\limits_0^2 {\dfrac{{dx}}{{ - ({x^2} - x - 4)}}} }$

$= \int\limits_0^2 {\dfrac{{dx}}{{ - ({x^2} - x + \dfrac{1}{4} - \dfrac{1}{4} - 4)}}}$

$= \int\limits_0^2 {\dfrac{{dx}}{{ - [{{(x - \dfrac{1}{2})}^2} - \dfrac{{17}}{4}]}}}$

$= \int\limits_0^2 {\dfrac{{dx}}{{{{(\dfrac{{\sqrt {17} }}{2})}^2} - {{(x - \dfrac{1}{2})}^2}}}}$

Let $x - \dfrac{1}{2} = t$

So, $dx = dt$

When $x = 0,t = - \dfrac{1}{2}$and when $x = 2,t = \dfrac{3}{2}$

$\int\limits_0^2 {\dfrac{{dx}}{{2(\dfrac{{\sqrt {17} }}{2}) - {{(x - \dfrac{1}{2})}^2}}}}$

$= \int\limits_{\dfrac{{ - 1}}{2}}^{\dfrac{3}{2}} {\dfrac{{dt}}{{{{(\dfrac{{\sqrt {17} }}{2})}^2} - {t^2}}}}$

$= [\dfrac{1}{{2(\dfrac{{\sqrt {17} }}{2})}}\log \dfrac{{\dfrac{{\sqrt {17} }}{2} + t}}{{\dfrac{{\sqrt {17} }}{2} - t}}]_{\dfrac{{ - 1}}{2}}^{\dfrac{3}{2}}$

$= \dfrac{1}{{\sqrt {17} }}[\log \dfrac{{\dfrac{{\sqrt {17} }}{2} + \dfrac{3}{2}}}{{\dfrac{{\sqrt {17} }}{2} - \dfrac{3}{2}}} - \dfrac{{\log \dfrac{{\sqrt {17} }}{2} - \dfrac{1}{2}}}{{\log \dfrac{{\sqrt {17} }}{2} + \dfrac{1}{2}}}]$

$= \dfrac{1}{{\sqrt {17} }}[\log \dfrac{{\sqrt {17} + 3}}{{\sqrt {17} - 3}} - \log \dfrac{{\sqrt {17} - 1}}{{\sqrt {17} + 1}}]$

$= \dfrac{1}{{\sqrt {17} }}[\log \dfrac{{\sqrt {17} + 3}}{{\sqrt {17} - 3}} \times \dfrac{{\sqrt {17} - 1}}{{\sqrt {17} + 1}}]$

$= \dfrac{1}{{\sqrt {17} }}[\log \dfrac{{\sqrt {17} + 3 + 4\sqrt {17} }}{{\sqrt {17} + 3 - 4\sqrt {17} }}]$

$= \dfrac{1}{{\sqrt {17} }}[\log \dfrac{{20 + 4\sqrt {17} }}{{20 - 4\sqrt {17} }}]$

$= \dfrac{1}{{\sqrt {17} }}\log (\dfrac{{5 + \sqrt {17} }}{{5 - \sqrt {17} }})$

$= \dfrac{1}{{\sqrt {17} }}\log [\dfrac{{(5 + \sqrt {17} )(5 + \sqrt {17} )}}{{25 - 17}}]$

$= \dfrac{1}{{\sqrt {17} }}\log [\dfrac{{(25 + 17 + 10\sqrt {17} }}{8}]$

$= \dfrac{1}{{\sqrt {17} }}\log [\dfrac{{(42 + 10\sqrt {17} }}{8}]$

$= \dfrac{1}{{\sqrt {17} }}\log [\dfrac{{(21 + 5\sqrt {17} }}{4}]$

7.Integrate the given integral $\int\limits_{ - 1}^1 {\dfrac{{dx}}{{{x^2} + 2x + 5}}}$

Ans: To simplify the question it is written as,

$\int\limits_{ - 1}^1 {\dfrac{{dx}}{{{x^2} + 2x + 1 + 4}}}$

$= \int\limits_{ - 1}^1 {\dfrac{{dx}}{{({x^2} + 2x + 1) + 4}}}$

$= \int\limits_{ - 1}^1 {\dfrac{{dx}}{{{{(x + 1)}^2} + {2^2}}}}$

Let $x + 1 = t$

Differentiating both side we get, $dx = dt$

When $x = - 1,t = 0$and when $x = 1,t = 2$

$\int\limits_{ - 1}^1 {\dfrac{{dx}}{{{{(x + 1)}^2} + {2^2}}}}$

$= \int\limits_0^2 {\dfrac{{dx}}{{{t^2} + {2^2}}}}$

$= [\dfrac{1}{2}{\tan ^{ - 1}}\dfrac{t}{2}]_0^2$

$= \dfrac{1}{2}{\tan ^{ - 1}}1 - \dfrac{1}{2}{\tan ^{ - 1}}0$

$= \dfrac{1}{2}(\dfrac{\pi }{4})$

$= \dfrac{\pi }{8}$

8.Integrate the given integral $\int\limits_1^2 {(\dfrac{1}{x} - \dfrac{1}{{2{x^2}}}){e^{2x}}dx}$

Ans: Let $2x = t$

After differentiating both side we get, $2dx = dt$

When $x = 1$, $t = 2$ and $x = 2$, $t = 4$

$\int\limits_1^2 {(\dfrac{1}{x} - \dfrac{1}{{2{x^2}}}){e^{2x}}dx}$

$= \dfrac{1}{2}\int\limits_2^4 {(\dfrac{2}{{{t^2}}} - \dfrac{2}{{{t^2}}})} {e^t}dt$

Let, $\dfrac{1}{t} = f(t)$

$f'(t) = - \dfrac{1}{{{t^2}}}$

$\int\limits_2^4 {(\dfrac{1}{x} - \dfrac{1}{{2{x^2}}}){e^{2x}}dx = \dfrac{1}{2}\int\limits_2^4 {(\dfrac{2}{t} - \dfrac{2}{{{t^2}}}){e^t}dt} }$

$= [{e^t}\dfrac{1}{t}]_2^4$

$= [\dfrac{{{e^t}}}{t}]_2^4$

$= \dfrac{{{e^4}}}{t} - \dfrac{{{e^2}}}{t}$

$= \dfrac{{{e^2}({e^2} - 2)}}{4}$

9.The value of the integral $\int\limits_{\dfrac{1}{3}}^1 {\dfrac{{{{(x - {x^3})}^{\dfrac{1}{3}}}}}{{{x^4}}}dx}$ is,

Ans: Let $I = \int\limits_{\dfrac{1}{3}}^1 {\dfrac{{{{(x - {x^3})}^{\dfrac{1}{3}}}}}{{{x^4}}}dx}$

Also, to simplify the question let, $x = \sin \theta$

After differentiating both side we get $dx = \cos \theta d\theta$

When,$x = \dfrac{1}{3},\theta = {\sin ^{ - 1}}(\dfrac{1}{3})$ and when$x = 1,\theta = \dfrac{\pi }{2}$

$\Rightarrow I = \int\limits_{{{\sin }^{ - 1}}(\dfrac{1}{3})}^{\dfrac{\pi }{2}} {\dfrac{{\sin \theta - {{\sin }^3}\theta }}{{{{\sin }^4}\theta }}} \cos \theta d\theta$

$= \int\limits_{{{\sin }^{ - 1}}(\dfrac{1}{3})}^{\dfrac{\pi }{2}} {\dfrac{{{{(\sin \theta )}^{\dfrac{1}{3}}}{{(1 - {{\sin }^2}\theta )}^{\dfrac{1}{3}}}}}{{{{\sin }^4}\theta }}} \cos \theta d\theta$

$= \int\limits_{{{\sin }^{ - 1}}(\dfrac{1}{3})}^{\dfrac{\pi }{2}} {\dfrac{{{{(\sin \theta )}^{\dfrac{1}{3}}}{{(\cos \theta )}^{\dfrac{2}{3}}}}}{{{{\sin }^4}\theta }}} \cos \theta d\theta$

$= \int\limits_{{{\sin }^{ - 1}}(\dfrac{1}{3})}^{\dfrac{\pi }{2}} {\dfrac{{{{(\sin \theta )}^{\dfrac{1}{3}}}{{(\cos \theta )}^{\dfrac{2}{3}}}}}{{{{\sin }^2}\theta {{\sin }^2}\theta }}} \cos \theta d\theta$

$= \int\limits_{{{\sin }^{ - 1}}(\dfrac{1}{3})}^{\dfrac{\pi }{2}} {\dfrac{{{{(\cos \theta )}^{\dfrac{5}{3}}}}}{{{{(\sin \theta )}^{\dfrac{5}{3}}}}}} \cos e{c^2}\theta d\theta$

$= \int\limits_{{{\sin }^{ - 1}}(\dfrac{1}{3})}^{\dfrac{\pi }{2}} {{{(\cot \theta )}^{\dfrac{5}{3}}}} \cos e{c^2}\theta d\theta$

Let $\cot \theta = t$

After differentiating both side we get, $- \cos e{c^2}\theta d\theta = dt$

When $\theta = {\sin ^{ - 1}}(\dfrac{1}{3}),t = 2\sqrt 2$and when $\theta = \dfrac{\pi }{2},t = 0$

$\therefore I = - \int\limits_{2\sqrt 2 }^0 {{{(t)}^{\dfrac{5}{3}}}dt}$

$= - [\dfrac{3}{8}{(t)^{\dfrac{8}{3}}}]_{2\sqrt 2 }^0$

$= - \dfrac{3}{8}[ - {(2\sqrt 2 )^{\dfrac{8}{3}}}]_{2\sqrt 2 }^0$

$= \dfrac{3}{8}[{(\sqrt 8 )^{\dfrac{8}{3}}}]$

$= \dfrac{3}{8}[{(8)^{\dfrac{4}{3}}}]$

$= \dfrac{3}{8}$

$= 3 \times 2$

$= 6$

Hence, the correct Answer is option(a) 6.

10. If $f(x) = \int\limits_0^x {t\sin tdt,}$ then $f'(x)$ is

1. $\cos x + x\sin x$

2. $x\sin x$

3. $x\cos x$

4. $\sin x + x\cos x$

Ans: $f(x) = \int\limits_0^x {t\sin tdt}$

Integrating by parts, we obtain

$f(x) = t\int\limits_0^x {\sin tdt} - \int\limits_0^x {\{ (\dfrac{d}{{dx}}t)\int {\sin tdt} \} dt}$

$= [t( - \cos t)]_0^x - \int\limits_0^x {( - \cot t)dt}$

$= [ - t\cos t + \sin x]_0^x$

$= [ - x\cos x + \sin t]_0^x$

$= - x\cos x + \sin x$

$\Rightarrow f'(x) = - [\{ x( - \sin x)\} + \cos x] + \cos x$

$= x\sin x - \cos x + \cos x$

$= x\sin x$

Hence, the correct answer is b)$x\sin x$.

### What Does the NCERT Class 12 Maths Chapter 7 Integrals Exercise 7.10 Contain?

Maths is an important subject. It doesn’t matter which stream or class you belong to. If you want to get high scores, all you need to do is understand the subject with utmost precision.

The Exercise 7.10 Class 12 Maths is designed in a way so as to provide you with a clear understanding of the topic and the subject. Vedantu’s experts with years of experience in teaching and producing study materials have used very simple language to explain every concept to students.

Once you have a clear understanding of what integrals actually are, no one can stop you from answering all the questions from this chapter in any examination. Class 12 Maths NCERT Solutions Chapter 7 Exercise 7.1 encompasses everything that’s there in the syllabus. The notes are prepared after extensive research according to the guidelines provided by NCERT.

Here are some of the important concepts that Exercise 7.10 Class 12 NCERT Solutions Contain:

1. What are integrals?

2. What are the functions of integrals?

3. How to find an integral also known an anti-derivative from any function by the method of inspection?

Maths NCERT Solutions Class 12 Chapter 7 Exercise 7.10 explains several concepts related to integrals. The solutions to the different important questions from the chapter are very well written and students can get unmatched outcomes from studying these. This is not only because the notes have been written by experienced teachers but also because the notes are prepared after extensive research. The experienced teachers understand what students need to get a stronghold on the chapter and with the guidelines of the board have prepared the notes. SHARE TWEET SHARE SUBSCRIBE