Courses
Courses for Kids
Free study material
Offline Centres
More

NCERT Solutions for Class 12 Maths Chapter 7: Integrals - Exercise 7.10

ffImage
Last updated date: 28th Feb 2024
Total views: 559.2k
Views today: 12.59k
Rank Predictor

NCERT Solutions for Class 12 Maths Chapter 7 (Ex 7.10)

NCERT Solutions for Class 12 Maths Chapter 7 Integrals Exercise 7.10 answers all the questions that must be studied. NCERT Maths Class 12 Exercise 7.10 Solutions are simple to understand with the right notes. Vedantu’s Class 12 Maths Chapter 7 Exercise 7.10 Solutions are highly effective. Vedantu has prepared easy-to-understand notes for students who want to score high marks in examinations. Download the Free PDF of CBSE Class 12 Maths Chapter 7 Integrals.


Class:

NCERT Solutions for Class 12

Subject:

Class 12 Maths

Chapter Name:

Chapter 7 - Integrals

Exercise:

Exercise - 7.10

Content-Type:

Text, Videos, Images and PDF Format

Academic Year:

2023-24

Medium:

English and Hindi

Available Materials:

  • Chapter Wise

  • Exercise Wise

Other Materials

  • Important Questions

  • Revision Notes

Competitive Exams after 12th Science

Access NCERT Solutions for Class 12 Maths Chapter 7- Integrals

Exercise 7.10

1.Integrate the given integral $\int\limits_0^1 {\dfrac{x}{{{x^2} + 1}}} dx$.

Ans: To simplify the question Let us suppose ${x^2} + 1 = t$

Derivative of it will be, $2xdx = dt$

When $x = 0$, then $t = 1$ again when $x = 1$ then $t = 2$.

$\therefore \int\limits_0^1 {\dfrac{x}{{{x^2} + 1}}} dx = \dfrac{1}{2}\int\limits_1^2 {\dfrac{{dt}}{t}}$

$   = \dfrac{1}{2}[\log \left| t \right|]_1^2 $

$   = \dfrac{1}{2}[\log 2 - \log 1] $

 $  = \dfrac{1}{2}\log 2(\because \log 1 = 0)$

Thus, the answer is $\dfrac{1}{2}\log 2$.


2.Integrate the given integral $\int\limits_0^{\dfrac{\pi }{2}} {\sqrt {\sin \phi {{\cos }^5}\phi d\phi } } $

Ans:To simplify the question, let us suppose

$\sin \phi  = t \Rightarrow \cos \phi d\phi  = dt$

When, $\phi  = 0,t = 0$and when $\phi  = \dfrac{\pi }{2},t = 1$

$\therefore I = \int\limits_0^1 {\sqrt t {{(1 - {t^2})}^2}dt} $

$= \int\limits_0^1 {\sqrt t {{(1 - {t^2})}^2}dt}$

$  = \int\limits_0^1 {\sqrt t {{(1 - {t^2})}^2}dt} $

 $= \int\limits_0^1 {{t^{\dfrac{1}{2}}}(1 + {t^4} - 2{t^2})dt}$

$= \int\limits_0^1 {[{t^{\dfrac{1}{2}}} + {t^{\dfrac{9}{2}}} - 2{t^{\dfrac{5}{2}}}]dt}$

 $= [\dfrac{{{t^{\dfrac{3}{2}}}}}{{\dfrac{3}{2}}} + \dfrac{{{t^{\dfrac{{11}}{2}}}}}{{\dfrac{{11}}{2}}} + \dfrac{{2{t^{\dfrac{7}{2}}}}}{{\dfrac{7}{2}}}]_0^1 $

 $= \dfrac{2}{3} + \dfrac{2}{{11}} - \dfrac{4}{7}$

 $= \dfrac{{154 + 42 - 132}}{{231}}$

$= \dfrac{{64}}{{231}}$ 


3.$\int\limits_0^1 {{{\sin }^{ - 1}}} (\dfrac{{2x}}{{1 + {x^3}}})dx$

Ans: To simplify the question, let us suppose$x = \tan \theta $

After differentiating both side we get, $dx = {\sec ^2}\theta d\theta $

$I = \int\limits_0^{\dfrac{\pi }{4}} {{{\sin }^{ - 1}}(\dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }})} {\sec ^2}\theta d\theta  $

$= \int\limits_0^{\dfrac{\pi }{4}} {{{\sin }^{ - 1}}(\sin 2\theta )} {\sec ^2}\theta d\theta  $

$= \int\limits_0^{\dfrac{\pi }{4}} {2\theta } {\sec ^2}\theta d\theta  $

$= 2\int\limits_0^{\dfrac{\pi }{4}} \theta  {\sec ^2}\theta d\theta  $ 

Taking θ as first function and ${\sec ^2}\theta $ as second function and integrating by parts, we obtain

$I = 2[\theta \int {{{\sec }^2}} \theta d\theta  - \int {\{ (\dfrac{d}{{dx}}\theta )\int {{{\sec }^2}\theta d\theta } \} d\theta } ]_0^{\dfrac{\pi }{4}} $

$= 2[\theta \tan \theta  - \int {\tan \theta d\theta } ]_0^{\dfrac{\pi }{4}} $

 $= 2[\theta \tan \theta  + \log \left| {\cos \theta } \right|]_0^{\dfrac{\pi }{4}} $

$ = 2[\dfrac{\pi }{4}\tan \dfrac{\pi }{4} + \log \left| {\cos \dfrac{\pi }{4}} \right| - \log \left| {\cos 0} \right|] $

$= 2[\dfrac{\pi }{4} + \log (\dfrac{1}{{\sqrt 2 }}) - \log 1] $

 $= 2[\dfrac{\pi }{4} - \dfrac{1}{2}\log 2] $

 $= \dfrac{\pi }{2} - \log 2 $ 


4.Integrate the given integral $\int\limits_0^2 {x\sqrt {x + 2} } (Put(x + 2 = {t^2}))$

Ans: To simplify the question let us suppose

$x + 2 = {t^2}$

After differentiating both side we get,

$dx = 2tdt$

When $x = 0$, then t=$t = \sqrt 2 $and when $x = 2$ , $t = 2$ 

$\int\limits_0^2 {x\sqrt {x + 2} dx}  $

$= \int\limits_{\sqrt 2 }^2 {({t^2} - 2)\sqrt {{t^2}} 2dt}  $

 $= 2\int\limits_{\sqrt 2 }^2 {({t^3} - 2t)dt}  $

$ = 2[\dfrac{{{t^4}}}{4} - {t^2}]_{\sqrt 2 }^2 $

$= 2[(4 - 4) - (1 - 2)] $

$= 2 $ 


5.Integrate the given integral $\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sin x}}{{1 + {{\cos }^2}x}}dx} $

Ans: To simplify the question, let us suppose

$\cos x = t$

After differentiating both side we get, $ - \sin xdx = dt$

$\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sin x}}{{1 + {{\cos }^2}x}}dx}  =  - \int\limits_1^0 {\dfrac{{dt}}{{1 + {t^2}}}}  $

 $=  - [{\tan ^{ - 1}}0 - {\tan ^{ - 1}}1] $

$=  - [ - \dfrac{\pi }{4}] $

$= \dfrac{\pi }{4} $


6.Integrate the given integral \[\int\limits_0^2 {\dfrac{{dx}}{{x + 4 - {x^2}}}} \]

Ans: To simplify the question it is written as $\int\limits_0^2 {\dfrac{{dx}}{{x + 4 - {x^2}}} = \int\limits_0^2 {\dfrac{{dx}}{{ - ({x^2} - x - 4)}}} } $

Thus,

$\int\limits_0^2 {\dfrac{{dx}}{{x + 4 - {x^2}}} = \int\limits_0^2 {\dfrac{{dx}}{{ - ({x^2} - x - 4)}}} }  $

$ = \int\limits_0^2 {\dfrac{{dx}}{{ - ({x^2} - x + \dfrac{1}{4} - \dfrac{1}{4} - 4)}}}  $

$= \int\limits_0^2 {\dfrac{{dx}}{{ - [{{(x - \dfrac{1}{2})}^2} - \dfrac{{17}}{4}]}}}  $

$= \int\limits_0^2 {\dfrac{{dx}}{{{{(\dfrac{{\sqrt {17} }}{2})}^2} - {{(x - \dfrac{1}{2})}^2}}}}  $ 

Let $x - \dfrac{1}{2} = t$

So, $dx = dt$ 

When $x = 0,t =  - \dfrac{1}{2}$and when $x = 2,t = \dfrac{3}{2}$

$\int\limits_0^2 {\dfrac{{dx}}{{2(\dfrac{{\sqrt {17} }}{2}) - {{(x - \dfrac{1}{2})}^2}}}}  $

$= \int\limits_{\dfrac{{ - 1}}{2}}^{\dfrac{3}{2}} {\dfrac{{dt}}{{{{(\dfrac{{\sqrt {17} }}{2})}^2} - {t^2}}}}  $

$= [\dfrac{1}{{2(\dfrac{{\sqrt {17} }}{2})}}\log \dfrac{{\dfrac{{\sqrt {17} }}{2} + t}}{{\dfrac{{\sqrt {17} }}{2} - t}}]_{\dfrac{{ - 1}}{2}}^{\dfrac{3}{2}} $

$= \dfrac{1}{{\sqrt {17} }}[\log \dfrac{{\dfrac{{\sqrt {17} }}{2} + \dfrac{3}{2}}}{{\dfrac{{\sqrt {17} }}{2} - \dfrac{3}{2}}} - \dfrac{{\log \dfrac{{\sqrt {17} }}{2} - \dfrac{1}{2}}}{{\log \dfrac{{\sqrt {17} }}{2} + \dfrac{1}{2}}}] $

$= \dfrac{1}{{\sqrt {17} }}[\log \dfrac{{\sqrt {17}  + 3}}{{\sqrt {17}  - 3}} - \log \dfrac{{\sqrt {17}  - 1}}{{\sqrt {17}  + 1}}] $

 $= \dfrac{1}{{\sqrt {17} }}[\log \dfrac{{\sqrt {17}  + 3}}{{\sqrt {17}  - 3}} \times \dfrac{{\sqrt {17}  - 1}}{{\sqrt {17}  + 1}}] $

$= \dfrac{1}{{\sqrt {17} }}[\log \dfrac{{\sqrt {17}  + 3 + 4\sqrt {17} }}{{\sqrt {17}  + 3 - 4\sqrt {17} }}] $

$= \dfrac{1}{{\sqrt {17} }}[\log \dfrac{{20 + 4\sqrt {17} }}{{20 - 4\sqrt {17} }}] $

$= \dfrac{1}{{\sqrt {17} }}\log (\dfrac{{5 + \sqrt {17} }}{{5 - \sqrt {17} }}) $

$= \dfrac{1}{{\sqrt {17} }}\log [\dfrac{{(5 + \sqrt {17} )(5 + \sqrt {17} )}}{{25 - 17}}] $

$= \dfrac{1}{{\sqrt {17} }}\log [\dfrac{{(25 + 17 + 10\sqrt {17} }}{8}] $

$= \dfrac{1}{{\sqrt {17} }}\log [\dfrac{{(42 + 10\sqrt {17} }}{8}] $

$ = \dfrac{1}{{\sqrt {17} }}\log [\dfrac{{(21 + 5\sqrt {17} }}{4}] $ 


7.Integrate the given integral $\int\limits_{ - 1}^1 {\dfrac{{dx}}{{{x^2} + 2x + 5}}} $

Ans: To simplify the question it is written as,

$ \int\limits_{ - 1}^1 {\dfrac{{dx}}{{{x^2} + 2x + 1 + 4}}}  $

$= \int\limits_{ - 1}^1 {\dfrac{{dx}}{{({x^2} + 2x + 1) + 4}}}  $

$= \int\limits_{ - 1}^1 {\dfrac{{dx}}{{{{(x + 1)}^2} + {2^2}}}}  $ 

Let $x + 1 = t$

Differentiating both side we get, $dx = dt$

When $x =  - 1,t = 0$and when $x = 1,t = 2$

$\int\limits_{ - 1}^1 {\dfrac{{dx}}{{{{(x + 1)}^2} + {2^2}}}}  $

$ = \int\limits_0^2 {\dfrac{{dx}}{{{t^2} + {2^2}}}}  $

 $= [\dfrac{1}{2}{\tan ^{ - 1}}\dfrac{t}{2}]_0^2 $

$= \dfrac{1}{2}{\tan ^{ - 1}}1 - \dfrac{1}{2}{\tan ^{ - 1}}0 $

 $= \dfrac{1}{2}(\dfrac{\pi }{4}) $

 $= \dfrac{\pi }{8} $ 


8.Integrate the given integral $\int\limits_1^2 {(\dfrac{1}{x} - \dfrac{1}{{2{x^2}}}){e^{2x}}dx} $

Ans: Let $2x = t$

After differentiating both side we get, $2dx = dt$ 

When $x = 1$, $t = 2$ and $x = 2$, $t = 4$ 

$ \int\limits_1^2 {(\dfrac{1}{x} - \dfrac{1}{{2{x^2}}}){e^{2x}}dx}  $

 $= \dfrac{1}{2}\int\limits_2^4 {(\dfrac{2}{{{t^2}}} - \dfrac{2}{{{t^2}}})} {e^t}dt $ 

Let, $\dfrac{1}{t} = f(t)$

$f'(t) =  - \dfrac{1}{{{t^2}}} $

  $\int\limits_2^4 {(\dfrac{1}{x} - \dfrac{1}{{2{x^2}}}){e^{2x}}dx = \dfrac{1}{2}\int\limits_2^4 {(\dfrac{2}{t} - \dfrac{2}{{{t^2}}}){e^t}dt} }  $

   $= [{e^t}\dfrac{1}{t}]_2^4 $

  $ = [\dfrac{{{e^t}}}{t}]_2^4 $

   $= \dfrac{{{e^4}}}{t} - \dfrac{{{e^2}}}{t} $

   $= \dfrac{{{e^2}({e^2} - 2)}}{4} $ 


9.The value of the integral $\int\limits_{\dfrac{1}{3}}^1 {\dfrac{{{{(x - {x^3})}^{\dfrac{1}{3}}}}}{{{x^4}}}dx} $ is,

Ans: Let $I = \int\limits_{\dfrac{1}{3}}^1 {\dfrac{{{{(x - {x^3})}^{\dfrac{1}{3}}}}}{{{x^4}}}dx} $

Also, to simplify the question let, $x = \sin \theta $

After differentiating both side we get $dx = \cos \theta d\theta $

When,$x = \dfrac{1}{3},\theta  = {\sin ^{ - 1}}(\dfrac{1}{3})$ and when$x = 1,\theta  = \dfrac{\pi }{2}$

$\Rightarrow I = \int\limits_{{{\sin }^{ - 1}}(\dfrac{1}{3})}^{\dfrac{\pi }{2}} {\dfrac{{\sin \theta  - {{\sin }^3}\theta }}{{{{\sin }^4}\theta }}} \cos \theta d\theta  $

  $ = \int\limits_{{{\sin }^{ - 1}}(\dfrac{1}{3})}^{\dfrac{\pi }{2}} {\dfrac{{{{(\sin \theta )}^{\dfrac{1}{3}}}{{(1 - {{\sin }^2}\theta )}^{\dfrac{1}{3}}}}}{{{{\sin }^4}\theta }}} \cos \theta d\theta  $

  $ = \int\limits_{{{\sin }^{ - 1}}(\dfrac{1}{3})}^{\dfrac{\pi }{2}} {\dfrac{{{{(\sin \theta )}^{\dfrac{1}{3}}}{{(\cos \theta )}^{\dfrac{2}{3}}}}}{{{{\sin }^4}\theta }}} \cos \theta d\theta  $

  $ = \int\limits_{{{\sin }^{ - 1}}(\dfrac{1}{3})}^{\dfrac{\pi }{2}} {\dfrac{{{{(\sin \theta )}^{\dfrac{1}{3}}}{{(\cos \theta )}^{\dfrac{2}{3}}}}}{{{{\sin }^2}\theta {{\sin }^2}\theta }}} \cos \theta d\theta  $

   $= \int\limits_{{{\sin }^{ - 1}}(\dfrac{1}{3})}^{\dfrac{\pi }{2}} {\dfrac{{{{(\cos \theta )}^{\dfrac{5}{3}}}}}{{{{(\sin \theta )}^{\dfrac{5}{3}}}}}} \cos e{c^2}\theta d\theta  $

   $= \int\limits_{{{\sin }^{ - 1}}(\dfrac{1}{3})}^{\dfrac{\pi }{2}} {{{(\cot \theta )}^{\dfrac{5}{3}}}} \cos e{c^2}\theta d\theta  $ 

Let $\cot \theta  = t$

After differentiating both side we get, $ - \cos e{c^2}\theta d\theta  = dt$

When $\theta  = {\sin ^{ - 1}}(\dfrac{1}{3}),t = 2\sqrt 2 $and when $\theta  = \dfrac{\pi }{2},t = 0$

$\therefore I =  - \int\limits_{2\sqrt 2 }^0 {{{(t)}^{\dfrac{5}{3}}}dt}  $

  $ =  - [\dfrac{3}{8}{(t)^{\dfrac{8}{3}}}]_{2\sqrt 2 }^0 $

$   =  - \dfrac{3}{8}[ - {(2\sqrt 2 )^{\dfrac{8}{3}}}]_{2\sqrt 2 }^0 $

 $  = \dfrac{3}{8}[{(\sqrt 8 )^{\dfrac{8}{3}}}] $

$   = \dfrac{3}{8}[{(8)^{\dfrac{4}{3}}}] $

$   = \dfrac{3}{8}[16] $

$   = 3 \times 2 $

  $ = 6 $ 

Hence, the correct Answer is option(a) 6.


10. If \[f(x) = \int\limits_0^x {t\sin tdt,} \] then $f'(x)$ is 

  1. $\cos x + x\sin x$

  2. $x\sin x$

  3. $x\cos x$

  4. $\sin x + x\cos x$

Ans: $f(x) = \int\limits_0^x {t\sin tdt} $

Integrating by parts, we obtain

$f(x) = t\int\limits_0^x {\sin tdt}  - \int\limits_0^x {\{ (\dfrac{d}{{dx}}t)\int {\sin tdt} \} dt}  $

  $ = [t( - \cos t)]_0^x - \int\limits_0^x {( - \cot t)dt}  $

 $  = [ - t\cos t + \sin x]_0^x $

$   = [ - x\cos x + \sin t]_0^x $

$   =  - x\cos x + \sin x $ 

$\Rightarrow f'(x) =  - [\{ x( - \sin x)\}  + \cos x] + \cos x $

  $ = x\sin x - \cos x + \cos x $

   $= x\sin x $ 

Hence, the correct answer is b)$x\sin x$.


What Does the NCERT Class 12 Maths Chapter 7 Integrals Exercise 7.10 Contain?

Maths is an important subject. It doesn’t matter which stream or class you belong to. If you want to get high scores, all you need to do is understand the subject with utmost precision. 


The Exercise 7.10 Class 12 Maths is designed in a way so as to provide you with a clear understanding of the topic and the subject. Vedantu’s experts with years of experience in teaching and producing study materials have used very simple language to explain every concept to students.

 

Once you have a clear understanding of what integrals actually are, no one can stop you from answering all the questions from this chapter in any examination. Class 12 Maths NCERT Solutions Chapter 7 Exercise 7.1 encompasses everything that’s there in the syllabus. The notes are prepared after extensive research according to the guidelines provided by NCERT.


Here are some of the important concepts that Exercise 7.10 Class 12 NCERT Solutions Contain:

  1. What are integrals?

  2. What are the functions of integrals?

  3. How to find an integral also known an anti-derivative from any function by the method of inspection?


Maths NCERT Solutions Class 12 Chapter 7 Exercise 7.10 explains several concepts related to integrals. The solutions to the different important questions from the chapter are very well written and students can get unmatched outcomes from studying these. This is not only because the notes have been written by experienced teachers but also because the notes are prepared after extensive research. The experienced teachers understand what students need to get a stronghold on the chapter and with the guidelines of the board have prepared the notes.

FAQs on NCERT Solutions for Class 12 Maths Chapter 7: Integrals - Exercise 7.10

1. What is the meaning of NCERT solutions for class 12 maths chapter 7 integrals (Ex 7.10) Exercise 7.10?

NCERT solutions for class 12 maths chapter 7 integrals (Ex 7.10) Exercise 7.10 answers all the questions of exercise 7.10 of the NCERT textbook. These NCERT solutions are taken from the topic “ Evaluation of definite integral by substitution”. These solutions consist of questions in which integrals have been evaluated by using substitution. When there are some difficulties in solving these questions of NCERT EX 7.10, we need these solutions. It contains explanations of each concept of solutions.

2. What is the purpose of the substitution rule?

Using substitution to evaluate a definite integral, requires a change to the limit of integration. In the substitution rule, we require a change to the limit of integration. In the substitution rule, we change variables in the integrand, which results in a change of limits of integration. Substitution may be only one of the techniques needed to evaluate a definite integral. All of the properties and rules of integration apply independently

3. Where can I download the NCERT solutions for class 12 maths chapter 7 integrals (Ex 7.10) Exercise 7.10?

I can download the NCERT solutions for class 12 maths chapter 7 integral Exercise- 7.10 from vedantu.com. These solutions can be understood easily by the right notes. Solutions of Vedantu class 12 maths chapter 7 integral (Ex-7.10) are more successful in producing the desired result. Higher grades can be found in exams by Vedantu’s class 12 maths chapter 7.10. Students will be able to get a concept of topics by solving these questions.

4. What is meant by definite integration using substitution?

Integration using substitution is  to evaluate integrals and antiderivatives, In this method First we find the assumed variables u and du. Whatever select u to be, du has to be du/dx. Then replace given variables say x and dx by assumed variables u and du. Now know the upper limit and lower limit from the x values to the corresponding u values. Then find the values at the lower and upper limit. The difference of which is the final answer.

5. How many questions are there in NCERT solutions for class 12 maths chapter 7 integral Exercise 7.9?

There are 22 questions in Exercise 7.9 of class 12 mathsIntegral. To evaluate these questions by substitution, the steps could be as follows:


  1. Assuming  integral without limits, substitute, y = f(x) or x = g(y) 

  2. Integrate the new reduced integrand with respect to new variables without mentioning the constant of integration.

  3. Find the values of the answer obtained in step (2), accordingly change the limits of the integral and difference of the value at the upper and lower limit.