Free PDF Download for NCERT Exemplar Available
Free PDF download of NCERT Exemplar for Class 12 Maths Chapter 7 - Integrals solved by expert Maths teachers on Vedantu.com as per NCERT (Central Board of Secondary Education) Book guidelines. All Chapter 7 - Integrals Exercise questions with solutions to help you to revise the complete syllabus and score more marks in your Examinations.
NCERT Exemplar for Class 12 Maths, Chapter 7 - Integrals is available on Vedantu and its solutions are available on Vedantu in PDF form. The PDF of Chapter 7 - Integrals consists of important topics and additional questions.
Access NCERT Exemplar Solutions for CBSE Class 12 Mathematics Chapter 7 - Integrals
Solved Examples
Short Answer (S.A.)
1. Integrate $\left( \frac{2a}{\sqrt{x}}-\frac{b}{{{x}^{2}}}+3c\sqrt[3]{{{x}^{2}}} \right)$ w.r.t. $x.$
Ans: let $I=~\int \left( \frac{2a}{\sqrt{x}}-\frac{b}{{{x}^{2}}}+3c\sqrt[3]{{{x}^{2}}} \right)dx$
⇒ $I=2a\int {{x}^{-\frac{1}{2}}}dx-b\int {{x}^{-2}}dx+3c\int {{x}^{\frac{2}{3}}}~dx$
⇒ $I=2a\times 2\times \sqrt{x}+\frac{b}{x}+\frac{9}{5}~c~{{x}^{\frac{5}{3}}}+C$
⇒ $I=4a\sqrt{x}+\frac{b}{x}+\frac{9}{5}~c~{{x}^{\frac{5}{3}}}+C$
Hence $\int \left( \frac{2a}{\sqrt{x}}-\frac{b}{{{x}^{2}}}+3c\sqrt[3]{{{x}^{2}}} \right)dx=4a\sqrt{x}+\frac{b}{x}+\frac{9}{5}~c~{{x}^{\frac{5}{3}}}+C.$
2. Evaluate $\int \frac{3ax}{{{b}^{2}}+{{c}^{2}}{{x}^{2}}}~dx$
Ans: let $I=\int \frac{3ax}{{{b}^{2}}+{{c}^{2}}{{x}^{2}}}~dx$
Now, put ${{b}^{2}}+{{c}^{2}}{{x}^{2}}=t$
⇒ $2{{c}^{2}}x~dx=dt$
⇒ $x~dx=\frac{dt}{2{{c}^{2}}}$
⇒ $3ax~dx=\frac{3a~dt}{2{{c}^{2}}}$
Therefore,
⇒ $I=\frac{3a~}{2{{c}^{2}}}\int \frac{dt}{t}~$
⇒ $I=\frac{3a~}{2{{c}^{2}}}~\log \left| t \right|+C$
⇒ $I=\frac{3a~}{2{{c}^{2}}}~\log \left| {{b}^{2}}+{{c}^{2}}{{x}^{2}} \right|+C$
Hence, $\int \frac{3ax}{{{b}^{2}}+{{c}^{2}}{{x}^{2}}}~dx=\frac{3a~}{2{{c}^{2}}}~\log \left| {{b}^{2}}+{{c}^{2}}{{x}^{2}} \right|+C.$
3. Verify the following using the concept of integration as an antiderivative.
$\int \frac{{{x}^{3}}}{x+1}dx=x-\frac{{{x}^{2}}}{2}+\frac{{{x}^{3}}}{3}-\log \left| x+1 \right|+C$
Ans: here, L.H.S$~=x-\frac{{{x}^{2}}}{2}+\frac{{{x}^{3}}}{3}-\log \left| x+1 \right|+C~$
Now, differentiate w.r.t $x$ , we get
⇒ L.H.S$~=\frac{d}{dx}\left( x-\frac{{{x}^{2}}}{2}+\frac{{{x}^{3}}}{3}-\log \left| x+1 \right|+C \right)$
$=1-\frac{2x}{2}+\frac{3{{x}^{2}}}{3}-\frac{1}{\left( x+1 \right)}+0$
$=1-x+{{x}^{2}}-\frac{1}{\left( x+1 \right)}$
$~=\frac{\left( x+1 \right)-x\left( x+1 \right)+{{x}^{2}}\left( x+1 \right)-1}{\left( x+1 \right)}$
$=\frac{x+1-{{x}^{2}}-x+{{x}^{3}}+{{x}^{2}}-1}{\left( x+1 \right)}$
$=\frac{{{x}^{3}}}{\left( x+1 \right)}$
Therefore, $\left( x-\frac{{{x}^{2}}}{2}+\frac{{{x}^{3}}}{3}-\log \left| x+1 \right|+C \right)=\int \frac{{{x}^{3}}}{\left( x+1 \right)}~dx$
Hence verified.
4. Evaluate $\int \sqrt{\frac{1+x}{1-x}}~dx,$ $x\ne 1$.
Ans: Let $I=\int \sqrt{\frac{1+x}{1-x}}~dx$
⇒ $I=\int \sqrt{\frac{\left( 1+x \right)\left( 1+x \right)}{\left( 1-x \right)\left( 1+x \right)}}~dx$
⇒ $I=\int \sqrt{\frac{{{\left( 1+x \right)}^{2}}}{1-{{x}^{2}}}}~dx$
⇒ $I=\int \frac{1+x}{\sqrt{1-{{x}^{2}}}}~dx$
⇒ $I=\int \frac{1}{\sqrt{1-{{x}^{2}}}}~dx+\int \frac{x}{\sqrt{1-{{x}^{2}}}}~dx$
⇒ $I=si{{n}^{-1}}x+\int \frac{x}{\sqrt{1-{{x}^{2}}}}~dx$
Now, put $1-{{x}^{2}}={{t}^{2}}$
⇒ $-2x~dx=2t~dt$
⇒ $x~dx=-t~dt$
Therefore,
⇒ $I=si{{n}^{-1}}x-\int \frac{t~dt}{t}~$
⇒ $I=si{{n}^{-1}}x-\int ~dt$
⇒ $I=si{{n}^{-1}}x-t+C$
⇒ $I=si{{n}^{-1}}x-\sqrt{1-{{x}^{2}}}+C$
Hence, $\int \sqrt{\frac{1+x}{1-x}}~dx=si{{n}^{-1}}x-\sqrt{1-{{x}^{2}}}+C$
5. Evaluate $\int \frac{dx}{\sqrt{\left( x-\alpha \right)\left( \beta -x \right)}}$, $\beta >\alpha $
Ans: Let $I=\int \frac{dx}{\sqrt{\left( x-\alpha \right)\left( \beta -x \right)}}$
Now, put $x-\alpha ={{t}^{2}}$
⇒ $dx=2t~dt$
And $\beta -x=\beta -\left( {{t}^{2}}+\alpha \right)=\beta -\alpha -{{t}^{2}}$
Therefore,
⇒ $I=\int \frac{2t~dt}{\sqrt{{{t}^{2}}\left( \beta -\alpha -{{t}^{2}} \right)}}$
⇒ $I=2\int \frac{~dt}{\sqrt{\left( \beta -\alpha -{{t}^{2}} \right)}}$
⇒ $I=2\int \frac{~dt}{\sqrt{\left[ {{\left( \sqrt{\beta -\alpha } \right)}^{2}}-{{t}^{2}} \right]}}$
⇒ $I=2~si{{n}^{-1}}\frac{t}{\sqrt{\beta -\alpha }}+C$
⇒ $I=2~si{{n}^{-1}}\frac{\sqrt{x-\alpha }}{\sqrt{\beta -\alpha }}+C$
Hence, $\int \frac{dx}{\sqrt{\left( x-\alpha \right)\left( \beta -x \right)}}=2~si{{n}^{-1}}\frac{\sqrt{x-\alpha }}{\sqrt{\beta -\alpha }}+C.$
6. Evaluate $\int ta{{n}^{8}}x~se{{c}^{4}}x~dx$
Ans: let $I=\int ta{{n}^{8}}x~se{{c}^{4}}x~dx$
⇒ $I=\int ta{{n}^{8}}x~(se{{c}^{2}}x)~se{{c}^{2}}x~dx$
⇒ $I=\int ta{{n}^{8}}x~\left( 1+ta{{n}^{2}}x \right)~se{{c}^{2}}x~dx$
Now, put $\tan x=t$
⇒ $se{{c}^{2}}x~dx=dt$
Therefore,
⇒ $I=\int {{t}^{8}}~\left( 1+{{t}^{2}} \right)~dt$
⇒ $I=\int \left( {{t}^{8}}+{{t}^{10}} \right)~~dt$
⇒ $I=\frac{{{t}^{9}}}{9}+\frac{{{t}^{11}}}{11}+C$
⇒ $I=\frac{ta{{n}^{9}}x}{9}+\frac{ta{{n}^{11}}x}{11}+C$
Hence, $\int ta{{n}^{8}}x~se{{c}^{4}}x~dx=\frac{ta{{n}^{9}}x}{9}+\frac{ta{{n}^{11}}x}{11}+C$
7. Find $\int \frac{{{x}^{3}}}{{{x}^{4}}+3{{x}^{2}}+2}dx$
Ans: Let $I=\int \frac{{{x}^{3}}}{{{x}^{4}}+3{{x}^{2}}+2}dx$
⇒ $I=\int \frac{{{x}^{2}}.x~dx}{{{x}^{4}}+3{{x}^{2}}+2}$
Now, put ${{x}^{2}}=t$
⇒ $2x~dx=dt$
⇒ $x~dx=\frac{dt}{2}~$
Therefore,
⇒ $I=\frac{1}{2}\int \frac{t~dt}{{{t}^{2}}+3t+2}$
⇒ $I=\frac{1}{2}\int \frac{t~dt}{\left( t+1 \right)\left( t+2 \right)}$
Consider $\frac{t~}{\left( t+1 \right)\left( t+2 \right)}=\frac{A}{t+1}+\frac{B}{t+2}$
⇒ $\frac{t~}{\left( t+1 \right)\left( t+2 \right)}=\frac{At+2A+Bt+B}{\left( t+1 \right)\left( t+2 \right)}$
⇒ $\frac{t~}{\left( t+1 \right)\left( t+2 \right)}=\frac{\left( A+B \right)t+2A+B}{\left( t+1 \right)\left( t+2 \right)}$
⇒ $t=\left( A+B \right)t+2A+B$
On comparing both sides, we get
⇒ $A+B=1$ and $2A+B=0$
On solving, we get
⇒ $A=-1,~B=2$
Therefore,
⇒ $I=\frac{1}{2}\int \frac{t~dt}{\left( t+1 \right)\left( t+2 \right)}$
⇒ $I=\frac{1}{2}\int \left[ \frac{-1}{t+1}+\frac{2}{t+2} \right]dt$
⇒ $I=\frac{1}{2}~\left( -\log \left| t+1 \right|+2\log \left| t+2 \right| \right)+C$
⇒ $I=-\frac{1}{2}\log \left| t+1 \right|+\log \left| t+2 \right|+C$
⇒ $I=-\log \left| \sqrt{t+1} \right|+\log \left| t+2 \right|+C$
⇒ $I=\log \left| \frac{t+2}{\sqrt{t+1}} \right|+C$
⇒ $I=\log \left| \frac{{{x}^{2}}+2}{\sqrt{{{x}^{2}}+1}} \right|+C$
Hence, $I=\int \frac{{{x}^{3}}}{{{x}^{4}}+3{{x}^{2}}+2}dx=\log \left| \frac{{{x}^{2}}+2}{\sqrt{{{x}^{2}}+1}} \right|+C$
8. Find $\int \frac{dx}{2~si{{n}^{2}}x+~5co{{s}^{2}}x}$
Ans: Let $I=\int \frac{dx}{2~si{{n}^{2}}x+~5co{{s}^{2}}x}$
Dividing numerator and denominator by $co{{s}^{2}}x,$ we get
⇒ $I=\int \frac{se{{c}^{2}}xdx}{2~ta{{n}^{2}}x+~5}$
Put $\tan x=t$
⇒ $se{{c}^{2}}x~dx=dt$
Therefore,
⇒ $I=\int \frac{dt}{2~{{t}^{2}}+~5}$
⇒ $I=\frac{1}{2}\int \frac{dt}{~{{t}^{2}}+\frac{5}{2}}$
⇒ $I=\frac{1}{2}\int \frac{dt}{~{{t}^{2}}+{{\left( \sqrt{\frac{5}{2}} \right)}^{2}}}$
⇒ $I=\frac{1}{2}\times \sqrt{\frac{2}{5}~}~ta{{n}^{-1}}\frac{\sqrt{2}t}{\sqrt{5}}+C$
⇒ $I=\frac{1}{\sqrt{10}}~ta{{n}^{-1}}\left( \frac{\sqrt{2}~tan~x}{\sqrt{5}} \right)+C$
Hence, $\int \frac{dx}{2~si{{n}^{2}}x+~5co{{s}^{2}}x}=\frac{1}{\sqrt{10}}~ta{{n}^{-1}}\left( \frac{\sqrt{2}~tan~x}{\sqrt{5}} \right)+C.$
9. Evaluate $\underset{-1}{\overset{2}{\mathop \int }}\,\left( 7x-5 \right)dx$ as a limit of sums.
Ans: here, we have $a=-1$ , $b=2$ and $h=\frac{2+1}{n}\Rightarrow nh=3$
And $f\left( x \right)=7x-5$
Now, we have
⇒ $\underset{-1}{\overset{2}{\mathop \int }}\,\left( 7x-5 \right)dx=\underset{h\to 0}{\mathop{\lim }}\,h\left[ f\left( -1 \right)+f\left( -1+h \right)+f\left( -1+2h \right)\ldots +f(-1+\left( n-1 \right)h \right]$
Also we have,
⇒ $f\left( -1 \right)=-7-5=-12$
⇒ $f\left( -1+h \right)=-7+7h-5=-12+7h$
⇒ $f\left( -1+\left( n-1 \right)h \right)=7\left( n-1 \right)h-12=$
Therefore,
⇒ $\underset{-1}{\overset{2}{\mathop \int }}\,\left( 7x-5 \right)dx=\underset{h\to 0}{\mathop{\lim }}\,h\left[ -12+\left( -7h-12 \right)+\left( -14h-12 \right)\ldots +(7\left( n-1 \right)h-12 \right]$
⇒ $\underset{-1}{\overset{2}{\mathop \int }}\,\left( 7x-5 \right)dx=\underset{h\to 0}{\mathop{\lim }}\,h\left[ 7h\left[ 1+2+\ldots +\left( n-10 \right) \right]-12n \right]$
⇒ $\underset{-1}{\overset{2}{\mathop \int }}\,\left( 7x-5 \right)dx=\underset{h\to 0}{\mathop{\lim }}\,h\left[ 7h\times \frac{n\left( n-1 \right)}{2}-12n \right]$
⇒ $\underset{-1}{\overset{2}{\mathop \int }}\,\left( 7x-5 \right)dx=\underset{h\to 0}{\mathop{\lim }}\,h\left[ \frac{7}{2}\left( nh \right)\left( nh-h \right)-12nh \right]$
⇒ $\underset{-1}{\overset{2}{\mathop \int }}\,\left( 7x-5 \right)dx=\frac{7}{2}\times 3\times 3-12\times 3$
⇒ $\underset{-1}{\overset{2}{\mathop \int }}\,\left( 7x-5 \right)dx=\frac{63}{2}-36$
⇒ $\underset{-1}{\overset{2}{\mathop \int }}\,\left( 7x-5 \right)dx=\frac{63-72}{2}$
⇒ $\underset{-1}{\overset{2}{\mathop \int }}\,\left( 7x-5 \right)dx=\frac{-9}{2}$
Hence, $\underset{-1}{\overset{2}{\mathop \int }}\,\left( 7x-5 \right)dx=\frac{-9}{2}.$
10. Evaluate $\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\frac{ta{{n}^{7}}x}{co{{t}^{7}}x+~ta{{n}^{7}}x}dx$
Ans: Let $I=\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\frac{ta{{n}^{7}}x}{co{{t}^{7}}x+~ta{{n}^{7}}x}dx$ …………. (i)
⇒ $I=\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\frac{ta{{n}^{7}}\left( \frac{\pi }{2}-x \right)}{co{{t}^{7}}\left( \frac{\pi }{2}-x \right)+~ta{{n}^{7}}\left( \frac{\pi }{2}-x \right)}dx$
⇒ $I=\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\frac{co{{t}^{7}}x}{ta{{n}^{7}}x+~co{{t}^{7}}x}dx$ …………….. (ii)
Now, adding eq (i) and (ii), we get
⇒ $2I=\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\frac{ta{{n}^{7}}x+~co{{t}^{7}}x}{ta{{n}^{7}}x+~co{{t}^{7}}x}dx$
⇒ $2I=\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,dx$
⇒ $2I=\left[ x \right]_{0}^{\frac{\pi }{2}}$
⇒ $2I=\frac{\pi }{2}$
⇒ $I=\frac{\pi }{4}$
Hence, $\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\frac{ta{{n}^{7}}x}{co{{t}^{7}}x+~ta{{n}^{7}}x}dx=\frac{\pi }{4}.$
11. Find $\underset{2}{\overset{8}{\mathop \int }}\,\frac{\sqrt{10-x}}{\sqrt{x}+\sqrt{10-x}}~dx$
Ans: Let $I=\underset{2}{\overset{8}{\mathop \int }}\,\frac{\sqrt{10-x}}{\sqrt{x}+\sqrt{10-x}}~dx$ ………….. (i)
⇒ $I=\underset{2}{\overset{8}{\mathop \int }}\,\frac{\sqrt{8+2-\left( 10-x \right)}}{\sqrt{8+2-x}+\sqrt{8+2-~\left( 10-x \right)}}~dx$
⇒ $I=\underset{2}{\overset{8}{\mathop \int }}\,\frac{\sqrt{10-10+x}}{\sqrt{10-x}+\sqrt{10-~10+x}}~dx$
⇒ $I=\underset{2}{\overset{8}{\mathop \int }}\,\frac{\sqrt{x}}{\sqrt{10-x}+\sqrt{x}}~dx$ ……………… (ii)
Now, adding eq (i) and (ii), we get
⇒ $2I=\underset{2}{\overset{8}{\mathop \int }}\,\frac{\sqrt{10-x}~+\sqrt{x}}{\sqrt{10-x}+\sqrt{x}}~dx$
⇒ $2I=\underset{2}{\overset{8}{\mathop \int }}\,dx$
⇒ $2I=\left[ x \right]_{2}^{8}$
⇒ $2I=8-2$
⇒ $2I=6$
⇒ $I=3$
Hence, $\underset{2}{\overset{8}{\mathop \int }}\,\frac{\sqrt{10-x}}{\sqrt{x}+\sqrt{10-x}}~dx=3.$
12. Find $\underset{0}{\overset{\frac{\pi }{4}}{\mathop \int }}\,\sqrt{1+\sin 2x~}~dx$
Ans: Let $I=\underset{0}{\overset{\frac{\pi }{4}}{\mathop \int }}\,\sqrt{1+\sin 2x~}~dx$
⇒ $I=\underset{0}{\overset{\frac{\pi }{4}}{\mathop \int }}\,\sqrt{si{{n}^{2}}x+co{{s}^{2}}x+2~sinx~.~cos~x~}~dx$
⇒ $I=\underset{0}{\overset{\frac{\pi }{4}}{\mathop \int }}\,\sqrt{{{\left( \sin x+\cos x \right)}^{2}}~}~dx$
⇒ $I=\underset{0}{\overset{\frac{\pi }{4}}{\mathop \int }}\,\left( \sin x+\cos x \right)~dx$
⇒ $I=~\left[ -\cos x+\sin x \right]_{0}^{\frac{\pi }{4}}$
⇒ $I=\left[ -\cos \frac{\pi }{4}+\sin \frac{\pi }{4}-\left( -\cos 0+\sin 0 \right) \right]~$
⇒ $I=\left[ -\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\left( -1+0 \right) \right]$
⇒ $I=1$
Hence, $\underset{0}{\overset{\frac{\pi }{4}}{\mathop \int }}\,\sqrt{1+\sin 2x~}~dx=1.$
13. Find $\int {{x}^{2}}ta{{n}^{-1}}x~dx$
Ans: Let $I=\int {{x}^{2}}ta{{n}^{-1}}x~dx$
⇒ $I=ta{{n}^{-1}}x\int {{x}^{2}}~dx-\int \left( \frac{d}{dx}\left( ta{{n}^{-1}}x \right)\int {{x}^{2}}~dx \right)dx$
⇒ $I=\frac{{{x}^{3}}}{3}ta{{n}^{-1}}x-\int \frac{1}{1+~{{x}^{2}}}.\frac{{{x}^{3}}}{3}~dx$
⇒ $I=\frac{{{x}^{3}}}{3}ta{{n}^{-1}}x-\frac{1}{3}\int \frac{{{x}^{3}}}{1+~{{x}^{2}}}~dx$
⇒ $I=\frac{{{x}^{3}}}{3}ta{{n}^{-1}}x-\frac{1}{3}\int \left( x-\frac{x}{1+~{{x}^{2}}} \right)~dx$
⇒ $I=\frac{{{x}^{3}}}{3}ta{{n}^{-1}}x-\frac{1}{3}\int x~dx+\frac{1}{3}\int \frac{x}{1+~{{x}^{2}}}~dx~$
⇒ $I=\frac{{{x}^{3}}}{3}ta{{n}^{-1}}x-\frac{{{x}^{2}}}{6}+\frac{1}{3}\int \frac{x}{1+~{{x}^{2}}}~dx$
Now, put $1+~{{x}^{2}}=t$
⇒ $2x~dx=dt$
⇒ $x~dx=\frac{dt}{2}$
⇒ $I=\frac{{{x}^{3}}}{3}ta{{n}^{-1}}x-\frac{{{x}^{2}}}{6}+\frac{1}{6}\int \frac{dt}{t}~$
⇒ $I=\frac{{{x}^{3}}}{3}ta{{n}^{-1}}x-\frac{{{x}^{2}}}{6}+\frac{1}{6}\log \left| t \right|+C$
⇒ $I=\frac{{{x}^{3}}}{3}ta{{n}^{-1}}x-\frac{{{x}^{2}}}{6}+\frac{1}{6}\log \left| 1+~{{x}^{2}} \right|+C$
14. Find $\int \sqrt{10-4x+4{{x}^{2}}~}~dx$
Ans: Let $I=\int \sqrt{10-4x+4{{x}^{2}}~}~dx$
⇒ $I=\int \sqrt{4{{x}^{2}}-4x+10~}~dx$
⇒ $I=\int \sqrt{4\left( {{x}^{2}}-x+\frac{10}{4} \right)~}~dx$
⇒ $I=2\int \sqrt{\left[ {{x}^{2}}-x+{{\left( \frac{1}{2} \right)}^{2}}-{{\left( \frac{1}{2} \right)}^{2}}+\frac{10}{4} \right]~}~dx$
⇒ $I=2\int \sqrt{\left[ {{\left( x-\frac{1}{2} \right)}^{2}}-\frac{1}{4}+\frac{10}{4} \right]~}~dx$
⇒ $I=2\int \sqrt{\left[ {{\left( x-\frac{1}{2} \right)}^{2}}+\frac{9}{4} \right]~}~dx$
⇒ $I=2\int \sqrt{\left[ {{\left( x-\frac{1}{2} \right)}^{2}}+{{\left( \frac{3}{2} \right)}^{2}} \right]~}~dx$
⇒ $I=~\left[ \frac{\left( x-\frac{1}{2} \right)}{2}\sqrt{4{{x}^{2}}-4x+10~}+\frac{{{\left( \frac{3}{2} \right)}^{2}}}{2}\log \left| \left( x-\frac{1}{2} \right)+\sqrt{4{{x}^{2}}-4x+10~} \right| \right]$
⇒ $I=\left( \frac{2x-1}{4} \right)\sqrt{4{{x}^{2}}-4x+10~}+\frac{9}{4}\log \left| \left( x-\frac{1}{2} \right)+\sqrt{4{{x}^{2}}-4x+10~} \right|$
Long Answer (L.A.)
15. Evaluate $\int \frac{{{x}^{2}}~dx}{{{x}^{4}}+{{x}^{2}}-2}$
Ans: Let $I=\int \frac{{{x}^{2}}~dx}{{{x}^{4}}+{{x}^{2}}-2}$
Now, put ${{x}^{2}}=t$
Therefore,
⇒ $\frac{{{x}^{2}}~}{{{x}^{4}}+{{x}^{2}}-2}=\frac{t~}{{{t}^{2}}+t-2}=\frac{t~}{\left( t+2 \right)\left( t-1 \right)}$
⇒ $\frac{t~}{\left( t+2 \right)\left( t-1 \right)}=\frac{A}{t+2~}+\frac{B}{t-1~}$
⇒ $\frac{t~}{\left( t+2 \right)\left( t-1 \right)}=\frac{At-A+Bt+2B}{\left( t+2 \right)\left( t-1 \right)~}$
⇒ $t=\left( A+B \right)t+2B-A$
On comparing both side, we get
⇒ $A+B=1$ and $2B-A=0$
On solving these equations, we get
⇒ $B=\frac{1}{3}~$ and $A=\frac{2}{3}$
So, $\frac{{{x}^{2}}~}{{{x}^{4}}+{{x}^{2}}-2}=\frac{2}{3}\frac{1}{{{x}^{2}}+2}+\frac{1}{3}\frac{1}{{{x}^{2}}-1}$
Therefore,
⇒ $I=\int \left( \frac{2}{3}\frac{1}{{{x}^{2}}+2}+\frac{1}{3}\frac{1}{{{x}^{2}}-1} \right)dx$
⇒ $I=\frac{2}{3}\int \frac{1}{{{x}^{2}}+{{\left( \sqrt{2} \right)}^{2}}}dx+~\frac{1}{3}\int \frac{1}{{{x}^{2}}-1}dx$
⇒ $I=\frac{2}{3}~\times \frac{1}{\sqrt{2}}~ta{{n}^{-1}}\frac{x}{\sqrt{2}}+\frac{1}{3}~\times \frac{1}{2}\log \left| \frac{x-1}{x+1} \right|+C$
⇒ $I=\frac{\sqrt{2}}{3}~~ta{{n}^{-1}}\frac{x}{\sqrt{2}}+\frac{1}{6}~\log \left| \frac{x-1}{x+1} \right|+C$
Hence, $\int \frac{{{x}^{2}}~dx}{{{x}^{4}}+{{x}^{2}}-2}=\frac{\sqrt{2}}{3}~~ta{{n}^{-1}}\frac{x}{\sqrt{2}}+\frac{1}{6}~\log \left| \frac{x-1}{x+1} \right|+C.$
16. Evaluate $\int \frac{{{x}^{3}}+x}{{{x}^{4}}-9~}~dx$
Ans: Let $I=\int \frac{{{x}^{3}}+x}{{{x}^{4}}-9~}~dx$
⇒ $I=\int \frac{{{x}^{3}}}{{{x}^{4}}-9~}~dx+\int \frac{x}{{{x}^{4}}-9~}~dx$
⇒ $I={{I}_{1}}+{{I}_{2}}$ ………….. (i)
where ${{I}_{1}}=\int \frac{{{x}^{3}}}{{{x}^{4}}-9~}~dx$ and ${{I}_{2}}=\int \frac{x}{{{x}^{4}}-9~}~dx$
Now, ${{I}_{1}}=\int \frac{{{x}^{3}}}{{{x}^{4}}-9~}~dx$
Put ${{x}^{4}}-9=t$
⇒ $4{{x}^{3}}~dx=dt$
⇒ ${{x}^{3}}~dx=\frac{dt}{4}$
Therefore,
⇒ ${{I}_{1}}=\frac{1}{4}\int \frac{dt}{t~}~$
⇒ ${{I}_{1}}=\frac{1}{4}\log \left| t \right|+{{C}_{1}}$
⇒ ${{I}_{1}}=\frac{1}{4}\log \left| {{x}^{4}}-9 \right|+{{C}_{1}}$ ……….. (ii)
Now, ${{I}_{2}}=\int \frac{x}{{{x}^{4}}-9~}~dx$
Put ${{x}^{2}}=t$
⇒ $2x~dx=dt$
⇒ $x~dx=\frac{dt}{2}$
Therefore,
⇒ ${{I}_{2}}=\frac{1}{2}\int \frac{dt}{{{t}^{2}}-{{3}^{2}}~}~$
⇒ ${{I}_{2}}=\frac{1}{2}\times \frac{1}{2\times 3}\log \left| \frac{t-3}{t+3} \right|+{{C}_{2}}$
⇒ ${{I}_{2}}=\frac{1}{12}\log \left| \frac{{{x}^{2}}-3}{{{x}^{2}}+3} \right|+{{C}_{2}}$
Now, put the value of ${{I}_{1}}$ and ${{I}_{2}}$ in eq (i), we get
⇒ $I=\frac{1}{4}\log \left| {{x}^{4}}-9 \right|+{{C}_{1}}+\frac{1}{12}\log \left| \frac{{{x}^{2}}-3}{{{x}^{2}}+3} \right|+{{C}_{2}}$
⇒ $I=\frac{1}{4}\log \left| {{x}^{4}}-9 \right|+\frac{1}{12}\log \left| \frac{{{x}^{2}}-3}{{{x}^{2}}+3} \right|+C$
17. Show that $\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\frac{si{{n}^{2}}x~dx}{\sin x+\cos x}=\frac{1}{\sqrt{2}}\log \left( \sqrt{2}+1 \right)$
Ans: let $I=\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\frac{si{{n}^{2}}x~dx}{\sin x+\cos x}~$ ………. (i)
⇒ $I=\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\frac{si{{n}^{2}}\left( \frac{\pi }{2}-x \right)~dx}{\sin \left( \frac{\pi }{2}-x \right)+\cos \left( \frac{\pi }{2}-x \right)}$
⇒ $I=\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\frac{co{{s}^{2}}x~dx}{\cos x+\sin x}~$…………. (ii)
Adding eq (i) and (ii), we get
⇒ $2I=\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\frac{\left( si{{n}^{2}}x+co{{s}^{2}}x \right)~dx}{\cos x+\sin x}$
⇒ $2I=\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\frac{~dx}{\cos x+\sin x}$
⇒ $2I=\frac{1}{\sqrt{2}}\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\frac{~dx}{\cos x~\frac{1}{\sqrt{2}}+\sin x.~\frac{1}{\sqrt{2}}}$
⇒ $2I=\frac{1}{\sqrt{2}}\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\frac{~dx}{\cos x~\cos ~\frac{\pi }{4}~+\sin x.~\text{sin }\!\!~\!\!\text{ }\frac{\pi }{4}~}$
⇒ $2I=\frac{1}{\sqrt{2}}\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\frac{~dx}{\cos \left( x-~\frac{\pi }{4} \right)~}$
⇒ $2I=\frac{1}{\sqrt{2}}\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\sec \left( x-~\frac{\pi }{4} \right)~dx~$
⇒ $2I=\frac{1}{\sqrt{2}}\left[ \log \left\{ \sec \left( x-~\frac{\pi }{4} \right)+\tan \left( x-~\frac{\pi }{4} \right)~~~ \right\} \right]_{0}^{\frac{\pi }{2}}$
⇒ $2I=\frac{1}{\sqrt{2}}\left[ \log \left\{ \sec \left( \frac{\pi }{2}-~\frac{\pi }{4} \right)+\tan \left( \frac{\pi }{2}-~\frac{\pi }{4} \right)~~~ \right\}-\log \left\{ \sec \left( -~\frac{\pi }{4} \right)+\tan \left( -~\frac{\pi }{4} \right)~~~ \right\} \right]$
⇒ $2I=\frac{1}{\sqrt{2}}\left[ \log \left\{ \sec \left( ~\frac{\pi }{4} \right)+\tan \left( ~\frac{\pi }{4} \right)~~~ \right\}-\log \left\{ \sec \left( ~\frac{\pi }{4} \right)-\tan \left( ~\frac{\pi }{4} \right)~~~ \right\} \right]$
⇒ $2I=\frac{1}{\sqrt{2}}\left[ \log \left( \sqrt{2}+1 \right)-\log \left( \sqrt{2}-1 \right) \right]$
⇒ $2I=\frac{1}{\sqrt{2}}~\times \log \left| \frac{\sqrt{2}+1}{\sqrt{2}-1} \right|$
⇒ $2I=\frac{1}{\sqrt{2}}~\times \log \left| \frac{{{\left( \sqrt{2}+1 \right)}^{2}}}{2-1} \right|$
⇒ $2I=\frac{1}{\sqrt{2}}~\times 2\log \left( \sqrt{2}+1 \right)$
⇒ $I=\frac{1}{\sqrt{2}}~\log \left( \sqrt{2}+1 \right)$
Hence proved
18. Find $\underset{0}{\overset{1}{\mathop \int }}\,x{{\left( ta{{n}^{-1}}x \right)}^{2}}~dx$
Ans: Let $I=\underset{0}{\overset{1}{\mathop \int }}\,x{{\left( ta{{n}^{-1}}x \right)}^{2}}~dx$
Applying integrating by parts, we get
⇒ $I=\left[ \frac{{{x}^{2}}}{2}{{\left( ta{{n}^{-1}}x \right)}^{2}} \right]_{0}^{1}~-\underset{0}{\overset{1}{\mathop \int }}\,\frac{2~ta{{n}^{-1}}x}{1~+~{{x}^{2}}}.~\frac{{{x}^{2}}}{2}dx$
⇒ $I=\left[ \frac{1}{2}{{\left( ta{{n}^{-1}}1 \right)}^{2}}-0 \right]~-\underset{0}{\overset{1}{\mathop \int }}\,\frac{~ta{{n}^{-1}}x}{1~+~{{x}^{2}}}{{x}^{2}}dx$
⇒ $I=\left[ \frac{1}{2}{{\left( \frac{\pi }{4} \right)}^{2}} \right]~-\underset{0}{\overset{1}{\mathop \int }}\,\frac{~\left( {{x}^{2}}+1-1 \right)ta{{n}^{-1}}x}{1~+~{{x}^{2}}}dx$
⇒ $I=\frac{{{\pi }^{2}}}{32}~-\underset{0}{\overset{1}{\mathop \int }}\,\frac{~\left( {{x}^{2}}+1-1 \right)ta{{n}^{-1}}x}{1~+~{{x}^{2}}}dx$
⇒ $I=\frac{{{\pi }^{2}}}{32}~-\underset{0}{\overset{1}{\mathop \int }}\,\frac{~\left( {{x}^{2}}+1 \right)ta{{n}^{-1}}x}{1~+~{{x}^{2}}}dx+\underset{0}{\overset{1}{\mathop \int }}\,\frac{~ta{{n}^{-1}}x}{1~+~{{x}^{2}}}dx~$
⇒ $I=\frac{{{\pi }^{2}}}{32}~-\underset{0}{\overset{1}{\mathop \int }}\,ta{{n}^{-1}}x~dx+\underset{0}{\overset{1}{\mathop \int }}\,\frac{~ta{{n}^{-1}}x}{1~+~{{x}^{2}}}dx~$
⇒ $I=\frac{{{\pi }^{2}}}{32}~-{{I}_{1}}+{{I}_{2}}$ ……….. (i)
Where, ${{I}_{1}}=\underset{0}{\overset{1}{\mathop \int }}\,ta{{n}^{-1}}x~dx$ and ${{I}_{2}}=\underset{0}{\overset{1}{\mathop \int }}\,\frac{~ta{{n}^{-1}}x}{1~+~{{x}^{2}}}dx$
Now, ${{I}_{1}}=\underset{0}{\overset{1}{\mathop \int }}\,ta{{n}^{-1}}x~dx$
⇒ ${{I}_{1}}=\left[ x~ta{{n}^{-1}}x \right]_{0}^{1}-~\underset{0}{\overset{1}{\mathop \int }}\,\frac{x}{1+{{x}^{2}}}~dx$
⇒ ${{I}_{1}}=\left[ 1.~ta{{n}^{-1}}1-0 \right]-~\underset{0}{\overset{1}{\mathop \int }}\,\frac{x}{1+{{x}^{2}}}~dx$
⇒ ${{I}_{1}}=\frac{\pi }{4}-~\underset{0}{\overset{1}{\mathop \int }}\,\frac{x}{1+{{x}^{2}}}~dx$
Now, put $1+{{x}^{2}}=t$
⇒ $2x~dx=dt$
⇒ $x~dx=\frac{dt}{2}$
And at $x=0~\to t=1$
⇒ at $x=1~\to t=2$
Therefore,
⇒ ${{I}_{1}}=\frac{\pi }{4}-\frac{1}{2}\underset{1}{\overset{2}{\mathop \int }}\,\frac{dt}{t}~$
⇒ ${{I}_{1}}=\frac{\pi }{4}-\frac{1}{2}\left[ \log t \right]_{1}^{2}$
⇒ ${{I}_{1}}=\frac{\pi }{4}-\frac{1}{2}\left[ \log 2-\log 1 \right]$
⇒ ${{I}_{1}}=\frac{\pi }{4}-\frac{1}{2}\log 2$ ………….. (ii)
Now, ${{I}_{2}}=\underset{0}{\overset{1}{\mathop \int }}\,\frac{~ta{{n}^{-1}}x}{1~+~{{x}^{2}}}dx$
Put $ta{{n}^{-1}}x=t$
⇒ $\frac{1}{1+{{x}^{2}}}~dx=dt$
And at $x=0\to t=0$
⇒ at $x=1\to t=\frac{\pi }{4}$
Therefore,
⇒ ${{I}_{2}}=\underset{0}{\overset{\frac{\pi }{4}}{\mathop \int }}\,t~dt$
⇒ ${{I}_{2}}=\left[ \frac{{{t}^{2}}}{2} \right]_{0}^{\frac{\pi }{4}}$
⇒ ${{I}_{2}}=\frac{1}{2}\left[ {{t}^{2}} \right]_{0}^{\frac{\pi }{4}}$
⇒ ${{I}_{2}}=\frac{1}{2}\left[ \frac{{{\pi }^{2}}}{16}-0 \right]$
⇒ ${{I}_{2}}=\frac{{{\pi }^{2}}}{32}$
Now, put the value of ${{I}_{2}}$ and ${{I}_{2}}$ in eq(i), we get
⇒ $I=\frac{{{\pi }^{2}}}{32}~-\frac{\pi }{4}+\frac{1}{2}\log 2+\frac{{{\pi }^{2}}}{32}$
⇒ $I=\frac{{{\pi }^{2}}}{16}~-\frac{\pi }{4}+\frac{1}{2}\log 2$
Hence, $\underset{0}{\overset{1}{\mathop \int }}\,x{{\left( ta{{n}^{-1}}x \right)}^{2}}~dx=\frac{{{\pi }^{2}}}{16}~-\frac{\pi }{4}+\frac{1}{2}\log 2.$
19. Evaluate $\underset{-1}{\overset{2}{\mathop \int }}\,f\left( x \right)dx$, where $f\left( x \right)=~\left| x+1 \right|+\left| x \right|+\left| x-1 \right|$.
Ans: here, we can redefine $f\left( x \right)$ as
f\left( x \right)=\left\{ \begin{matrix} 2-x,~~~~if-1<x\le 0 \\ x+2,~~~if~~0<x\le 1 \\ 3x,~~~~~~~~~~~if~1<x\le 2 \\ \end{matrix} \right.$
Therefore, $\underset{-1}{\overset{2}{\mathop \int }}\,f\left( x \right)dx=~\underset{-1}{\overset{0}{\mathop \int }}\,\left( 2-x \right)~dx+\underset{0}{\overset{1}{\mathop \int }}\,\left( x+2 \right)dx+\underset{1}{\overset{2}{\mathop \int }}\,3x~dx$
⇒ $\underset{-1}{\overset{2}{\mathop \int }}\,f\left( x \right)dx=~\left[ 2x-\frac{{{x}^{2}}}{2} \right]_{-1}^{0}+\left[ \frac{{{x}^{2}}}{2}+2x \right]_{0}^{1}+3\left[ \frac{{{x}^{2}}}{2} \right]_{1}^{2}$
⇒ $\underset{-1}{\overset{2}{\mathop \int }}\,f\left( x \right)dx=~\left[ 0-\left( -2-\frac{1}{2} \right) \right]+\left[ \left( \frac{1}{2}+2 \right)-0 \right]+3\left[ 2-\frac{1}{2} \right]$
⇒ $\underset{-1}{\overset{2}{\mathop \int }}\,f\left( x \right)dx=\frac{5}{2}+\frac{5}{2}+\frac{9}{2}$
⇒ $\underset{-1}{\overset{2}{\mathop \int }}\,f\left( x \right)dx=\frac{19}{2}$.
Objective Type Questions
Choose the correct answer from the given four option in each of the Examples from 20 to 30.
20. $\int {{e}^{x}}\left( \cos x-\sin x \right)~dx$ is equal to
(A) ${{e}^{x}}\cos x+C$
(B) ${{e}^{x}}\sin x+C$
(C) $-{{e}^{x}}\cos x+C$
(D) $-{{e}^{x}}\sin x+C$
Ans: here, as we know that $\int {{e}^{x}}\left[ f\left( x \right)+{f}'\left( x \right) \right]~dx={{e}^{x}}~f\left( x \right)+C~$
Now, if $f\left( x \right)=\cos x$, then ${f}'\left( x \right)=-\sin x$
Therefore, $\int {{e}^{x}}\left( \cos x-\sin x \right)~dx={{e}^{x}}\cos x+C$
Hence, option (A) is the correct answer.
21. $\int \frac{dx}{si{{n}^{2}}x~~co{{s}^{2}}x}$ is equal to
(A) $\tan x+\cot x+C$
(B) ${{\left( \tan x+\cot x \right)}^{2}}+C$
(C) $\tan x-\cot x+C$
(D) ${{\left( \tan x-\cot x \right)}^{2}}+C$
Ans: Let $I=\int \frac{dx}{si{{n}^{2}}x~~co{{s}^{2}}x}$
⇒ $I=\int \frac{\left( si{{n}^{2}}x~+~co{{s}^{2}}x \right)~dx}{si{{n}^{2}}x~~co{{s}^{2}}x}$
⇒ $I=\int \frac{si{{n}^{2}}x~dx}{si{{n}^{2}}x~~co{{s}^{2}}x}+\int \frac{co{{s}^{2}}x~dx}{si{{n}^{2}}x~~co{{s}^{2}}x}$
⇒ $I=\int \frac{~dx}{~~co{{s}^{2}}x}+\int \frac{~dx}{si{{n}^{2}}x~~}$
⇒ $I=\int se{{c}^{2}}x~dx+\int cose{{c}^{2}}x~dx$
⇒ $I=\tan x-\cot x+C$
Hence, option (C) is the correct answer.
22. If $\int \frac{3{{e}^{x}}-5{{e}^{-x}}}{4{{e}^{x}}+5{{e}^{-x}}}~dx=ax+b\log \left| 4{{e}^{x}}+5{{e}^{-x}} \right|+C$, then
(A) $a=-\frac{1}{8}~,~b=\frac{7}{8}$
(B) $a=\frac{1}{8}~,~b=\frac{7}{8}$
(C) $a=-\frac{1}{8}~,~b=-\frac{7}{8}$
(D) $a=\frac{1}{8}~,~b=-\frac{7}{8}$
Ans: here, we have $\int \frac{3{{e}^{x}}-5{{e}^{-x}}}{4{{e}^{x}}+5{{e}^{-x}}}~dx=ax+b\log \left| 4{{e}^{x}}+5{{e}^{-x}} \right|+C$
Now, differentiating both sides, we have
⇒ $\frac{d}{dx}\left( \int \frac{3{{e}^{x}}-5{{e}^{-x}}}{4{{e}^{x}}+5{{e}^{-x}}}~dx \right)=\frac{d}{dx}\left( ax+b\log \left| 4{{e}^{x}}+5{{e}^{-x}} \right|+C \right)$
⇒ $\frac{3{{e}^{x}}-5{{e}^{-x}}}{4{{e}^{x}}+5{{e}^{-x}}}=a+b\times \frac{1}{4{{e}^{x}}+5{{e}^{-x}}}\times \left( 4{{e}^{x}}-5{{e}^{-x}} \right)$
⇒ $\frac{3{{e}^{x}}-5{{e}^{-x}}}{4{{e}^{x}}+5{{e}^{-x}}}=a+b\left( \frac{4{{e}^{x}}-5{{e}^{-x}}}{4{{e}^{x}}+5{{e}^{-x}}} \right)$
⇒ $\left( 3{{e}^{x}}-5{{e}^{-x}} \right)=a\left( 4{{e}^{x}}+5{{e}^{-x}} \right)+b\left( 4{{e}^{x}}-5{{e}^{-x}} \right)$
⇒ $\left( 3{{e}^{x}}-5{{e}^{-x}} \right)=4a{{e}^{x}}+5a{{e}^{-x}}+4b{{e}^{x}}-5b{{e}^{-x}}$
⇒ $3{{e}^{x}}-5{{e}^{-x}}=4{{e}^{x}}\left( a+b \right)-5{{e}^{-x}}\left( -a+b \right)$
Now, comparing both sides, we get
⇒ $4\left( a+b \right)=3$ and $\left( -a+b \right)=1$
⇒ $\left( a+b \right)=\frac{3}{4}$ …… (i) and $\left( -a+b \right)=1$ ………(ii)
Adding eq (i) and (ii), we get
⇒ $2b=\frac{7}{4}$
⇒ $b=\frac{7}{8}$.
Now, put the value of $b$ in eq (ii),
⇒$~-a+\frac{7}{8}=1$
⇒$~-a=1-\frac{7}{8}$
⇒$~a=-\frac{1}{8}$
Here, $a=-\frac{1}{8}$ and $b=\frac{7}{8}$
Hence, option (A) is the correct answer.
23: $\underset{a+c}{\overset{b+c}{\mathop \int }}\,f\left( x \right)dx~$is equal to
(A) $\underset{a}{\overset{b}{\mathop \int }}\,f\left( x-c \right)dx$
(B) $\underset{a}{\overset{b}{\mathop \int }}\,f\left( x+c \right)dx$
(C) $\underset{a}{\overset{b}{\mathop \int }}\,f\left( x \right)dx$
(D) $\underset{a-c}{\overset{b-c}{\mathop \int }}\,f\left( x \right)dx$
Ans: Let $I=\underset{a+c}{\overset{b+c}{\mathop \int }}\,f\left( x \right)dx$
Now, put $x=t+c$
⇒ $dx=dt$
And at $x=a+c$ ⇒ $t=a$
⇒ at $x=b+c$ ⇒ $t=b$
Therefore,
⇒ $I=\underset{a}{\overset{b}{\mathop \int }}\,f\left( t+c \right)dt$
⇒ $I=\underset{a}{\overset{b}{\mathop \int }}\,f\left( x+c \right)dx$
Hence, option (B) is the correct answer.
24. If $f$ and $g$ are continuous function in $\left[ 0,~1 \right]$ satisfying $f\left( x \right)=f\left( a-x \right)$ and $g\left( x \right)+g\left( a-x \right)=a,~$then $\underset{0}{\overset{a}{\mathop \int }}\,f\left( x \right).g\left( x \right)dx$ is equal to
(A) $\frac{a}{2}~$
(B) $\frac{a}{2}~\underset{0}{\overset{a}{\mathop \int }}\,f\left( x \right)~dx$
(C) $\underset{0}{\overset{a}{\mathop \int }}\,f\left( x \right)~dx$
(D) $a\underset{0}{\overset{a}{\mathop \int }}\,f\left( x \right)~dx$
Ans: Let $I=\underset{0}{\overset{a}{\mathop \int }}\,f\left( x \right).g\left( x \right)dx$
⇒ $I=\underset{0}{\overset{a}{\mathop \int }}\,f\left( x-a \right).g\left( x-a \right)dx$
⇒ $I=\underset{0}{\overset{a}{\mathop \int }}\,f\left( x \right).\left( a-g\left( x \right) \right)dx$
⇒ $I=\underset{0}{\overset{a}{\mathop \int }}\,\left[ a~f\left( x \right)-f\left( x \right).g\left( x \right) \right]dx$
⇒ $I=a\underset{0}{\overset{a}{\mathop \int }}\,~f\left( x \right)dx-\underset{0}{\overset{a}{\mathop \int }}\,f\left( x \right).g\left( x \right)dx$
⇒ $I=a\underset{0}{\overset{a}{\mathop \int }}\,~f\left( x \right)dx-I$
⇒ $2I=a\underset{0}{\overset{a}{\mathop \int }}\,~f\left( x \right)dx$
⇒ $I=\frac{a}{2}\underset{0}{\overset{a}{\mathop \int }}\,~f\left( x \right)dx$
Hence, option (B) is the correct answer.
25: If $x=\underset{0}{\overset{y}{\mathop \int }}\,\frac{dt}{\sqrt{1+9{{t}^{2}}}}$ and $\frac{{{d}^{2}}y}{d{{x}^{2}}}=ay$, then $a$ is equal to
(A) 3
(B) 6
(C) 9
(D) 1
Ans: here, we have $x=\underset{0}{\overset{y}{\mathop \int }}\,\frac{dt}{\sqrt{1+9{{t}^{2}}}}$
Differentiate w. r.t $y$, we get
⇒ $\frac{dx}{dy}=\frac{1}{\sqrt{1+9{{y}^{2}}}}$
⇒ $\frac{dy}{dx}=\sqrt{1+9{{y}^{2}}}$
Now, differentiate w. r.t $x$ , we get
⇒ $\frac{{{d}^{2}}y}{d{{x}^{2}}}=\frac{18~y}{2\sqrt{1+9{{y}^{2}}}}.\frac{dy}{dx}$
⇒ $\frac{{{d}^{2}}y}{d{{x}^{2}}}=\frac{9~y}{\sqrt{1+9{{y}^{2}}}}.\sqrt{1+9{{y}^{2}}}$
⇒ $\frac{{{d}^{2}}y}{d{{x}^{2}}}=9y$
Thus, value of $x$ is 9.
Hence, option (C) is the correct answer.
26. $\underset{-1}{\overset{1}{\mathop \int }}\,\frac{{{x}^{3}}+\left| x \right|+1}{{{x}^{2}}+2\left| x \right|+1}dx~$is equal to
(A) $\log 2$
(B) $2~\mathbf{log}2$
(C) $\frac{1}{2}~\mathbf{log}2$
(D) $4~\mathbf{log}2$
Ans: Let $I=\underset{-1}{\overset{1}{\mathop \int }}\,\frac{{{x}^{3}}+\left| x \right|+1}{{{x}^{2}}+2\left| x \right|+1}dx$
⇒ $I=\underset{-1}{\overset{1}{\mathop \int }}\,\frac{{{x}^{3}}}{{{x}^{2}}+2\left| x \right|+1}dx+\underset{-1}{\overset{1}{\mathop \int }}\,\frac{\left| x \right|+1}{{{x}^{2}}+2\left| x \right|+1}dx$
Here, $\underset{-1}{\overset{1}{\mathop \int }}\,\frac{{{x}^{3}}}{{{x}^{2}}+2\left| x \right|+1}dx$ is odd function and $\underset{-1}{\overset{1}{\mathop \int }}\,\frac{\left| x \right|+1}{{{x}^{2}}+2\left| x \right|+1}dx$ is even function.
⇒ $I=0+2\underset{0}{\overset{1}{\mathop \int }}\,\frac{\left| x \right|+1}{{{\left( \left| x \right|+1 \right)}^{2}}}dx$
⇒ $I=2\underset{0}{\overset{1}{\mathop \int }}\,\frac{x~+1}{{{\left( x~+1 \right)}^{2}}}dx$
⇒ $I=2\underset{0}{\overset{1}{\mathop \int }}\,\frac{1}{\left( x~+1 \right)}dx$
⇒ $I=2\left[ \log \left| x+1 \right| \right]_{0}^{1}$
⇒ $I=2\left[ \log 2-\log 1 \right]$
⇒ $I=2\log 2$
Hence, option (B) is the correct answer.
27. If $\underset{0}{\overset{1}{\mathop \int }}\,\frac{{{e}^{t}}}{1+~t}~dt=a$, then $\underset{0}{\overset{1}{\mathop \int }}\,\frac{{{e}^{t}}}{{{\left( 1+~t \right)}^{2}}}~dt$ is equal to
(A) $a-1+\frac{e}{2}~$
(B) $a+1-\frac{e}{2}$
(C) $a-1-\frac{e}{2}$
(D) $a+1+\frac{e}{2}$
Ans: here, we have $\underset{0}{\overset{1}{\mathop \int }}\,\frac{{{e}^{t}}}{1+~t}~dt=a$,
⇒ $a=\underset{0}{\overset{1}{\mathop \int }}\,\frac{{{e}^{t}}}{1+~t}~dt$
Applying integrating by parts, we get
⇒ $a=\left[ {{e}^{t}}\times \frac{1}{\left( 1+~t \right)} \right]_{0}^{1}+\underset{0}{\overset{1}{\mathop \int }}\,\frac{{{e}^{t}}}{{{\left( 1+~t \right)}^{2}}}~dt$
⇒ $a=\left[ \frac{e}{2}-1 \right]+\underset{0}{\overset{1}{\mathop \int }}\,\frac{{{e}^{t}}}{{{\left( 1+~t \right)}^{2}}}~dt$
⇒ $\underset{0}{\overset{1}{\mathop \int }}\,\frac{{{e}^{t}}}{{{\left( 1+~t \right)}^{2}}}~dt=a+1-\frac{e}{2}$
Hence, option (B) is the correct answer.
28. $\underset{-2}{\overset{2}{\mathop \int }}\,\left| x\cos \pi x \right|dx$ is equal to
(A) $\frac{8}{\pi }$
(B) $\frac{4}{\pi }$.
(C) $\frac{2}{\pi }$
(D) $\frac{1}{\pi }$
Ans: Let $I=\underset{-2}{\overset{2}{\mathop \int }}\,\left| x\cos \pi x \right|dx$
Here, it is a even function, therefore
⇒ $I=2\underset{0}{\overset{2}{\mathop \int }}\,\left| x\cos \pi x \right|dx$
⇒ $\frac{I}{2}=\underset{0}{\overset{\frac{1}{2}}{\mathop \int }}\,x\cos \pi xdx+\underset{\frac{1}{2}}{\overset{\frac{3}{2}}{\mathop \int }}\,-x\cos \pi xdx+\underset{\frac{3}{2}}{\overset{2}{\mathop \int }}\,x\cos \pi xdx$
⇒ $\frac{I}{2}=\left[ \frac{x}{\pi }\sin \pi x+\frac{1}{{{\pi }^{2}}}\cos \pi x \right]_{0}^{\frac{1}{2}}-\left[ \frac{x}{\pi }\sin \pi x+\frac{1}{{{\pi }^{2}}}\cos \pi x \right]_{\frac{1}{2}}^{\frac{3}{2}}+\left[ \frac{x}{\pi }\sin \pi x+\frac{1}{{{\pi }^{2}}}\cos \pi x \right]_{\frac{3}{2}}^{0}$
⇒ $\frac{I}{2}=\left[ \frac{1}{2\pi }-\frac{1}{{{\pi }^{2}}} \right]-\left[ -\frac{3}{2\pi }-\frac{1}{2\pi } \right]+\left[ \frac{1}{{{\pi }^{2}}}+\frac{3}{2\pi } \right]$
⇒ $\frac{I}{2}=\frac{1}{2\pi }-\frac{1}{{{\pi }^{2}}}+\frac{3}{2\pi }+\frac{1}{2\pi }+\frac{1}{{{\pi }^{2}}}+\frac{3}{2\pi }$
⇒ $\frac{I}{2}=\frac{8}{2\pi }$
⇒ $I=\frac{8}{\pi }$
Hence, option (A) is the correct answer.
Fill in the blanks in each of the 29 to 32.
29. $\int \frac{si{{n}^{6}}x}{co{{s}^{8}}x}~dx=$ …………..
Ans: Let $I=\int \frac{si{{n}^{6}}x}{co{{s}^{8}}x}~dx$
⇒ $I=\int \frac{si{{n}^{6}}x}{co{{s}^{6}}x.~~co{{s}^{2}}x}~dx$
⇒ $I=\int ta{{n}^{6}}x~.~se{{c}^{2}}x~dx$
Put $\tan x=t$
⇒ $se{{c}^{2}}x~dx=dt$
Therefore,
⇒ $I=\int {{t}^{6}}~~dt$
⇒ $I=\frac{{{t}^{7}}}{7}+C$
⇒ $I=\frac{ta{{n}^{7}}x}{7}+C$
Hence, $\int \frac{si{{n}^{6}}x}{co{{s}^{8}}x}~dx=\frac{ta{{n}^{7}}x}{7}+C$.
30. $\underset{-a}{\overset{a}{\mathop \int }}\,f\left( x \right)dx=0$ if $f$ is an ……………. function.
Ans: As we know that by the property of integration, $\underset{-a}{\overset{a}{\mathop \int }}\,f\left( x \right)dx=0$ if $f$ is an odd function.
31. $\underset{0}{\overset{2a}{\mathop \int }}\,f\left( x \right)dx=2~\underset{0}{\overset{a}{\mathop \int }}\,f\left( x \right)dx~,~$if $f\left( 2a-x \right)=$ ………..
Ans: As, we know that by the property of integration, we have
⇒ $\underset{0}{\overset{2a}{\mathop \int }}\,f\left( x \right)dx=2~\underset{0}{\overset{a}{\mathop \int }}\,f\left( x \right)dx~,~$if $f\left( 2a-x \right)=f\left( x \right)$
$=0,$ if $f\left( 2a-x \right)=-f\left( x \right)$
Hence, $\underset{0}{\overset{2a}{\mathop \int }}\,f\left( x \right)dx=2~\underset{0}{\overset{a}{\mathop \int }}\,f\left( x \right)dx~,~$if $f\left( 2a-x \right)=f\left( x \right).$
32. $\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\frac{si{{n}^{n}}x}{si{{n}^{n}}x~+~co{{s}^{n}}x}dx=$ …………
Ans: Let $I=\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\frac{si{{n}^{n}}x}{si{{n}^{n}}x~+~co{{s}^{n}}x}dx$ …………….. (i)
⇒ $I=\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\frac{si{{n}^{n}}\left( \frac{\pi }{2}-x \right)}{si{{n}^{n}}\left( \frac{\pi }{2}-x \right)~+~co{{s}^{n}}\left( \frac{\pi }{2}-x \right)}dx$
⇒ $I=\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\frac{co{{s}^{n}}x}{co{{s}^{n}}x~+~si{{n}^{n}}x}dx$ ……………… (ii)
Adding eq (i) and (ii), we get
⇒ $2I=\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,dx$
⇒ $2I=\left[ x \right]_{0}^{\frac{\pi }{2}}$
⇒ $2I=\frac{\pi }{2}$
⇒ $I=\frac{\pi }{4}$
Hence, $\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\frac{si{{n}^{n}}x}{si{{n}^{n}}x~+~co{{s}^{n}}x}dx=\frac{\pi }{4}.$
Exercise 7.3
Short Answer (S.A)
Verify the following:
1. $\int \frac{2x-1}{2x+3}~dx=x-\mathbf{log}\left| {{\left( 2x-3 \right)}^{2}} \right|+C$
Ans: Let $I=~\int \frac{2x-1}{2x+3}~dx$
$\Rightarrow I=~\int \frac{2x+3-3-1}{2x+3}~dx$
$\Rightarrow I=~\int \frac{2x+3-4}{2x+3}~dx$
$\Rightarrow I=~\int \left( 1-\frac{4}{2x+3} \right)~dx$
$\Rightarrow I=~\int ~dx-\int \frac{4}{2x+3}~dx$
$\Rightarrow I=~x-\int \frac{4}{2~\left( x+\frac{3}{2} \right)}~dx$
$~\Rightarrow I=~x-2\log \left( x+\frac{3}{2} \right)+C$
$~\Rightarrow I=~x-2\text{ }\!\!~\!\!\text{ log}\left( \frac{2x+3}{2} \right)+C$
$~~\Rightarrow I=~x-2\text{ }\!\!~\!\!\text{ }[\log \left( 2x+3 \right)-\log 2]+C$
$~~\Rightarrow I=~x-2\text{ }\!\!~\!\!\text{ log}\left( 2x+3 \right)+2\log 2+C$
$\Rightarrow I=~x-\text{ }\!\!~\!\!\text{ log}~|{{\left( 2x+3 \right)}^{2}}|+C$
Thus, $\int \frac{2x-1}{2x+3}~dx=x-\mathbf{log}\left| {{\left( 2x-3 \right)}^{2}} \right|+C$
Hence proved.
2. $\int \frac{2x+3}{{{x}^{2}}+3x}~dx=\mathbf{log}\left| {{x}^{2}}+3x \right|+C$
Ans: let $I=~\int \frac{2x~+~3}{{{x}^{2}}+~3x}~dx$
Put ${{x}^{2}}+3x=t$
⇒ $\left( 2x+3 \right)dx=dt$
$\therefore I=\int \frac{1}{t}~dt$
⇒ $I=\log \left| t \right|+C$
⇒ $I=\log \left| \left( {{x}^{2}}+3x \right) \right|+C$
Thus, $\int \frac{2x+3}{{{x}^{2}}+3x}~dx=\text{log}\left| {{x}^{2}}+3x \right|+C$
Hence proved.
Evaluate the Following:
3. $\int \frac{\left( {{x}^{2}}+2 \right)dx}{x+1}$
Ans: Let $\text{I}=\int \frac{\left( {{x}^{2}}+2 \right)dx}{x+1}$
⇒ $\text{I}=\int \left( x-1+\frac{3}{x+1} \right)dx$
⇒ $\text{I}=\int xdx-\int dx+\int \frac{3}{x+1}dx$
⇒ $\text{I}=\frac{{{x}^{2}}}{2}-x+3~\text{log}\left| x+1 \right|+C$
Hence, $\int \frac{\left( {{x}^{2}}+2 \right)dx}{x+1}=\frac{{{x}^{2}}}{2}-x+3~\text{log}\left| x+1 \right|+C.$
4. $\int \frac{{{e}^{6\log x}}-{{e}^{5\log x}}}{{{e}^{4\log x}}-{{e}^{3\log x}}}~dx$
Ans: Let $\text{I}=\int \frac{{{e}^{6\log x}}-{{e}^{5\log x}}}{{{e}^{4\log x}}-{{e}^{3\log x}}}~dx$
⇒ $\text{I}=\int \frac{{{e}^{\log {{x}^{6}}}}-{{e}^{\log {{x}^{5}}}}}{{{e}^{\log {{x}^{4}}}}-{{e}^{\log {{x}^{3}}}}}~dx$
⇒ $\text{I}=\int \frac{{{x}^{6}}-{{x}^{5}}}{{{x}^{4}}-{{x}^{3}}}~dx$ [${{e}^{\log x}}=x]$
⇒ $\text{I}=\int \frac{{{x}^{5}}\left( x-1 \right)}{{{x}^{3}}\left( x-1 \right)}~dx$
⇒ $\text{I}=\int {{x}^{2}}~dx$
⇒ $\text{I}=\frac{{{x}^{3}}}{3}+C$
Hence, $\int \frac{{{e}^{6\log x}}-{{e}^{5\log x}}}{{{e}^{4\log x}}-{{e}^{3\log x}}}~dx=\frac{{{x}^{3}}}{3}+C.$
5. $\int \frac{\left( 1+\cos x \right)}{x+\sin x}dx$
Ans: Let $\text{I}=\int \frac{\left( 1+\cos x \right)}{x+\sin x}dx~$
Put $x+\sin x=t$
⇒ $\left( 1+\cos x \right)dx=dt$
⇒ $\text{I}=\int \frac{1}{t}dx$
⇒ $\text{I}=\log \left| t \right|+C$
⇒ $\text{I}=\log \left| \left( x+\cos x \right) \right|+C$
6. $\int \frac{dx}{1+\cos x}$
Ans: Let $I=\int \frac{dx}{1+\cos x}$
⇒ $I=\int \frac{dx}{2co{{s}^{2}}\frac{x}{2}~}$
⇒ $I=\frac{1}{2}\int \frac{dx}{co{{s}^{2}}\frac{x}{2}~}$
⇒ $I=\frac{1}{2}\int se{{c}^{2}}\frac{x}{2}~dx$
⇒ $I=\frac{1}{2}\times 2\tan \frac{x}{2}~+C$ [$\int se{{c}^{2}}x~dx=\tan x+C]$
⇒ $I=\tan \frac{x}{2}~+C$
Hence, $\int \frac{dx}{1+\cos x}=\tan \frac{x}{2}~+C$.
7. $\int ta{{n}^{2}}x.~se{{c}^{4}}x~dx$
Ans: Let $\text{I}=\int ta{{n}^{2}}x~.~se{{c}^{4}}x~dx$
⇒ $\text{I}=\int ta{{n}^{2}}x~.~se{{c}^{2}}x.~se{{c}^{2}}x~dx$
⇒ $\text{I}=\int ta{{n}^{2}}x\left( 1+ta{{n}^{2}}x~ \right)se{{c}^{2}}x~dx$
Put $\text{tan }\!\!~\!\!\text{ x}=t$
⇒ $\text{se}{{\text{c}}^{2}}\text{x }\!\!~\!\!\text{ dx}=\text{dt}$
Therefore,
⇒ $\text{I}=\int {{t}^{2}}\left( 1+{{t}^{2}}~ \right)dt$
⇒ $\text{I}=\int ({{t}^{2}}+{{t}^{4}})dt$
⇒ $\text{I}=\frac{{{t}^{3}}}{3}+\frac{{{t}^{5}}}{5}+C$
⇒ $\text{I}=\frac{ta{{n}^{3}}x}{3}+\frac{ta{{n}^{5}}x}{5}+C$
8. $\int \frac{\sin x+\cos x}{\sqrt{1+\sin 2x}}dx$
Ans: Let $\mathbf{I}=~\int \frac{\sin x+\cos x}{\sqrt{1+\sin 2x}}dx$
⇒ $\mathbf{I}=~\int \frac{\sin x+\cos x}{\sqrt{si{{n}^{2}}x+co{{s}^{2}}x+2.\sin x\cos x}}dx$
⇒ $\mathbf{I}=~\int \frac{\sin x+\cos x}{\sqrt{{{\left( \sin x+\cos x \right)}^{2}}}}dx$
⇒ $\mathbf{I}=~\int \frac{(\sin x+\cos x)}{\left( \sin x+\cos x \right)}dx$
⇒ $\mathbf{I}=~\int dx$
⇒ $\mathbf{I}=~x+C$
Hence, $\int \frac{\sin x+\cos x}{\sqrt{1+\sin 2x}}dx=x+C$.
9. $\int \sqrt{1+\sin x}~dx$
Ans: Let $\mathbf{I}=\int \sqrt{1+\sin x}~dx~$
⇒ $\mathbf{I}=\int \sqrt{si{{n}^{2}}\frac{x}{2}+co{{s}^{2}}\frac{x}{2}+2\sin \frac{x}{2}\cos \frac{x}{2}}~dx$
⇒ $\mathbf{I}=\int \sqrt{{{\left( \sin \frac{x}{2}+\cos \frac{x}{2} \right)}^{2}}}~dx$
⇒ $\text{I}=\int \left( \sin \frac{x}{2}+\cos \frac{x}{2} \right)~dx$
⇒ $\mathbf{I}=\int \sin \frac{x}{2}~dx+~\int \cos \frac{x}{2}~dx$
⇒ $\text{I}=-2\text{cos }\!\!~\!\!\text{ }\frac{\text{x}}{2}+\text{ }\!\!~\!\!\text{ }2\text{ }\!\!~\!\!\text{ sin }\!\!~\!\!\text{ }\frac{\text{x}}{2}+\text{C}$
Hence, $\int \sqrt{1+\sin x}~dx=-2\text{cos }\!\!~\!\!\text{ }\frac{\text{x}}{2}+\text{ }\!\!~\!\!\text{ }2\text{ }\!\!~\!\!\text{ sin }\!\!~\!\!\text{ }\frac{\text{x}}{2}+\text{C}.$
10. $\int \frac{x}{\sqrt{x}+1}dx$
Ans: Let $\text{I}=\text{ }\!\!~\!\!\text{ }\int \frac{\text{x}}{\sqrt{\text{x}}+1}\text{dx}$
Put $\sqrt{x}=z$
⇒ $\frac{1}{2\sqrt{x}}dx=dz$
⇒ $dx=2\sqrt{x}~dz$
⇒ $dx=2z~dz$
Therefore,
⇒ $\text{I}=\text{ }\!\!~\!\!\text{ }\int \frac{{{z}^{2}}}{\text{z }\!\!~\!\!\text{ }+1}\times 2\text{z }\!\!~\!\!\text{ dz}$
⇒ $\text{I}=\text{ }\!\!~\!\!\text{ }2\int \frac{{{z}^{3}}}{\text{z }\!\!~\!\!\text{ }+1}\text{ }\!\!~\!\!\text{ dz}$
⇒ $\text{I}=\text{ }\!\!~\!\!\text{ }2\int \frac{{{z}^{3}}+1-1}{\text{z }\!\!~\!\!\text{ }+1}\text{ }\!\!~\!\!\text{ dz}$
⇒ $\text{I}=\text{ }\!\!~\!\!\text{ }2\int \frac{{{z}^{3}}+1}{\text{z }\!\!~\!\!\text{ }+1}\text{ }\!\!~\!\!\text{ dz}-\text{ }\!\!~\!\!\text{ }2\int \frac{1}{\text{z }\!\!~\!\!\text{ }+1}\text{ }\!\!~\!\!\text{ dz}$
⇒ $\text{I}=\text{ }\!\!~\!\!\text{ }2\int \frac{\left( \text{z }\!\!~\!\!\text{ }+1 \right)\left( {{z}^{2}}-z+1 \right)}{\text{z }\!\!~\!\!\text{ }+1}\text{ }\!\!~\!\!\text{ dz}-\text{ }\!\!~\!\!\text{ }2\int \frac{1}{\text{z }\!\!~\!\!\text{ }+1}\text{ }\!\!~\!\!\text{ dz}$
⇒ $\text{I}=\text{ }\!\!~\!\!\text{ }2\int \left( {{z}^{2}}-z+1 \right)\text{ }\!\!~\!\!\text{ dz}-\text{ }\!\!~\!\!\text{ }2\int \frac{1}{\text{z }\!\!~\!\!\text{ }+1}\text{ }\!\!~\!\!\text{ dz}$
⇒ $\text{I}=\text{ }\!\!~\!\!\text{ }2\left( \frac{{{z}^{3}}}{3}-\frac{{{z}^{2}}}{2}+z \right)-\text{ }\!\!~\!\!\text{ }2\text{ }\!\!~\!\!\text{ log }\!\!~\!\!\text{ }\left| z+1 \right|+C$
⇒ $\text{I}=\text{ }\!\!~\!\!\text{ }2\left( \frac{x\sqrt{x}}{3}-\frac{x}{2}+\sqrt{x} \right)-\text{ }\!\!~\!\!\text{ }2\text{ }\!\!~\!\!\text{ log }\!\!~\!\!\text{ }\left| \sqrt{x}+1 \right|+C$
⇒ $\text{I}=\text{ }\!\!~\!\!\text{ }2\left( \frac{x\sqrt{x}}{3}-\frac{x}{2}+\sqrt{x}-\text{log }\!\!~\!\!\text{ }\left| \sqrt{x}+1 \right| \right)+C$
Hence, $\int \frac{\text{x}}{\sqrt{\text{x}}+1}\text{dx}=~2\left( \frac{x\sqrt{x}}{3}-\frac{x}{2}+\sqrt{x}-\text{log }\!\!~\!\!\text{ }\left| \sqrt{x}+1 \right| \right)+C~.$
11. $\int \sqrt{\frac{a+x}{a-x}}~dx$
Ans: Let $\text{I}=\int \sqrt{\frac{a~+~x~}{a~-~x~}}~dx$
⇒ $\text{I}=\int \sqrt{\frac{\left( a~+~x \right)~\left( a~+~x \right)~}{\left( a~-~x \right)~\left( a~+~x \right)~}}~dx$
⇒ $\text{I}=\int \sqrt{\frac{\left( a~+~x \right){{~}^{2}}~}{\left( {{a}^{2}}-{{x}^{2}} \right)~}}~dx$
⇒ $\text{I}=\int \frac{a~+~x~~}{\sqrt{\left( {{a}^{2}}-{{x}^{2}} \right)~}}~dx$
⇒ $\text{I}=\int \frac{a~~~}{\sqrt{\left( {{a}^{2}}-{{x}^{2}} \right)~}}~dx+\int \frac{~x~~}{\sqrt{\left( {{a}^{2}}-{{x}^{2}} \right)~}}~dx$
⇒ $\text{I}=a\text{ }\!\!~\!\!\text{ }si{{n}^{-1}}\left( \frac{x}{a} \right)+\int \frac{~x~~}{\sqrt{\left( {{a}^{2}}-{{x}^{2}} \right)~}}~dx$
Put ${{a}^{2}}-{{x}^{2}}={{t}^{2}}$
⇒ $-2x~dx=2t~dt$
⇒ $x~dx=-t~dt$
Therefore,
⇒ $\text{I}=a\text{ }\!\!~\!\!\text{ }si{{n}^{-1}}\left( \frac{x}{a} \right)+\int \frac{-~t~dt~}{\sqrt{{{t}^{2}}~}}~$
⇒ $\text{I}=a\text{ }\!\!~\!\!\text{ }si{{n}^{-1}}\left( \frac{x}{a} \right)-\int \frac{t~dt~}{t}~$
⇒ $\text{I}=a\text{ }\!\!~\!\!\text{ }si{{n}^{-1}}\left( \frac{x}{a} \right)-\int ~dt$
⇒ $\text{I}=a\text{ }\!\!~\!\!\text{ }si{{n}^{-1}}\left( \frac{x}{a} \right)-t+~~C$
⇒ $\text{I}=a\text{ }\!\!~\!\!\text{ }si{{n}^{-1}}\left( \frac{x}{a} \right)-\sqrt{\left( {{a}^{2}}-{{x}^{2}} \right)~}+~~C$
12. $\int \frac{{{x}^{\frac{1}{2}}}}{1+~{{x}^{\frac{3}{4}}}}~dx$
Ans: Let $\text{I}=\int \frac{{{x}^{\frac{1}{2}}}}{1+~{{x}^{\frac{3}{4}}}}~dx$
Put $x=~{{z}^{4}}$
⇒ $dx=4{{z}^{3}}dz$
Therefore,
⇒ $\text{I}=\int \frac{{{\left( {{z}^{4}} \right)}^{\frac{1}{2}}}}{1+~{{\left( {{z}^{4}} \right)}^{\frac{3}{4}}}}~\times 4{{z}^{3}}dz$
⇒ $\text{I}=4\int \frac{{{z}^{2}}.{{z}^{3}}}{1+~{{z}^{3}}}~dz$
Now, put $1+~{{z}^{3}}=t$
⇒ $3{{z}^{2}}dz=dt$
⇒ ${{z}^{2}}dz=\frac{dt}{3}$
Therefore, we get
⇒ $\text{I}=4\int \frac{\left( t-1 \right)}{t}.\frac{dt}{3}$
⇒ $\text{I}=\frac{4}{3}\int \left( 1-\frac{1}{t}~ \right)dt$
⇒ $\text{I}=\frac{4}{3}\text{t}-\frac{4}{3}\text{ }\!\!~\!\!\text{ log}\left| t \right|+{{C}_{1}}$
⇒ $\text{I}=\frac{4}{3}\left( 1+{{z}^{3}} \right)-\frac{4}{3}\text{ }\!\!~\!\!\text{ log}\left| 1+{{z}^{3}} \right|+{{C}_{1}}$
⇒ $\text{I}=\frac{4}{3}\left( 1+{{x}^{\frac{3}{4}}} \right)-\frac{4}{3}\text{ }\!\!~\!\!\text{ log}\left| 1+{{x}^{\frac{3}{4}}} \right|+{{C}_{1}}$
⇒ $\text{I}=\frac{4}{3}+\frac{4}{3}{{x}^{\frac{3}{4}}}-\frac{4}{3}\text{ }\!\!~\!\!\text{ log}\left| 1+{{x}^{\frac{3}{4}}} \right|+{{C}_{1}}$
⇒ $\text{I}=\frac{4}{3}{{x}^{\frac{3}{4}}}-\frac{4}{3}\text{ }\!\!~\!\!\text{ log}\left| 1+{{x}^{\frac{3}{4}}} \right|+C$
13. $\int \frac{\sqrt{1+~{{x}^{2}}}}{{{x}^{4}}}~dx$
Ans: Let $\text{I}=\int \frac{\sqrt{1+~{{x}^{2}}}}{{{x}^{4}}}~dx$
⇒ $\text{I}=\int \frac{\sqrt{1+~{{x}^{2}}}}{x.~~{{x}^{3}}}~dx$
⇒ $\text{I}=\int \sqrt{\frac{1+~{{x}^{2}}}{{{x}^{2}}}}~\frac{dx}{{{x}^{3}}}$
⇒ $\text{I}=\int \sqrt{\left( \frac{1}{{{x}^{2}}}+1 \right)}~\frac{dx}{{{x}^{3}}}$
Put $\left( \frac{1}{{{x}^{2}}}+1 \right)={{t}^{2}}$
⇒ $-\frac{2}{{{x}^{3}}}dx=2t~dt$
⇒ $\frac{dx}{{{x}^{3}}}=-~t~dt$
Therefore,
⇒ $\text{I}=\int \sqrt{{{t}^{2}}}~\left( -t \right)~dt$
⇒ $\text{I}=-\int t.~t~dt$
⇒ $\text{I}=-\int {{t}^{2}}~~dt$
⇒ $\text{I}=-\frac{{{t}^{3}}}{3}+C$
⇒ $\text{I}=-\frac{1}{3}{{\left( \frac{1}{{{x}^{2}}}+1 \right)}^{\frac{3}{2}}}+C$
14. $\int \frac{dx}{\sqrt{16-9{{x}^{2}}}}$
Ans: Let $\text{I}=\int \frac{dx}{\sqrt{16-9{{x}^{2}}}}$
⇒ $\text{I}=\int \frac{dx}{\sqrt{9~\left( \frac{16}{9}-{{x}^{2}} \right)}}$
⇒ $\text{I}=\frac{1}{3}\int \frac{dx}{\sqrt{{{\left( ~\frac{4}{3} \right)}^{2}}-{{x}^{2}}}}$
⇒ $\text{I}=\frac{1}{3}~si{{n}^{-1}}\left( \frac{x}{\frac{4}{3}} \right)+C$
⇒ $\text{I}=\frac{1}{3}~si{{n}^{-1}}\left( \frac{3x}{4} \right)+C$
15. $\int \frac{dt}{\sqrt{3t-~2{{t}^{2}}}}$
Ans: Let $\text{I}=\int \frac{dt}{\sqrt{3t-~2{{t}^{2}}}}$
⇒ $\text{I}=\int \frac{dt}{\sqrt{-2\left( {{t}^{2}}-\frac{3t}{2} \right)}}$
⇒ $\text{I}=\frac{1}{\sqrt{2}}\int \frac{dt}{\sqrt{-\left( {{t}^{2}}-\frac{3t}{2} \right)}}$
⇒ $\text{I}=\frac{1}{\sqrt{2}}\int \frac{dt}{\sqrt{-\left[ {{t}^{2}}-\frac{3t}{2}+{{\left( \frac{3}{4} \right)}^{2}}-{{\left( \frac{3}{4} \right)}^{2}} \right]}}$
⇒ $\text{I}=\frac{1}{\sqrt{2}}\int \frac{dt}{\sqrt{-\left[ {{\left( t-\frac{3}{4} \right)}^{2}}-{{\left( \frac{3}{4} \right)}^{2}} \right]}}$
⇒ $\text{I}=\frac{1}{\sqrt{2}}\int \frac{dt}{\sqrt{{{\left( \frac{3}{4} \right)}^{2}}-{{\left( t-\frac{3}{4} \right)}^{2}}}}$
⇒ $\text{I}=\frac{1}{\sqrt{2}}~si{{n}^{-1}}\left( \frac{t-\frac{3}{4}}{\frac{3}{4}} \right)+C$
⇒ $\text{I}=\frac{1}{\sqrt{2}}~si{{n}^{-1}}\left( \frac{4t-3}{3} \right)+C$
16. $\int \frac{3\mathbf{x}-1}{\sqrt{{{\mathbf{x}}^{2}}+9}}~\mathbf{dx}$
Ans: Let $\text{I}=\int \frac{3\text{x}-1}{\sqrt{{{\text{x}}^{2}}+9}}\text{ }\!\!~\!\!\text{ dx}$
⇒ $\text{I}=\int \frac{3\text{x}}{\sqrt{{{\text{x}}^{2}}+9}}\text{ }\!\!~\!\!\text{ dx}-\int \frac{\text{dx}}{\sqrt{{{\text{x}}^{2}}+9}}\text{ }\!\!~\!\!\text{ }$
⇒ $\text{I}={{\text{I}}_{1}}-{{\text{I}}_{2}}$ ………………. (i),
Where, ${{\text{I}}_{1}}=\int \frac{3\text{x}}{\sqrt{{{\text{x}}^{2}}+9}}\text{ }\!\!~\!\!\text{ dx}~$ and $\text{ }\!\!~\!\!\text{ }{{\text{I}}_{2}}=\int \frac{\text{dx}}{\sqrt{{{\text{x}}^{2}}+9}}\text{ }\!\!~\!\!\text{ }$
Therefore,
⇒${{\text{I}}_{1}}=\int \frac{3\text{x}}{\sqrt{{{\text{x}}^{2}}+9}}\text{ }\!\!~\!\!\text{ dx}$
Put ${{\text{x}}^{2}}+9={{t}^{2}}$
⇒ $2x~dx=2t~dt$
⇒ $x~dx=t~dt$
⇒$~{{\text{I}}_{1}}=\int \frac{3\text{t }\!\!~\!\!\text{ dt}}{\sqrt{{{t}^{2}}}}$
⇒$~{{\text{I}}_{1}}=\int \frac{3\text{t }\!\!~\!\!\text{ dt}}{\text{t}}$
⇒$~{{\text{I}}_{1}}=\int 3~dt$
⇒$\text{ }\!\!~\!\!\text{ }{{\text{I}}_{1}}=3t+~{{C}_{1}}$
⇒$\text{ }\!\!~\!\!\text{ }{{\text{I}}_{1}}=3\sqrt{{{x}^{2}}+9}+~{{C}_{1}}$ ……….. (ii)
Also we have,
$\Rightarrow \text{ }\!\!~\!\!\text{ }{{\text{I}}_{2}}=\int \frac{\text{dx}}{\sqrt{{{\text{x}}^{2}}+9}}\text{ }\!\!~\!\!\text{ }$
$\Rightarrow \text{ }\!\!~\!\!\text{ }{{\text{I}}_{2}}=\int \frac{\text{dx}}{\sqrt{{{\text{x}}^{2}}+{{3}^{2}}}}\text{ }\!\!~\!\!\text{ }$
$\Rightarrow \text{ }\!\!~\!\!\text{ }{{\text{I}}_{2}}=\text{log}\left| x+\sqrt{{{\text{x}}^{2}}+9} \right|+{{C}_{2}}$ ………….. (iii)
Put the value of $\text{ }\!\!~\!\!\text{ }{{\text{I}}_{1}}$ and $\text{ }\!\!~\!\!\text{ }{{\text{I}}_{2}}$ in eq (i), we get
$\Rightarrow \text{I}=3\sqrt{{{x}^{2}}+9}+~{{C}_{1}}-\text{ }\!\!~\!\!\text{ log}\left| x+\sqrt{{{\text{x}}^{2}}+9} \right|-{{C}_{2}}$
$\Rightarrow \text{I}=3\sqrt{{{x}^{2}}+9}-\text{ }\!\!~\!\!\text{ log}\left| x+\sqrt{{{\text{x}}^{2}}+9} \right|+C$
17. $\int \sqrt{5-2x+{{x}^{2}}}~dx$
Ans: Let $\text{I}=~\int \sqrt{5-2x+{{x}^{2}}}~dx$
⇒ $\text{I}=~\int \sqrt{{{x}^{2}}-2x+5}~dx$.
⇒ $\text{I}=~\int \sqrt{{{x}^{2}}-2x+1+4}~dx$
⇒ $\text{I}=~\int \sqrt{({{x}^{2}}-2x+1)+{{2}^{2}}}~dx$
⇒ $\text{I}=~\int \sqrt{{{\left( x-1 \right)}^{2}}+{{2}^{2}}}~dx$
⇒ $\text{I}=\frac{x-1}{2}\sqrt{{{\left( x-1 \right)}^{2}}+{{2}^{2}}}+\frac{{{2}^{2}}}{2}~\text{log}\left| x-1+\sqrt{{{\left( x-1 \right)}^{2}}+{{2}^{2}}} \right|+C~~$
⇒ $\text{I}=\frac{\left( x-1 \right)}{2}\sqrt{5-2x+{{x}^{2}}}+2~\text{log}\left| x-1+\sqrt{5-2x+{{x}^{2}}} \right|+C$.
18. $\int \frac{x}{{{x}^{4}}-1}dx$.
Ans: Let $\text{I}=~\int \frac{x}{{{x}^{4}}-1}dx$
⇒ $\text{I}=~\int \frac{x}{{{\left( {{x}^{2}} \right)}^{2}}-1}dx$
Put ${{x}^{2}}=t$.
⇒ $2x~dx=dt$.
⇒ $x~dx=\frac{dt}{2}$
Therefore,
⇒ $\text{I}=\frac{1}{2}~\int \frac{dt}{{{\left( t \right)}^{2}}-1}$
⇒ $\text{I}=\frac{1}{2}.\frac{1}{2\times 1}\text{log}\left| \frac{t-1}{t+1} \right|+C$
⇒ $\text{I}=\frac{1}{4}\text{ }\!\!~\!\!\text{ log}\left| \frac{{{x}^{2}}-1}{{{x}^{2}}+1} \right|+C$
19. $\int \frac{{{x}^{2}}}{1-~{{x}^{4}}}~dx$
Ans: Let $\text{I}=~\int \frac{{{x}^{2}}}{1-~{{x}^{4}}}~dx$
⇒ $\text{I}=~\int \frac{\frac{{{x}^{2}}}{2}+\frac{{{x}^{2}}}{2}}{{{1}^{2}}-~{{\left( {{x}^{2}} \right)}^{2}}}~dx$
⇒ $\text{I}=~\int \frac{\frac{1}{2}~+~~\frac{{{x}^{2}}}{2}-~\frac{1}{2}+\frac{{{x}^{2}}}{2}}{\left( 1-{{x}^{2}} \right)\left( 1~+~{{x}^{2}} \right)}~dx$
⇒ $\text{I}=~\int \frac{\frac{1}{2}\left( 1~+~~{{x}^{2}} \right)-~\frac{1}{2}\left( 1-{{x}^{2}} \right)}{\left( 1-{{x}^{2}} \right)\left( 1~+~{{x}^{2}} \right)}~dx$
⇒ $\text{I}=\frac{1}{2}\int \frac{\left( 1~+~~{{x}^{2}} \right)}{\left( 1-{{x}^{2}} \right)\left( 1~+~{{x}^{2}} \right)}~dx-\frac{1}{2}\int \frac{\left( 1-~~{{x}^{2}} \right)}{\left( 1-{{x}^{2}} \right)\left( 1~+~{{x}^{2}} \right)}~dx$
⇒ $\text{I}=\frac{1}{2}\int \frac{dx}{\left( 1-{{x}^{2}} \right)}~-\frac{1}{2}\int \frac{dx}{\left( 1~+~{{x}^{2}} \right)}~$
⇒ $\text{I}=\frac{1}{2}.\frac{1}{2\times 1}\text{log}\left| \frac{1+x}{1-x~} \right|-\frac{1}{2}~ta{{n}^{-1}}x+C$
⇒ $\text{I}=\frac{1}{4}\text{log}\left| \frac{1+x}{1-x~} \right|-\frac{1}{2}~ta{{n}^{-1}}x+C$.
20. $\int \sqrt{2ax-~{{x}^{2}}}~dx$
Ans: Let $\text{I}=\int \sqrt{2ax-~{{x}^{2}}}~dx$
⇒ $\text{I}=\int \sqrt{-\left( ~{{x}^{2}}-2ax \right)}~dx$
⇒ $\text{I}=\int \sqrt{-\left( ~{{x}^{2}}-2ax+{{a}^{2}}-{{a}^{2}} \right)}~dx$.
⇒ $\text{I}=\int \sqrt{-\left[ ({{x}^{2}}-2ax+{{a}^{2}})-{{a}^{2}} \right]}~dx$.
⇒ $\text{I}=\int \sqrt{-\left[ {{\left( x-a \right)}^{2}}-{{a}^{2}} \right]}~dx$.
⇒ $\text{I}=\int \sqrt{{{a}^{2}}-{{\left( x-a \right)}^{2}}}~dx$.
⇒ $\text{I}=\frac{\left( x-a \right)}{2}\sqrt{{{a}^{2}}-{{\left( x-a \right)}^{2}}}+\frac{{{a}^{2}}}{2}~si{{n}^{-1}}\left( \frac{x-a}{a} \right)+C$.
⇒ $\text{I}=\frac{\left( x-a \right)}{2}\sqrt{2ax-~{{x}^{2}}}~+\frac{{{a}^{2}}}{2}~si{{n}^{-1}}\left( \frac{x-a}{a} \right)+C$
21. $\int \frac{si{{n}^{-1}}x}{{{\left( 1-{{x}^{2}} \right)}^{\frac{3}{2}}}}dx$.
Let $\text{I}=\int \frac{si{{n}^{-1}}x}{{{\left( 1-{{x}^{2}} \right)}^{\frac{3}{2}}}}~dx$.
⇒ $\text{I}=\int \frac{si{{n}^{-1}}x}{\left( 1~-~{{x}^{2}} \right)\sqrt{1~-~{{x}^{2}}}}~dx$.
Put $si{{n}^{-1}}x=t$.
⇒ $\frac{1}{\sqrt{1-{{x}^{2}}}}dx=dt$
And $si{{n}^{-1}}x=t$ ⇒ $x=sint$
$\text{cost}=\sqrt{1-{{x}^{2}}}$
Therefore,
$\text{I}=\int \frac{t.dt}{\left( 1~-~si{{n}^{2}}t \right)}~$
⇒ $\text{I}=\int \frac{t.~~dt}{co{{s}^{2}}t}~$
⇒ $\text{I}=\int t.~se{{c}^{2}}t~dt$
⇒ $\text{I}=t\int se{{c}^{2}}t~dt-\int \left( \frac{d}{dt}t.\int se{{c}^{2}}t~dt \right)dt$
⇒ $\text{I}=\text{t }\!\!~\!\!\text{ tant}-\int \text{tantdt}$
⇒ $\text{I}=\text{t }\!\!~\!\!\text{ tant}+\text{log}\left| \text{cost} \right|+\text{C}$
⇒ $\text{I}=si{{n}^{-1}}x\text{ }\!\!~\!\!\text{ }\times \frac{\sin t}{\cos t}+\text{log}\left| \sqrt{1-{{x}^{2}}} \right|+\text{C}$
⇒ $\text{I}=\frac{x~si{{n}^{-1}}x}{\sqrt{1-{{x}^{2}}}}\text{ }\!\!~\!\!\text{ }+\text{log}\left| \sqrt{1-{{x}^{2}}} \right|+\text{C}$
Hence, $\int \frac{si{{n}^{-1}}x}{{{\left( 1-{{x}^{2}} \right)}^{\frac{3}{2}}}}~dx=\frac{x~si{{n}^{-1}}x}{\sqrt{1-{{x}^{2}}}}\text{ }\!\!~\!\!\text{ }+\text{log}\left| \sqrt{1-{{x}^{2}}} \right|+\text{C}.$
22. $\int \frac{\left( \cos 5x+\cos 4x \right)}{1-2\cos 3x}dx$
Ans: Let $\text{I}=~\int \frac{\left( \cos 5x+\cos 4x \right)}{1-2\cos 3x}dx$.
Applying $[\cos C+\cos D=2\cos \frac{C+D}{2}.~\cos \frac{C-D}{2}$ d $\cos 2x=2co{{s}^{2}}x-1]$
⇒ $\text{I}=~\int \frac{2\cos \frac{9x}{2}~.\cos \frac{x}{2}}{1-2~\left( 2~\text{co}{{\text{s}}^{2}}\frac{3x}{2}-1 \right)}dx$
⇒ $\text{I}=~\int \frac{2\cos \frac{9x}{2}~.\cos \frac{x}{2}}{1-4~\text{co}{{\text{s}}^{2}}\frac{~3x}{2}+2}dx$
⇒ $\text{I}=~\int \frac{2\cos \frac{9x}{2}~.\cos \frac{x}{2}}{3-4~\text{co}{{\text{s}}^{2}}\frac{3x}{2}}dx$
Now, multiply and divide by $\cos \frac{3x}{2}$, we get
⇒ $\text{I}=~\int \frac{2\cos \frac{9x}{2}~.\cos \frac{x}{2}.~\cos \frac{3x}{2}~}{3\cos \frac{3x}{2}-4~\text{co}{{\text{s}}^{3}}\frac{3x}{2}}dx$
⇒ $\text{I}=~-\int \frac{2\cos \frac{9x}{2}~.\cos \frac{x}{2}.~\cos \frac{3x}{2}~}{4~\text{co}{{\text{s}}^{3}}\frac{3x}{2}-3\cos \frac{3x}{2}}dx$
⇒ $\text{I}=~-\int \frac{2\cos \frac{9x}{2}~.\cos \frac{x}{2}.~\cos \frac{3x}{2}~}{\cos 3.\frac{3x}{2}}dx$
⇒ $\text{I}=~-\int \frac{2\cos \frac{9x}{2}~.\cos \frac{x}{2}.~\cos \frac{3x}{2}~}{\cos \frac{9x}{2}}dx$
⇒ $\text{I}=~-\int 2\cos \frac{x}{2}.~\cos \frac{3x}{2}dx$
⇒ $\text{I}=~-\int \left[ \cos \left( \frac{3x}{2}+\frac{x}{2} \right)+\cos \left( \frac{3x}{2}-\frac{x}{2} \right) \right]dx$
⇒ $\text{I}=~-\int (\cos 2x+\cos x)dx$
⇒ $\text{I}=~-\int \cos 2xdx-\int \cos xdx$
⇒ $\text{I}=~-\left( \frac{\sin 2x}{2} \right)-\sin x~+C$
Hence, $\int \frac{\left( \cos 5x+\cos 4x \right)}{1-2\cos 3x}dx=-\left( \frac{\sin 2x}{2} \right)-\sin x~+C.$
23. $\int \frac{si{{n}^{6}}x~+~co{{s}^{6}}x~}{si{{n}^{2}}x~.co{{s}^{2}}x}dx$
Ans: Let $\text{I}=~\int \frac{si{{n}^{6}}x~+~co{{s}^{6}}x~}{si{{n}^{2}}x~.co{{s}^{2}}x}dx$
⇒ $\text{I}=~\int \frac{{{\left( si{{n}^{2}}x \right)}^{3}}~+~{{\left( co{{s}^{2}}x \right)}^{3}}~}{si{{n}^{2}}x~.co{{s}^{2}}x}dx$
⇒ $\text{I}=~\int \frac{\left( si{{n}^{2}}x+~co{{s}^{2}}x~~ \right)~\left( si{{n}^{4}}x-si{{n}^{2}}x~.co{{s}^{2}}x+co{{s}^{4}}x \right)~}{si{{n}^{2}}x~.co{{s}^{2}}x}dx$
⇒ $\text{I}=~\int \frac{~\left( si{{n}^{4}}x-si{{n}^{2}}x~.co{{s}^{2}}x+co{{s}^{4}}x \right)~}{si{{n}^{2}}x~.co{{s}^{2}}x}dx$
⇒ $\text{I}=~\int \frac{~si{{n}^{4}}x}{si{{n}^{2}}x~.co{{s}^{2}}x}dx-\int \frac{~si{{n}^{2}}x~.co{{s}^{2}}x}{si{{n}^{2}}x~.co{{s}^{2}}x}dx+\int \frac{~co{{s}^{4}}x}{si{{n}^{2}}x~.co{{s}^{2}}x}~dx$
⇒ $\text{I}=~\int \frac{~si{{n}^{2}}x}{co{{s}^{2}}x}dx-\int dx+\int \frac{~co{{s}^{2}}x}{si{{n}^{2}}x~}~dx$
⇒ $\text{I}=~\int ta{{n}^{2}}x~dx-\int dx+\int co{{t}^{2}}x~dx$
⇒ $\text{I}=~\int \left( se{{c}^{2}}x-1~ \right)~dx-\int dx+\int (cose{{c}^{2}}x-1)~~dx$
⇒ $\text{I}=~\int (se{{c}^{2}}x~dx+\int cose{{c}^{2}}x~dx-3\int dx$
⇒ $\text{I}=~tanx-cotx-3x+C$
Hence, $\int \frac{si{{n}^{6}}x~+~co{{s}^{6}}x~}{si{{n}^{2}}x~.co{{s}^{2}}x}dx=~tanx-cotx-3x+C.$
24. $\int \frac{\sqrt{x}}{\sqrt{{{a}^{3}}-{{x}^{3}}}}dx$
Ans: Let $\text{I}=\int \frac{\sqrt{x}}{\sqrt{{{a}^{3}}-{{x}^{3}}}}dx$
⇒ $\text{I}=\int \frac{{{x}^{\frac{1}{2}}}}{\sqrt{{{\left( {{a}^{\frac{3}{2}}} \right)}^{2}}-{{\left( {{x}^{\frac{3}{2}}} \right)}^{2}}}}dx$
Here, Put $~~{{x}^{\frac{3}{2}}}=t$
⇒ $\frac{3}{2}~{{x}^{\frac{1}{2}}}~dx=dt$
⇒ $~{{x}^{\frac{1}{2}}}~dx=\frac{2}{3}dt$
Therefore,
⇒ $\text{I}=\frac{2}{3}\int \frac{dt}{\sqrt{{{\left( {{a}^{\frac{3}{2}}} \right)}^{2}}-{{\left( t \right)}^{2}}}}$
⇒ $\text{I}=\frac{2}{3}~si{{n}^{-1}}\left( \frac{t}{{{a}^{\frac{3}{2}}}} \right)+C$
⇒ $\text{I}=\frac{2}{3}~si{{n}^{-1}}\left( \frac{~~{{x}^{\frac{3}{2}}}}{{{a}^{\frac{3}{2}}}} \right)+C$
⇒ $\text{I}=\frac{2}{3}~si{{n}^{-1}}{{\left( \frac{x}{a} \right)}^{\frac{3}{2}}}+C$
Hence, $\int \frac{\sqrt{x}}{\sqrt{{{a}^{3}}-{{x}^{3}}}}dx=\frac{2}{3}~si{{n}^{-1}}{{\left( \frac{x}{a} \right)}^{\frac{3}{2}}}+C.$
25. $\int \frac{cos~x-cos~2x}{1-cosx}~dx$
Ans: Let $\text{I}=\int \frac{cos~x-cos~2x}{1-cosx}~dx$
⇒ $\text{I}=\int \frac{2~sin~\frac{3x}{2}.~~sin~\frac{x}{2}}{2~si{{n}^{2}}\frac{x}{2}}~dx$
⇒ $\text{I}=\int \frac{~sin~\frac{3x}{2}}{~~sin~\frac{x}{2}}~dx$
⇒ $\text{I}=\int \frac{~3~sin~\frac{x}{2}-4~si{{n}^{3}}~\frac{x}{2}}{~~sin~\frac{x}{2}}~dx$
⇒ $\text{I}=3\int dx-4\int ~si{{n}^{2}}~\frac{x}{2}~dx$
⇒ $\text{I}=3x-4\int ~\frac{1+cos~x}{2}~dx$
⇒ $\text{I}=3x-2\int ~\left( 1-cos~x \right)~dx$
⇒ $\text{I}=3x-2\left( x-sin~x \right)+C$
⇒ $\text{I}=3x-2x+2~sin~x+C$
⇒ $\text{I}=x+2~sin~x+C$
Hence, $\int \frac{cos~x-cos~2x}{1-cosx}~dx=x+2~sin~x+C.$
26. $\int \frac{dx}{x\sqrt{{{x}^{4}}-1}}$
Ans: Let $\text{I}=\int \frac{dx}{x\sqrt{{{x}^{4}}-1}}$
Multiply and divide by ${{x}^{3}}$, we get
⇒ $\text{I}=\int \frac{{{x}^{3}}dx}{{{x}^{4}}\sqrt{{{x}^{4}}-1}}$
Now, put $~{{x}^{4}}-1=~{{t}^{2}}$
⇒ $4{{x}^{3}}dx=2t~dt$
⇒ ${{x}^{3}}dx=\frac{t}{2}~dt$
Therefore,
⇒ $\text{I}=\frac{1}{2}\int \frac{t~dt}{\left( 1+{{t}^{2}} \right)t}$
⇒ $\text{I}=\frac{1}{2}\int \frac{~dt}{\left( 1+{{t}^{2}} \right)}$
⇒ $\text{I}=\frac{1}{2}~ta{{n}^{-1}}t+C$
⇒ $\text{I}=\frac{1}{2}~ta{{n}^{-1}}\left( \sqrt{{{x}^{4}}-1} \right)+C$
Hence, $\int \frac{dx}{x\sqrt{{{x}^{4}}-1}}=\frac{1}{2}~ta{{n}^{-1}}\left( \sqrt{{{x}^{4}}-1} \right)+C.$
Evaluate the Following As Limit of Sums:
27. $\underset{0}{\overset{2}{\mathop \int }}\,\left( {{x}^{2}}+3 \right)~dx$
Ans: Let $\text{I}=\underset{0}{\overset{2}{\mathop \int }}\,\left( {{x}^{2}}+3 \right)~dx~$
Here, we have $a=0,~b=2$ and $h=\frac{b-a}{n}=\frac{2}{n}$
⇒ $nh=2$ and $f\left( x \right)=\left( {{x}^{2}}+3 \right)$
Now, $\underset{0}{\overset{2}{\mathop \int }}\,\left( {{x}^{2}}+3 \right)~dx=\underset{h\to 0}{\mathop{\lim }}\,h\left[ f\left( 0 \right)+f\left( 0+h \right)+\ldots +f\left\{ 0+\left( n-1 \right)h \right\} \right]$
$=\underset{h\to 0}{\mathop{\lim }}\,h\left[ 3+{{h}^{2}}+3+{{2}^{2}}{{h}^{2}}+3+\ldots +{{\left( n-1 \right)}^{2}}{{h}^{2}}+3 \right]$
$=\underset{h\to 0}{\mathop{\lim }}\,h\left[ 3n+{{h}^{2}}\left\{ {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+\ldots +{{\left( n-1 \right)}^{2}} \right\} \right]$
$=\underset{h\to 0}{\mathop{\lim }}\,h\left[ 3n+{{h}^{2}}\times ~\frac{n\left( n-1 \right)\left( 2n-1 \right)}{6} \right]$
$=\underset{h\to 0}{\mathop{\lim }}\,\left[ 3nh+{{h}^{3}}\times ~\frac{n\left( n-1 \right)\left( 2n-1 \right)}{6} \right]$
$=\underset{h\to 0}{\mathop{\lim }}\,\left[ 3nh+~\frac{nh\left( nh-h \right)\left( 2nh-h \right)}{6} \right]$
$=\underset{h\to 0}{\mathop{\lim }}\,\left[ 3.2+~\frac{2\left( 2-h \right)\left( 2.2-h \right)}{6} \right]$
$=6+\frac{4\times 4}{6}$
$=6+\frac{16}{6}$
$=6+\frac{8}{3}$
$=\frac{26}{3}$
Hence, $\text{I}=\underset{0}{\overset{2}{\mathop \int }}\,\left( {{x}^{2}}+3 \right)~dx=\frac{26}{3}$
28. $\underset{0}{\overset{2}{\mathop \int }}\,{{e}^{x}}~dx$
Ans: let $\text{I}=\underset{0}{\overset{2}{\mathop \int }}\,{{e}^{x}}~dx$
Here, we have $a=0,~b=2$ and $h=\frac{b-a}{n}=\frac{2}{n}$
⇒ $nh=2$ and $f\left( x \right)={{e}^{x}}$
Now, $\underset{0}{\overset{2}{\mathop \int }}\,{{e}^{x}}~dx=\underset{h\to 0}{\mathop{\lim }}\,h\left[ f\left( 0 \right)+f\left( 0+h \right)+\ldots +f\left\{ 0+\left( n-1 \right)h \right\} \right]$
$=\underset{h\to 0}{\mathop{\lim }}\,h\left[ 1+{{e}^{h}}+{{e}^{2h}}+{{e}^{3h}}+\ldots +{{e}^{\left( n-1 \right)h}} \right]$
$=\underset{h\to 0}{\mathop{\lim }}\,h\left[ \frac{1.~~{{\left( {{e}^{h}} \right)}^{n}}-1}{{{e}^{h}}-1} \right]$
$=\underset{h\to 0}{\mathop{\lim }}\,h\left[ \frac{{{e}^{nh}}-1}{{{e}^{h}}-1} \right]$
$=\underset{h\to 0}{\mathop{\lim }}\,h\left[ \frac{{{e}^{2}}-1}{{{e}^{h}}-1} \right]$
$={{e}^{2}}~\underset{h\to 0}{\mathop{\lim }}\,\frac{h}{{{e}^{h}}-1}-~\underset{h\to 0}{\mathop{\lim }}\,\frac{h}{{{e}^{h}}-1}$
$={{e}^{2}}-1$
Hence, $\text{I}=\underset{0}{\overset{2}{\mathop \int }}\,{{e}^{x}}~dx={{e}^{2}}-1$ .
29. $\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\frac{\tan x~dx}{1+~{{m}^{2}}~tan{{~}^{2}}x}$
Ans: Let $I=~\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\frac{\tan x~dx}{1+~{{m}^{2}}~tan{{~}^{2}}x}$
⇒ \[I=~\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\frac{\frac{sinx}{cos~x}~dx}{1+~{{m}^{2}}\frac{sin{{~}^{2}}x}{co{{s}^{2}}x}}\]
⇒ $I=~\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\frac{\frac{sinx}{cos~x}~dx}{\frac{co{{s}^{2}}x+{{m}^{2}}sin{{~}^{2}}x}{co{{s}^{2}}x}}$
⇒ $I=~\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\frac{sin~x.~cosx~dx}{co{{s}^{2}}x+{{m}^{2}}sin{{~}^{2}}x}$
⇒ $I=~\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\frac{sin~x.~cosx~dx}{1-sin{{~}^{2}}x\left( 1-{{m}^{2}} \right)}$
Now, put $si{{n}^{2}}x=t$
⇒ $2.\sin x.\cos x~dx=dt$
Here, at $x=0\Rightarrow t=0$ and at $x=\frac{\pi }{2}\Rightarrow t=1$
Therefore,
⇒ $I=\frac{1}{2}\underset{0}{\overset{1}{\mathop \int }}\,\frac{dt}{1-t\left( 1-{{m}^{2}} \right)}$
⇒ $I=\frac{1}{2}~\left[ -\log \left| 1-t\left( 1-{{m}^{2}} \right) \right|\times \frac{1}{1-{{m}^{2}}} \right]_{0}^{1}$
⇒ $I=-\frac{1}{2}~\times \frac{1}{1-{{m}^{2}}}\left[ \log \left| 1-t\left( 1-{{m}^{2}} \right) \right| \right]_{0}^{1}$
⇒ $I=-\frac{1}{2\left( 1-{{m}^{2}} \right)}\left[ \log \left| 1-1\left( 1-{{m}^{2}} \right) \right|-\log \left| 1-0\left( 1-{{m}^{2}} \right) \right| \right]$
⇒ $I=-\frac{1}{2\left( 1-{{m}^{2}} \right)}\left[ \log \left| 1-1+{{m}^{2}} \right|-\log \left| 1 \right| \right]$
⇒ $I=-\frac{1}{2\left( 1-{{m}^{2}} \right)}\left[ \log \left| {{m}^{2}} \right| \right]$
⇒ $I=-\frac{1}{2\left( 1-{{m}^{2}} \right)}2\times \log \left| m \right|$
⇒ $I=-\frac{1}{\left( 1-{{m}^{2}} \right)}\log \left| m \right|$
Hence, $\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\frac{\tan x~dx}{1+~{{m}^{2}}~tan{{~}^{2}}x}=-\frac{1}{\left( 1-{{m}^{2}} \right)}\log \left| m \right|$ .
30. $\underset{1}{\overset{2}{\mathop \int }}\,\frac{dx}{\sqrt{\left( x-1 \right)\left( 2-x \right)}}$
Ans: Let $I=\underset{1}{\overset{2}{\mathop \int }}\,\frac{dx}{\sqrt{\left( x-1 \right)\left( 2-x \right)}}$
⇒ $I=\underset{1}{\overset{2}{\mathop \int }}\,\frac{dx}{\sqrt{2x-{{x}^{2}}-2+x}}$
⇒ $I=\underset{1}{\overset{2}{\mathop \int }}\,\frac{dx}{\sqrt{-{{x}^{2}}+3x-2}}$
⇒ $I=\underset{1}{\overset{2}{\mathop \int }}\,\frac{dx}{\sqrt{-\left( {{x}^{2}}-3x+2 \right)}}$
⇒ $I=\underset{1}{\overset{2}{\mathop \int }}\,\frac{dx}{\sqrt{-\left[ {{x}^{2}}-3x+{{\left( \frac{3}{2} \right)}^{2}}-{{\left( \frac{3}{2} \right)}^{2}}+2 \right]}}$
⇒ $I=\underset{1}{\overset{2}{\mathop \int }}\,\frac{dx}{\sqrt{-\left[ \left\{ {{x}^{2}}-3x+{{\left( \frac{3}{2} \right)}^{2}} \right\}-\left\{ \frac{9}{4}-2 \right\} \right]}}$
⇒ $I=\underset{1}{\overset{2}{\mathop \int }}\,\frac{dx}{\sqrt{-\left[ {{\left( x-\frac{3}{2} \right)}^{2}}-{{\left( \frac{1}{2} \right)}^{2}} \right]}}$
⇒ $I=\underset{1}{\overset{2}{\mathop \int }}\,\frac{dx}{\sqrt{\left[ {{\left( \frac{1}{2} \right)}^{2}}-{{\left( x-\frac{3}{2} \right)}^{2}} \right]}}$
⇒ $I=\left[ si{{n}^{-1}}\left( \frac{x-\frac{3}{2}}{\frac{1}{2}} \right) \right]_{1}^{2}$
⇒ $I=\left[ si{{n}^{-1}}\left( 2x-3 \right) \right]_{1}^{2}$
⇒ $I=\left[ si{{n}^{-1}}\left( 4-3 \right)-si{{n}^{-1}}\left( 2-3 \right) \right]$
⇒ $I=\left[ si{{n}^{-1}}\left( 1 \right)-si{{n}^{-1}}\left( -1 \right) \right]$
⇒ $I=\left[ \frac{\pi }{2}-\left( -\frac{\pi }{2} \right) \right]$
⇒ $I=\left[ \frac{\pi }{2}+\frac{\pi }{2} \right]$
⇒ $I=\pi $
Hence, $\underset{1}{\overset{2}{\mathop \int }}\,\frac{dx}{\sqrt{\left( x-1 \right)\left( 2-x \right)}}=\pi $
Evaluate the Following:
31. $\underset{0}{\overset{1}{\mathop \int }}\,\frac{dx}{{{e}^{x}}+{{e}^{-x}}}$
Ans: Let $\text{I}=\underset{0}{\overset{1}{\mathop \int }}\,\frac{dx}{{{e}^{x}}+{{e}^{-x}}}$
⇒ $\text{I}=\underset{0}{\overset{1}{\mathop \int }}\,\frac{dx}{{{e}^{x}}+\frac{1}{{{e}^{x}}}}$
⇒ $\text{I}=\underset{0}{\overset{1}{\mathop \int }}\,\frac{{{e}^{x}}.dx}{{{\left( {{e}^{x}} \right)}^{2}}+1}$
Now, put ${{e}^{x}}=t$
⇒ ${{e}^{x}}dx=dt$
Now, at $x=0~\Rightarrow t=1$ and at $x=1~\Rightarrow t=e$
Therefore,
⇒ $\text{I}=\underset{1}{\overset{e}{\mathop \int }}\,\frac{dt}{{{t}^{2}}+1}$
⇒ $\text{I}=\left[ ta{{n}^{-1}}t \right]_{1}^{e}$
⇒ $\text{I}=\left( ta{{n}^{-1}}e-ta{{n}^{-1}}1 \right)$
⇒ $\text{I}=ta{{n}^{-1}}e-~\frac{\pi }{4}$
Hence, $\underset{0}{\overset{1}{\mathop \int }}\,\frac{dx}{{{e}^{x}}+{{e}^{-x}}}=ta{{n}^{-1}}e-~\frac{\pi }{4}$
32. $\underset{0}{\overset{1}{\mathop \int }}\,\frac{x~dx}{\sqrt{1+{{x}^{2}}}}$
Ans: Let $\text{I}=\underset{0}{\overset{1}{\mathop \int }}\,\frac{x~dx}{\sqrt{1+{{x}^{2}}}}$
Now, put $1+{{x}^{2}}={{t}^{2}}$
⇒ $2x~dx=2t~dt$
⇒ $x~dx=t~dt$
here, at $x=0~\Rightarrow t=1$ and at $x=1~\Rightarrow t=\sqrt{2}$
Therefore,
⇒ $\text{I}=\underset{1}{\overset{\sqrt{2}}{\mathop \int }}\,\frac{t~dt}{\sqrt{{{t}^{2}}}}$
⇒ $\text{I}=\underset{1}{\overset{\sqrt{2}}{\mathop \int }}\,\frac{t~dt}{t}$
⇒ $\text{I}=\underset{1}{\overset{\sqrt{2}}{\mathop \int }}\,dt$
⇒ $\text{I}=\left[ t \right]_{1}^{\sqrt{2}}$
⇒ $\text{I}=\left( \sqrt{2}-1 \right)$
Hence, $\underset{0}{\overset{1}{\mathop \int }}\,\frac{x~dx}{\sqrt{1+{{x}^{2}}}}=\left( \sqrt{2}-1 \right)$
33. $\underset{0}{\overset{\pi }{\mathop \int }}\,x\sin x~co{{s}^{2}}x~dx$
Ans: Let $\text{I}=\underset{0}{\overset{\pi }{\mathop \int }}\,x\sin x~co{{s}^{2}}x~dx$ ………. (i)
⇒ $\text{I}=\underset{0}{\overset{\pi }{\mathop \int }}\,\left( \pi -x \right)\sin \left( \pi -x \right)~co{{s}^{2}}\left( \pi -x \right)~dx$
⇒ $\text{I}=\underset{0}{\overset{\pi }{\mathop \int }}\,\left( \pi -x \right)\sin x~co{{s}^{2}}x~dx$ …………(ii)
Adding eq(i) and (ii), we get
⇒ $2\text{I}=\pi \underset{0}{\overset{\pi }{\mathop \int }}\,\sin x~co{{s}^{2}}x~dx$
Now, put $\cos x=t$
⇒ $-\sin x~dx=dt$
⇒ $\sin x~dx=-~dt$
here, at $x=0~\Rightarrow t=1$ and at $x=\pi ~\Rightarrow t=-1$
Therefore,
⇒ $2\text{I}=-\pi \underset{1}{\overset{-1}{\mathop \int }}\,{{t}^{2}}dt$
⇒ $2\text{I}=-\pi \left[ \frac{{{t}^{3}}}{3} \right]_{1}^{-1}$
⇒ $2\text{I}=-\frac{1}{3}\pi \left[ {{t}^{3}} \right]_{1}^{-1}$
⇒ $2\text{I}=-\frac{1}{3}\pi ~\left( -1-1 \right)$
⇒ 2$\text{I}=\frac{2\pi }{3}$
⇒ $\text{I}=\frac{\pi }{3}$
Hence, $\underset{0}{\overset{\pi }{\mathop \int }}\,x\sin x~co{{s}^{2}}x~dx=\frac{\pi }{3}$ .
34. $\underset{0}{\overset{\frac{1}{2}}{\mathop \int }}\,\frac{dx}{\left( 1+{{x}^{2}} \right)\sqrt{1-{{x}^{2}}}}$
Ans: Let $I=~\underset{0}{\overset{\frac{1}{2}}{\mathop \int }}\,\frac{dx}{\left( 1+{{x}^{2}} \right)\sqrt{1-{{x}^{2}}}}$
Put $x=\sin \theta $
⇒ $dx=\cos \theta ~d\theta $
Here, at $x=0\Rightarrow ~\theta =0$ and at $x=\frac{1}{2}\Rightarrow ~\theta =\frac{\pi }{6}$
Therefore,
⇒ $I=~\underset{0}{\overset{\frac{\pi }{6}}{\mathop \int }}\,\frac{cos~\theta ~d\theta }{\left( 1+si{{n}^{2}}\theta \right)\sqrt{1-si{{n}^{2}}\theta }}$
⇒ $I=~\underset{0}{\overset{\frac{\pi }{6}}{\mathop \int }}\,\frac{cos~\theta ~d\theta }{\left( 1+si{{n}^{2}}\theta \right)cos~\theta }$
⇒ $I=~\underset{0}{\overset{\frac{\pi }{6}}{\mathop \int }}\,\frac{~d\theta }{\left( 1+si{{n}^{2}}\theta \right)}$
Divide by $co{{s}^{2}}\theta $ in numerator and denominator
⇒ $I=~\underset{0}{\overset{\frac{\pi }{6}}{\mathop \int }}\,\frac{\frac{1}{co{{s}^{2}}\theta }~d\theta }{\left( \frac{1}{co{{s}^{2}}\theta }+\frac{si{{n}^{2}}\theta }{co{{s}^{2}}\theta } \right)}$
⇒ $I=~\underset{0}{\overset{\frac{\pi }{6}}{\mathop \int }}\,\frac{se{{c}^{2}}\theta ~d\theta }{\left( se{{c}^{2}}\theta +ta{{n}^{2}}\theta \right)}$
⇒ $I=~\underset{0}{\overset{\frac{\pi }{6}}{\mathop \int }}\,\frac{se{{c}^{2}}\theta ~d\theta }{\left( 1+ta{{n}^{2}}\theta +ta{{n}^{2}}\theta \right)}$
⇒ $I=~\underset{0}{\overset{\frac{\pi }{6}}{\mathop \int }}\,\frac{se{{c}^{2}}\theta ~d\theta }{\left( 1+2ta{{n}^{2}}\theta \right)}$
Now, put $\tan \theta =t$
⇒ $se{{c}^{2}}\theta ~d\theta =dt$
Here, at $\theta =0\Rightarrow t=0$ and at $\theta =\frac{\pi }{6}\Rightarrow t=\frac{1}{\sqrt{3}}$
Therefore,
⇒ $I=~\underset{0}{\overset{\frac{1}{\sqrt{3}}}{\mathop \int }}\,\frac{dt}{\left( 1+2{{t}^{2}} \right)}$
⇒ $I=\frac{1}{2}~\underset{0}{\overset{\frac{1}{\sqrt{3}}}{\mathop \int }}\,\frac{dt}{\left( \frac{1}{2}+{{t}^{2}} \right)}$
⇒ $I=\frac{1}{2}~\underset{0}{\overset{\frac{1}{\sqrt{3}}}{\mathop \int }}\,\frac{dt}{\left[ {{\left( \frac{1}{\sqrt{2}} \right)}^{2}}+{{t}^{2}} \right]}$
⇒ $I=\frac{1}{2}~\left[ \frac{1}{\frac{1}{\sqrt{2}}}~ta{{n}^{-1}}\left( \frac{t}{\frac{1}{\sqrt{2}}} \right) \right]_{0}^{\frac{1}{\sqrt{3}}}$
⇒ $I=\frac{1}{\sqrt{2}}~\left[ ~ta{{n}^{-1}}\left( \sqrt{2}~\times t \right) \right]_{0}^{\frac{1}{\sqrt{3}}}$
⇒ $I=~\frac{1}{\sqrt{2}}\left[ ta{{n}^{-1}}\left( \sqrt{2}~\times \frac{1}{\sqrt{3}} \right)-ta{{n}^{-1}}\left( 0 \right) \right]$
⇒ $I=~\frac{1}{\sqrt{2}}ta{{n}^{-1}}\left( ~\frac{\sqrt{2}}{\sqrt{3}} \right)$
Long Answer (L.A)
35. $\int \frac{{{x}^{2}}~dx}{{{x}^{4}}-{{x}^{2}}-12}$
Ans: Let $I=~\int \frac{{{x}^{2}}~dx}{{{x}^{4}}-{{x}^{2}}-12}$
⇒ $I=~\int \frac{{{x}^{2}}~dx}{{{x}^{4}}-4{{x}^{2}}+3{{x}^{2}}-12}$
⇒ $I=~\int \frac{{{x}^{2}}~dx}{{{x}^{2}}\left( {{x}^{2}}-4 \right)+3\left( {{x}^{2}}-4 \right)}$
⇒ $I=~\int \frac{{{x}^{2}}~dx}{\left( {{x}^{2}}-4 \right)\left( {{x}^{2}}+3 \right)}$
⇒ $I=~\int \frac{{{x}^{2}}-4+~4~dx}{\left( {{x}^{2}}-4 \right)\left( {{x}^{2}}+3 \right)}$
$\Rightarrow I=~\int \frac{\left( {{x}^{2}}-4 \right)~dx}{\left( {{x}^{2}}-4 \right)\left( {{x}^{2}}+3 \right)}+4\int \frac{dx}{\left( {{x}^{2}}-4 \right)\left( {{x}^{2}}+3 \right)}$
$\Rightarrow I=~\int \frac{~dx}{\left( {{x}^{2}}+3 \right)}+4\int \frac{\left[ \left( {{x}^{2}}-4 \right)-({{x}^{2}}+3 \right)\}dx}{\left( -7 \right)\left( {{x}^{2}}-4 \right)\left( {{x}^{2}}+3 \right)}$
$\Rightarrow I=~\int \frac{~dx}{\left( {{x}^{2}}+3 \right)}-\frac{4}{7}\int \frac{\left( {{x}^{2}}-4 \right)dx}{\left( {{x}^{2}}-4 \right)\left( {{x}^{2}}+3 \right)}+\frac{4}{7}\int \frac{({{x}^{2}}+3)dx}{\left( {{x}^{2}}-4 \right)\left( {{x}^{2}}+3 \right)}$
$\Rightarrow I=~\int \frac{~dx}{\left( {{x}^{2}}+3 \right)}-\frac{4}{7}\int \frac{dx}{\left( {{x}^{2}}+3 \right)}+\frac{4}{7}\int \frac{dx}{\left( {{x}^{2}}-4 \right)}$
$\Rightarrow I=~\frac{3}{7}\int \frac{dx}{\left( {{x}^{2}}+3 \right)}+\frac{4}{7}\int \frac{dx}{\left( {{x}^{2}}-4 \right)}$
$\Rightarrow I=~\frac{3}{7}\int \frac{dx}{\left( {{x}^{2}}+{{\left( \sqrt{3} \right)}^{2}} \right)}+\frac{4}{7}\int \frac{dx}{\left( {{x}^{2}}-{{2}^{2}} \right)}$
$\Rightarrow I=~\frac{3}{7}\left[ \frac{1}{\sqrt{3}}~ta{{n}^{-1}}\frac{x}{\sqrt{3}} \right]+\frac{4}{7}.\frac{1}{2\times 2}\log \left| \frac{x-2}{x+2} \right|+C$
$\Rightarrow I=~\frac{\sqrt{3}}{7}~ta{{n}^{-1}}\frac{x}{\sqrt{3}}+\frac{1}{7}\log \left| \frac{x-2}{x+2} \right|+C$
Hence, $\int \frac{{{x}^{2}}~dx}{{{x}^{4}}-{{x}^{2}}-12}=\frac{\sqrt{3}}{7}~ta{{n}^{-1}}\frac{x}{\sqrt{3}}+\frac{1}{7}\log \left| \frac{x-2}{x+2} \right|+C.$
36. $\int \frac{{{x}^{2}}~dx}{\left( {{x}^{2}}+{{a}^{2}} \right)~\left( {{x}^{2}}+{{b}^{2}} \right)~}$
Ans: Let $I=~\int \frac{{{x}^{2}}+{{a}^{2}}-{{a}^{2}}~dx}{\left( {{x}^{2}}+{{a}^{2}} \right)~\left( {{x}^{2}}+{{b}^{2}} \right)~}$
⇒ $I=~\int \frac{({{x}^{2}}+{{a}^{2}})~dx}{\left( {{x}^{2}}+{{a}^{2}} \right)~\left( {{x}^{2}}+{{b}^{2}} \right)~}-~\int \frac{{{a}^{2}}~dx}{\left( {{x}^{2}}+{{a}^{2}} \right)~\left( {{x}^{2}}+{{b}^{2}} \right)~}$
⇒ $I=~\int \frac{~dx}{~\left( {{x}^{2}}+{{b}^{2}} \right)~}-~{{a}^{2}}\int \frac{\left[ \left( {{x}^{2}}+{{a}^{2}} \right)-\left( {{x}^{2}}+{{b}^{2}} \right) \right]~dx}{\left( {{a}^{2}}-{{b}^{2}} \right)\left( {{x}^{2}}+{{a}^{2}} \right)~\left( {{x}^{2}}+{{b}^{2}} \right)~}$
⇒ $I=~\int \frac{~dx}{~\left( {{x}^{2}}+{{b}^{2}} \right)~}-\frac{{{a}^{2}}}{\left( {{a}^{2}}-{{b}^{2}} \right)}\int \frac{\left[ \left( {{x}^{2}}+{{a}^{2}} \right)-\left( {{x}^{2}}+{{b}^{2}} \right) \right]~dx}{\left( {{x}^{2}}+{{a}^{2}} \right)~\left( {{x}^{2}}+{{b}^{2}} \right)~}$
⇒ $I=~\int \frac{~dx}{~\left( {{x}^{2}}+{{b}^{2}} \right)~}-\frac{{{a}^{2}}}{\left( {{a}^{2}}-{{b}^{2}} \right)}\left[ \int \frac{\left( {{x}^{2}}+{{a}^{2}} \right)~dx}{\left( {{x}^{2}}+{{a}^{2}} \right)~\left( {{x}^{2}}+{{b}^{2}} \right)~}-\int \frac{\left( {{x}^{2}}+{{b}^{2}} \right)~dx}{\left( {{x}^{2}}+{{a}^{2}} \right)~\left( {{x}^{2}}+{{b}^{2}} \right)~} \right]$
⇒ $I=~\int \frac{~dx}{~\left( {{x}^{2}}+{{b}^{2}} \right)~}-\frac{{{a}^{2}}}{\left( {{a}^{2}}-{{b}^{2}} \right)}\left[ \int \frac{~dx}{~\left( {{x}^{2}}+{{b}^{2}} \right)~}-\int \frac{~dx}{\left( {{x}^{2}}+{{a}^{2}} \right)~~} \right]$
⇒ $I=\frac{-{{b}^{2}}}{\left( {{a}^{2}}-{{b}^{2}} \right)}~\int \frac{~dx}{~\left( {{x}^{2}}+{{b}^{2}} \right)~}+\frac{{{a}^{2}}}{\left( {{a}^{2}}-{{b}^{2}} \right)}\int \frac{~dx}{\left( {{x}^{2}}+{{a}^{2}} \right)~~}$
⇒ $I=\frac{{{b}^{2}}}{\left( {{b}^{2}}-{{a}^{2}} \right)}\frac{1}{b}ta{{n}^{-1}}\frac{x}{b}-\frac{{{a}^{2}}}{\left( {{b}^{2}}-{{a}^{2}} \right)}\frac{1}{a}~ta{{n}^{-1}}\frac{x}{a}+C$
⇒ $I=\frac{b}{\left( {{b}^{2}}-{{a}^{2}} \right)}ta{{n}^{-1}}\frac{x}{b}-\frac{a}{\left( {{b}^{2}}-{{a}^{2}} \right)}~ta{{n}^{-1}}\frac{x}{a}+C$
37. $\underset{0}{\overset{\pi }{\mathop \int }}\,\frac{x}{1+\sin x}dx$
Ans: Let $I=\underset{0}{\overset{\pi }{\mathop \int }}\,\frac{x}{1+\sin x}dx~$ ……….(i)
⇒ $I=\underset{0}{\overset{\pi }{\mathop \int }}\,\frac{\left( \pi -x \right)}{1+\sin (\pi -x)}dx$
⇒ $I=\underset{0}{\overset{\pi }{\mathop \int }}\,\frac{\left( \pi -x \right)}{1+\sin x}dx$ ………….(ii)
Now, adding eq(i) and (ii), we get
$\Rightarrow 2I=\underset{0}{\overset{\pi }{\mathop \int }}\,\frac{\text{ }\!\!\pi\!\!\text{ }}{1+\sin x}dx$
$\Rightarrow 2I=\text{ }\!\!\pi\!\!\text{ }\underset{0}{\overset{\pi }{\mathop \int }}\,\frac{(1-\sin x)}{(1+\sin x)(1-\sin x)}dx$
$\Rightarrow 2I=\text{ }\!\!\pi\!\!\text{ }\underset{0}{\overset{\pi }{\mathop \int }}\,\frac{(1-\sin x)}{\left( 1-si{{n}^{2}}x \right)}dx$
$\Rightarrow 2I=\text{ }\!\!\pi\!\!\text{ }\underset{0}{\overset{\pi }{\mathop \int }}\,\frac{(1-\sin x)}{co{{s}^{2}}x}dx$
$\Rightarrow 2I=\text{ }\!\!\pi\!\!\text{ }\underset{0}{\overset{\pi }{\mathop \int }}\,\left( \frac{1}{co{{s}^{2}}x}-\frac{\sin x}{co{{s}^{2}}x} \right)dx$
$\Rightarrow 2I=\text{ }\!\!\pi\!\!\text{ }\underset{0}{\overset{\pi }{\mathop \int }}\,\left( se{{c}^{2}}x-\sec x.\tan x \right)dx$
$\Rightarrow 2I=\text{ }\!\!\pi\!\!\text{ }\left[ \tan x-\sec x \right]_{0}^{\pi }$
$\Rightarrow 2I=\text{ }\!\!\pi\!\!\text{ }\left[ \tan \pi -\sec \pi ~-(\tan 0-\sec 0~) \right]_{0}^{\pi }$
$\Rightarrow 2I=\text{ }\!\!\pi\!\!\text{ }\left[ 0-\left( -1 \right)-\left( 0-1 \right) \right]$
$\Rightarrow 2I=\text{ }\!\!\pi\!\!\text{ }\left[ 1+1 \right]$
$\Rightarrow 2I=2\text{ }\!\!\pi\!\!\text{ }$
$\Rightarrow I=\text{ }\!\!\pi\!\!\text{ }$
Hence, $\underset{0}{\overset{\pi }{\mathop \int }}\,\frac{x}{1+\sin x}dx=\pi $
38. $\int \frac{2x-1}{\left( x-1 \right)\left( x+2 \right)\left( x-3 \right)}dx$
Ans: Let $I=~\int \frac{2x-1}{\left( x-1 \right)\left( x+2 \right)\left( x-3 \right)}dx$
Now, $\frac{2x-1}{\left( x-1 \right)\left( x+2 \right)\left( x-3 \right)}=\frac{A}{\left( x-1 \right)}+\frac{B}{\left( x+2 \right)}+\frac{C}{\left( x-3 \right)}$
⇒ $2x-1=A\left( x+2 \right)\left( x-3 \right)+B\left( x-1 \right)\left( x-3 \right)+C\left( x-1 \right)\left( x+2 \right)$
Here, put $x=1$ in above equation, we get
⇒ $1=A\left( 1+2 \right)\left( 1-3 \right)+0+0$
⇒ $1=-6~A$
⇒ $A=-\frac{1}{6}~$
Now, put $x=-2$
⇒ $2\left( -2 \right)-1=0+B\left( -2-1 \right)\left( -2-3 \right)+0$
⇒ $-5=B\left( -3 \right)\left( -5 \right)$
⇒ $B=-\frac{1}{3}$
Now, put $x=3$, we get
⇒ $2\left( 3 \right)-1=0+0+C\left( 3-1 \right)\left( 3+2 \right)$
⇒ $5=C\left( 2 \right)\left( 5 \right)$
⇒ $C=\frac{1}{2}$
Therefore,
$\Rightarrow \int \frac{2x-1}{\left( x-1 \right)\left( x+2 \right)\left( x-3 \right)}dx=-\int \frac{dx}{6\left( x-1 \right)}-\int \frac{dx}{3\left( x+2 \right)}+\int \frac{dx}{2\left( x-3 \right)}$
$=-\frac{1}{6}\log \left| \left( x-1 \right) \right|-\frac{1}{3}\log \left| \left( x+2 \right) \right|+\frac{1}{2}\log \left| \left( x-3 \right) \right|+C$
$=-\log {{\left( x-1 \right)}^{\frac{1}{6}}}-\log {{\left( x+2 \right)}^{\frac{1}{3}}}+\log {{\left( x-3 \right)}^{\frac{1}{2}}}+C$
$=\log \left| \frac{\sqrt{\left( x-3 \right)}}{{{\left( x-1 \right)}^{\frac{1}{6}}}~{{\left( x+2 \right)}^{\frac{1}{3}}}} \right|+C$
Hence, $\int \frac{2x-1}{\left( x-1 \right)\left( x+2 \right)\left( x-3 \right)}dx=\log \left| \frac{\sqrt{\left( x-3 \right)}}{{{\left( x-1 \right)}^{\frac{1}{6}}}~{{\left( x+2 \right)}^{\frac{1}{3}}}} \right|+C$
39. $\int {{e}^{ta{{n}^{-1}}x}}\left( \frac{1+x+{{x}^{2}}}{1+{{x}^{2}}} \right)dx$
Ans: Let $\text{I}=\int {{e}^{ta{{n}^{-1}}x}}\left( \frac{1+x+{{x}^{2}}}{1+{{x}^{2}}} \right)dx$
⇒ $\text{I}=\int {{e}^{ta{{n}^{-1}}x}}\left( \frac{1+{{x}^{2}}}{1+{{x}^{2}}}+\frac{x}{1+{{x}^{2}}} \right)dx$
⇒ $\text{I}=\int {{e}^{ta{{n}^{-1}}x}}\left( 1+\frac{x}{1+{{x}^{2}}} \right)dx$
⇒ $\text{I}=\int {{e}^{ta{{n}^{-1}}x}}dx+~\int \frac{x{{e}^{ta{{n}^{-1}}x}}}{1+{{x}^{2}}}dx$
⇒ $\text{I}={{\text{I}}_{1}}+{{\text{I}}_{2}}$ …...(i), where,$~{{I}_{1}}=\int {{e}^{ta{{n}^{-1}}x}}dx~~\And ~~{{I}_{2}}=~\int \frac{x{{e}^{ta{{n}^{-1}}x}}}{1+{{x}^{2}}}dx$
Now, ${{\text{I}}_{2}}=~\int \frac{x{{e}^{ta{{n}^{-1}}x}}}{1+{{x}^{2}}}dx$
Put $ta{{n}^{-1}}x=t$
⇒ $\frac{1}{1+{{x}^{2}}}dx=dt$
Therefore,
⇒ ${{\text{I}}_{2}}=~\int {{e}^{t}}.\tan t~dt$
⇒ ${{\text{I}}_{2}}=~\int {{e}^{t}}.\tan t~dt$
⇒ ${{\text{I}}_{2}}=\tan t\int {{e}^{t}}~dt-\int \left( \frac{d}{dx}\tan t.\int {{e}^{t}}~dt \right)dt$
⇒ ${{\text{I}}_{2}}=\tan t.~{{e}^{t}}-\int se{{c}^{2}}t.~~{{e}^{t}}dt+C$
⇒ ${{\text{I}}_{2}}=x.~{{e}^{ta{{n}^{-1}}x}}-\int (1+ta{{n}^{2}}t).~~{{e}^{ta{{n}^{-1}}x}}\frac{1}{1+{{x}^{2}}}dx+C$
⇒ ${{\text{I}}_{2}}=x.~{{e}^{ta{{n}^{-1}}x}}-\int (1+{{x}^{2}}).~~{{e}^{ta{{n}^{-1}}x}}\frac{1}{1+{{x}^{2}}}dx+C$
⇒ ${{\text{I}}_{2}}=x.~{{e}^{ta{{n}^{-1}}x}}-\int {{e}^{ta{{n}^{-1}}x}}dx+C~$
Put values of ${{\text{I}}_{1}}$ and ${{\text{I}}_{2}}$, in equation (i),
⇒ $\text{I}=\int {{e}^{ta{{n}^{-1}}x}}dx+x.~{{e}^{ta{{n}^{-1}}x}}-\int {{e}^{ta{{n}^{-1}}x}}dx+C$
⇒ $\text{I}=x.~{{e}^{ta{{n}^{-1}}x}}+C$
Hence, value of $\int {{e}^{ta{{n}^{-1}}x}}\left( \frac{1+x+{{x}^{2}}}{1+{{x}^{2}}} \right)dx=x.~{{e}^{ta{{n}^{-1}}x}}+C.$
40. $\int si{{n}^{-1}}\sqrt{\frac{x}{a+x}}dx$
Ans: Let $I=~\int si{{n}^{-1}}\sqrt{\frac{x}{a+x}~}~dx$
Put $x=a~ta{{n}^{2}}\theta $
⇒ $dx=a.~2\tan \theta .se{{c}^{2}}\theta ~d\theta $
Therefore,
$\Rightarrow I=~\int si{{n}^{-1}}\sqrt{\frac{a~ta{{n}^{2}}\theta }{a+a~ta{{n}^{2}}\theta }~}~\times $ $~2a\tan \theta .se{{c}^{2}}\theta ~d\theta $
$\Rightarrow I=~\int si{{n}^{-1}}\sqrt{\frac{a~ta{{n}^{2}}\theta }{a\left( 1+~ta{{n}^{2}}\theta \right)}~}~\times $ $~2a\tan \theta .se{{c}^{2}}\theta ~d\theta $
$\Rightarrow I=~\int si{{n}^{-1}}\sqrt{\frac{~ta{{n}^{2}}\theta }{\left( 1+~ta{{n}^{2}}\theta \right)}~}~\times $ $~2a\tan \theta .se{{c}^{2}}\theta ~d\theta $
$\Rightarrow I=~\int si{{n}^{-1}}\sqrt{\frac{~ta{{n}^{2}}\theta }{se{{c}^{2}}\theta }~}~\times $ $~2a\tan \theta .se{{c}^{2}}\theta ~d\theta $
$\Rightarrow I=~\int si{{n}^{-1}}\sqrt{si{{n}^{2}}\theta ~}~\times $ $~2a\tan \theta .se{{c}^{2}}\theta ~d\theta $
$\Rightarrow I=~\int si{{n}^{-1}}\left( \sin \theta \right)~\times $ $~2a\tan \theta .se{{c}^{2}}\theta ~d\theta $
$\Rightarrow I=~2a\int \theta ~\tan \theta .se{{c}^{2}}\theta ~d\theta $
$\Rightarrow I=~2a~\left[ \theta \int ~\tan \theta .se{{c}^{2}}\theta ~d\theta -\int \left( \frac{d}{d\theta }\theta .~~\int \tan \theta .se{{c}^{2}}\theta ~d\theta \right)d\theta \right]$
Put $\tan \theta =t$
$\Rightarrow $ $se{{c}^{2}}\theta ~d\theta =dt$
$\Rightarrow I=~2a~\left[ \theta \int ~t~dt-\int \left( ~~\int t~dt \right)d\theta \right]$
$\Rightarrow I=~2a~\left[ \theta .~\frac{{{t}^{2}}}{2}-\int \frac{{{t}^{2}}}{2}d\theta \right]$
$\Rightarrow I=~2a~\left[ \theta .~\frac{ta{{n}^{2}}\theta }{2}-\int \frac{ta{{n}^{2}}\theta }{2}d\theta \right]$
$\Rightarrow I=~a~\left[ \theta \left( ta{{n}^{2}}\theta \right)-\text{ }\!\!~\!\!\text{ }\int ta{{n}^{2}}\theta ~d\theta \right]$
$\Rightarrow I=~a\theta \left( ta{{n}^{2}}\theta \right)-$ $a\int (se{{c}^{2}}\theta -1)~d\theta $
$\Rightarrow I=~a\theta \left( ta{{n}^{2}}\theta \right)-a\tan \theta +~a\theta +C$
$\Rightarrow I=~a\left[ \frac{x}{a}\left( ta{{n}^{-1}}\sqrt{\frac{x}{a}} \right)-\sqrt{\frac{x}{a}}+~ta{{n}^{-1}}\sqrt{\frac{x}{a}} \right]+C$
Hence, $\int si{{n}^{-1}}\sqrt{\frac{x}{a+x}~}~dx=a\left[ \frac{x}{a}\left( ta{{n}^{-1}}\sqrt{\frac{x}{a}} \right)-\sqrt{\frac{x}{a}}+~ta{{n}^{-1}}\sqrt{\frac{x}{a}} \right]+C$ .
41. $\underset{\frac{\pi }{3}}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\frac{\sqrt{1+\cos x}}{{{\left( 1-\cos x \right)}^{\frac{5}{2}}}}~dx\ldots $
Ans: Let $\text{I}=\underset{\frac{\pi }{3}}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\frac{\sqrt{1+\cos x}}{{{\left( 1-\cos x \right)}^{\frac{5}{2}}}}~dx$
⇒ $\text{I}=\underset{\frac{\pi }{3}}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\frac{\sqrt{2\text{co}{{\text{s}}^{2}}\frac{x}{2}}}{{{\left( 2~si{{n}^{2}}\frac{x}{2} \right)}^{\frac{5}{2}}}}~dx$
⇒ $\text{I}=\frac{\sqrt{2}}{{{2}^{\frac{5}{2}}}}\underset{\frac{\pi }{3}}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\frac{\text{cos }\!\!~\!\!\text{ }\frac{x}{2}}{si{{n}^{5}}\frac{x}{2}}~dx$
Put $\sin \frac{x}{2}=t$
⇒ $\frac{1}{2}\cos \frac{x}{2}~dx=dt$
⇒ $\cos \frac{x}{2}~dx=2dt$
Here, at $x=\frac{\pi }{3}~\Rightarrow t=\frac{1}{2}$ and at $x=\frac{\pi }{2}~\Rightarrow t=\frac{1}{\sqrt{2}}$
Therefore,
⇒ $\text{I}=\frac{\sqrt{2}}{\sqrt{32}}\underset{\frac{1}{2}}{\overset{\frac{1}{\sqrt{2}}}{\mathop \int }}\,\frac{2~dt}{{{t}^{5}}}~$
⇒ $\text{I}=\frac{\sqrt{2}}{4\sqrt{2}}\times 2\underset{\frac{1}{2}}{\overset{\frac{1}{\sqrt{2}}}{\mathop \int }}\,~{{t}^{-5}}dt~$
⇒ $\text{I}=\frac{1}{2}~\left[ \frac{{{t}^{-4}}}{-4} \right]_{\frac{1}{2}}^{\frac{1}{\sqrt{2}}}$
⇒ $\text{I}=-\frac{1}{8}~\left[ {{t}^{-4}} \right]_{\frac{1}{2}}^{\frac{1}{\sqrt{2}}}$
⇒ $\text{I}=-\frac{1}{8}~\left[ {{\left( \frac{1}{\sqrt{2}} \right)}^{-4}}-{{\left( \frac{1}{2} \right)}^{-4}} \right]$
⇒ $\text{I}=-\frac{1}{8}~\left[ {{\left( \sqrt{2} \right)}^{4}}-{{\left( 2 \right)}^{4}} \right]$
⇒ $\text{I}=-\frac{1}{8}~\left[ 4-16 \right]$
⇒ $\text{I}=\frac{1}{8}~\times 12$
⇒ $\text{I}=\frac{3}{2}~$
Hence, $\underset{\frac{\pi }{3}}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\frac{\sqrt{1+\cos x}}{{{\left( 1-\cos x \right)}^{\frac{5}{2}}}}~dx=\frac{3}{2}~.$
42. $\int {{e}^{-3x}}co{{s}^{3}}x~dx$
Ans: Let $\text{I}=~\int {{e}^{-3x}}co{{s}^{3}}x~dx$
⇒ $\text{I}=~\int {{e}^{-3x}}\left( \frac{\cos 3x+3\cos x}{4} \right)~dx$
⇒ $\text{I}=\frac{1}{4}\int \left( {{e}^{-3x}}\cos 3x+3{{e}^{-3x}}\cos x \right)~dx$
⇒ $\text{I}=\frac{1}{4}\int {{e}^{-3x}}\cos 3x~dx+\frac{3}{4}~\int {{e}^{-3x}}\cos x~dx$
⇒ $\text{I}=\frac{1}{4}\text{ }\!\!~\!\!\text{ }{{\text{I}}_{1}}+\frac{3}{4}\text{ }\!\!~\!\!\text{ }{{\text{I}}_{2}}$ ………… eq (i)
Where, ${{\text{I}}_{1}}=\int {{e}^{-3x}}\cos 3x~dx$ and ${{\text{I}}_{2}}=\int 3{{e}^{-3x}}\cos x~dx$
Now, ${{\text{I}}_{1}}=\int {{e}^{-3x}}\cos 3x~dx$
⇒ ${{\text{I}}_{1}}=\cos 3x\int {{e}^{-3x}}~dx-\int \left( \frac{d}{dx}\cos 3x~.\int {{e}^{-3x}}~dx \right)dx$
⇒ ${{\text{I}}_{1}}=\frac{{{e}^{-3x}}}{-3}\cos 3x-\int \left( -3\text{ }\!\!~\!\!\text{ sin}3x~.\frac{{{e}^{-3x}}}{-3} \right)dx$
⇒ ${{\text{I}}_{1}}=\frac{{{e}^{-3x}}}{-3}\cos 3x-\int \left( {{e}^{-3x}}\text{ }\!\!~\!\!\text{ sin}3x~. \right)dx$
⇒ ${{\text{I}}_{1}}=\frac{{{e}^{-3x}}}{-3}\cos 3x-\left[ \sin 3x\int {{e}^{-3x}}dx-\int \left( \frac{d}{dx}\sin 3x~.\int {{e}^{-3x}}~dx \right)dx \right]$
⇒ ${{\text{I}}_{1}}=\frac{{{e}^{-3x}}}{-3}\cos 3x-\left[ \frac{{{e}^{-3x}}}{-3}\sin 3x-\int \left( 3\cos 3x~.\frac{{{e}^{-3x}}}{-3} \right)dx \right]$
⇒ ${{\text{I}}_{1}}=\frac{{{e}^{-3x}}}{-3}\cos 3x-\left[ \frac{{{e}^{-3x}}}{-3}\sin 3x+\int \left( {{e}^{-3x}}\cos 3x~ \right)dx \right]$
⇒ ${{\text{I}}_{1}}=\frac{{{e}^{-3x}}}{-3}\cos 3x-\left[ \frac{{{e}^{-3x}}}{-3}\sin 3x+{{\text{I}}_{1}} \right]$
⇒ ${{\text{I}}_{1}}=\frac{{{e}^{-3x}}}{-3}\cos 3x+\frac{{{e}^{-3x}}}{3}\sin 3x-{{\text{I}}_{1}}$
⇒ $2{{\text{I}}_{1}}=\frac{{{e}^{-3x}}}{-3}\cos 3x+\frac{{{e}^{-3x}}}{3}\sin 3x$
⇒ $2{{\text{I}}_{1}}=\frac{1}{3}{{e}^{-3x}}(-\cos 3x+\sin 3x)+{{C}_{1}}$
⇒ ${{\text{I}}_{1}}=\frac{1}{6}{{e}^{-3x}}(\sin 3x-\cos 3x)+{{C}_{1}}$
Now, ${{\text{I}}_{2}}=\int {{e}^{-3x}}\cos x~dx$
⇒ ${{\text{I}}_{2}}=\int {{e}^{-3x}}\cos x~dx$
⇒ ${{\text{I}}_{2}}=\cos x\int {{e}^{-3x}}~dx-\int \left( \frac{d}{dx}\cos x.\int {{e}^{-3x}}~dx~ \right)dx$
⇒ ${{\text{I}}_{2}}=\frac{{{e}^{-3x}}}{-3}\cos x-\int \left( -\sin x.\frac{{{e}^{-3x}}}{-3}~ \right)dx$
⇒ ${{\text{I}}_{2}}=\frac{{{e}^{-3x}}}{-3}\cos x-\frac{1}{3}\int \left( {{e}^{-3x}}.\sin x~ \right)dx$
⇒ ${{\text{I}}_{2}}=\frac{{{e}^{-3x}}}{-3}\cos x-\frac{1}{3}\left[ \sin x\int {{e}^{-3x}}dx-\int \left( \frac{d}{dx}\sin x.\int {{e}^{-3x}}dx \right)dx \right]$
⇒ ${{\text{I}}_{2}}=\frac{{{e}^{-3x}}}{-3}\cos x-\frac{1}{3}\left[ \frac{{{e}^{-3x}}}{-3}\sin x-\int \left( \frac{{{e}^{-3x}}}{-3}\cos x \right)dx \right]$
⇒ ${{\text{I}}_{2}}=\frac{{{e}^{-3x}}}{-3}\cos x-\frac{1}{3}\left[ \frac{{{e}^{-3x}}}{-3}\sin x+\frac{1}{3}\int \left( {{e}^{-3x}}\cos x \right)dx \right]$
⇒ ${{\text{I}}_{2}}=\frac{{{e}^{-3x}}}{-3}\cos x+\frac{1}{9}{{e}^{-3x}}\sin x-\frac{1}{9}\int \left( {{e}^{-3x}}\cos x \right)dx$
⇒ ${{\text{I}}_{2}}=\frac{{{e}^{-3x}}}{-3}\cos x+\frac{1}{9}{{e}^{-3x}}\sin x-\frac{1}{9}{{\text{I}}_{2}}$
⇒ ${{\text{I}}_{2}}+\frac{{{\text{I}}_{2}}}{9}=\frac{{{e}^{-3x}}}{-3}\cos x+\frac{1}{9}{{e}^{-3x}}\sin x$
⇒ $\frac{10{{\text{I}}_{2}}}{9}=\frac{-3{{e}^{-3x}}.\cos x+{{e}^{-3x}}\sin x}{9}+{{C}_{2}}$
⇒ $10{{\text{I}}_{2}}={{e}^{-3x}}\left( \sin x-3\cos x \right)+{{C}_{2}}$
⇒ ${{\text{I}}_{2}}=\frac{1}{10}{{e}^{-3x}}\left( \sin x-3\cos x \right)+{{C}_{2}}$
Now, put the value of ${{\text{I}}_{1}}$ and ${{\text{I}}_{2}}$ in eq(i), we get
⇒ $\text{I}=\frac{1}{24}{{e}^{-3x}}(\sin 3x-\cos 3x)+\frac{3}{40}{{e}^{-3x}}\left( \sin x-3\cos x \right)+C\text{ }\!\!~\!\!\text{ }$
43. $\int \sqrt{\tan x}~dx$
Ans: Let $\text{I}=\int \sqrt{\tan x}~dx$
Put $\tan x=~{{t}^{2}}$
⇒ $se{{c}^{2}}x~dx=2t~dt$
⇒ $(1+ta{{n}^{2}}x)~dx=2t~dt$
⇒$~dx=\frac{2t}{(1+ta{{n}^{2}}x)~}~dt$
⇒$~dx=\frac{2t}{(1+{{t}^{4}})~}~dt$
Therefore,
⇒ $\text{I}=\int \sqrt{{{t}^{2}}}~.~\frac{2t}{(1+{{t}^{4}})~}~dt$
⇒ $\text{I}=\int ~\frac{2{{t}^{2}}}{(1+{{t}^{4}})~}~dt$
⇒ $\text{I}=\int ~\frac{\left( 1+{{t}^{2}} \right)-\left( 1-{{t}^{2}} \right)}{(1+{{t}^{4}})~}~dt$
⇒ $\text{I}=\int ~\frac{\left( 1+{{t}^{2}} \right)}{(1+{{t}^{4}})~}~dt-\int ~\frac{\left( 1-{{t}^{2}} \right)}{(1+{{t}^{4}})~}~dt$
⇒ $\text{I}=\int ~\frac{\left( \frac{1}{{{t}^{2}}}~+1 \right)}{\left( \frac{1}{{{t}^{2}}}~+{{t}^{2}} \right)~}~dt-\int ~\frac{\left( \frac{1}{{{t}^{2}}}-1 \right)}{~\left( \frac{1}{{{t}^{2}}}~+{{t}^{2}} \right)}~dt$
⇒ $\text{I}=\int ~\frac{\left( \frac{1}{{{t}^{2}}}~+1 \right)}{{{\left( t~-\frac{1}{t} \right)}^{2}}+2~}~dt-\int ~\frac{\left( \frac{1}{{{t}^{2}}}-1 \right)}{~{{\left( t+~\frac{1}{t} \right)}^{2}}-2}~dt$
Put $u=\left( t~-\frac{1}{t} \right)~\Rightarrow du=~\left( \frac{1}{{{t}^{2}}}+1 \right)dt$
And $v=\left( t+\frac{1}{t} \right)~\Rightarrow du=~-\left( \frac{1}{{{t}^{2}}}-1 \right)dt$
Therefore,
⇒ $\text{I}=\int ~\frac{~du}{{{\left( u \right)}^{2}}+2~}~-\int ~\frac{-dv}{~{{\left( v \right)}^{2}}-2}~$
⇒ $\text{I}=\int ~\frac{~du}{{{\left( u \right)}^{2}}+{{\left( \sqrt{2} \right)}^{2}}~}+\int ~\frac{dv}{~{{\left( v \right)}^{2}}-{{\left( \sqrt{2} \right)}^{2}}}$
⇒ $\text{I}=\frac{1}{\sqrt{2}}~ta{{n}^{-1}}\frac{u}{\sqrt{2}}+\frac{1}{2\sqrt{2}}\log \left| \frac{v-\sqrt{2}}{v+\sqrt{2}} \right|+C$
⇒ $\text{I}=\frac{1}{\sqrt{2}}~ta{{n}^{-1}}\frac{\left( t~-\frac{1}{t} \right)}{\sqrt{2}}+\frac{1}{2\sqrt{2}}\log \left| \frac{\left( t~+~\frac{1}{t} \right)-\sqrt{2}}{\left( t~+~\frac{1}{t} \right)+\sqrt{2}} \right|+C$
⇒ $\text{I}=\frac{1}{\sqrt{2}}~ta{{n}^{-1}}\frac{\left( \sqrt{\tan x}~-\frac{1}{\sqrt{\tan x}} \right)}{\sqrt{2}}+\frac{1}{2\sqrt{2}}\log \left| \frac{\left( \sqrt{\tan x}~+~\frac{1}{\sqrt{\tan x}} \right)-\sqrt{2}}{\left( \sqrt{\tan x}~+~\frac{1}{\sqrt{\tan x}} \right)+\sqrt{2}} \right|+C$
⇒ $\text{I}=\frac{1}{\sqrt{2}}~ta{{n}^{-1}}\frac{\left( \tan x~-1 \right)}{\sqrt{2\tan x}}+\frac{1}{2\sqrt{2}}\log \left| \frac{\tan x-\sqrt{2\tan x}~+1}{\tan x~+~\sqrt{2\tan x}~+1} \right|+C$
44. $\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\frac{dx}{{{\left( {{a}^{2}}co{{s}^{2}}x+~{{b}^{2}}si{{n}^{2}}x \right)}^{2}}}$
Ans: Let $I=~\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\frac{dx}{{{\left( {{a}^{2}}co{{s}^{2}}x+~{{b}^{2}}si{{n}^{2}}x \right)}^{2}}}$
Divide numerator and denominator by $co{{s}^{4}}x$
⇒ $I=~\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\frac{\frac{dx}{co{{s}^{4}}x}}{\frac{{{\left( {{a}^{2}}co{{s}^{2}}x+~{{b}^{2}}si{{n}^{2}}x \right)}^{2}}}{co{{s}^{4}}x}}$
⇒ $I=~\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\frac{se{{c}^{4}}x~dx}{{{\left( {{a}^{2}}+~{{b}^{2}}ta{{n}^{2}}x \right)}^{2}}}$
⇒ $I=~\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\frac{\left( ~1+~ta{{n}^{2}}x \right)~se{{c}^{2}}x~dx}{{{\left( {{a}^{2}}+~{{b}^{2}}ta{{n}^{2}}x \right)}^{2}}}$
Put $b\tan x=a\tan t$
⇒ $~b~se{{c}^{2}}x~dx=a~se{{c}^{2}}t~dt$
⇒ $~~se{{c}^{2}}x~dx=\frac{a}{b}~se{{c}^{2}}t~dt$
When $x\to 0,~t\to 0$ and When $x\to \frac{\pi }{2},\tan t\to 0~,~t\to \frac{\pi }{2}$
Therefore,
⇒ $I=~\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\frac{\left( 1+~{{\left( \frac{a}{b}\tan t \right)}^{2}} \right)}{{{a}^{4}}se{{c}^{4}}t}\frac{a}{b}~se{{c}^{2}}t~dt$
⇒ $I=\frac{1}{{{a}^{3}}{{b}^{3}}}\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\left( {{b}^{2}}+{{a}^{2}}ta{{n}^{2}}t \right)co{{s}^{2}}t~dt$
⇒ $I=\frac{1}{{{a}^{3}}{{b}^{3}}}\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\left( {{b}^{2}}co{{s}^{2}}t+{{a}^{2}}si{{n}^{2}}t \right)~dt$
⇒ $I=\frac{1}{{{a}^{3}}{{b}^{3}}}\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\left( {{b}^{2}}~\frac{1+\cos 2t}{2}+{{a}^{2}}~\frac{1-\cos 2t}{2} \right)~dt$
⇒ $I=\frac{1}{2{{a}^{3}}{{b}^{3}}}\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\left[ ({{a}^{2}}+{{b}^{2}})+\left( ~{{b}^{2}}-{{a}^{2}} \right)\cos 2t \right]dt$
⇒ $I=\frac{1}{2{{a}^{3}}{{b}^{3}}}\left[ ({{a}^{2}}+{{b}^{2}})x-\frac{1}{2}\left( ~{{b}^{2}}-{{a}^{2}} \right)\sin 2t~ \right]_{0}^{\frac{\pi }{2}}$
⇒ $I=\frac{1}{2{{a}^{3}}{{b}^{3}}}\left[ ({{a}^{2}}+{{b}^{2}})\frac{\pi }{2}-\frac{1}{2}\left( ~{{b}^{2}}-{{a}^{2}} \right)\sin \pi \right]$
⇒ $I=\frac{1}{2{{a}^{3}}{{b}^{3}}}\left[ ({{a}^{2}}+{{b}^{2}})\frac{\pi }{2} \right]$
⇒ $I=\frac{\pi ({{a}^{2}}+{{b}^{2}})}{4{{a}^{3}}{{b}^{3}}~}$
Hence, $\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\frac{dx}{{{\left( {{a}^{2}}co{{s}^{2}}x+~{{b}^{2}}si{{n}^{2}}x \right)}^{2}}}=\frac{\pi ({{a}^{2}}+{{b}^{2}})}{4{{a}^{3}}{{b}^{3}}~}.$
45. $\underset{0}{\overset{1}{\mathop \int }}\,x\log \left( 1+2x \right)~dx$
Ans: Let $I=\underset{0}{\overset{1}{\mathop \int }}\,x\log \left( 1+2x \right)~dx$
⇒ $I=\left[ \log \left( 1+2x \right)\underset{0}{\overset{1}{\mathop \int }}\,x~dx \right]_{0}^{1}-\underset{0}{\overset{1}{\mathop \int }}\,\left( \frac{d}{dx}\log \left( 1+2x \right).\underset{0}{\overset{1}{\mathop \int }}\,x~dx \right)dx$
⇒ $I=\left[ \frac{{{x}^{2}}}{2}\log \left( 1+2x \right) \right]_{0}^{1}-\underset{0}{\overset{1}{\mathop \int }}\,\left( \frac{2}{1~+~2x}.\frac{{{x}^{2}}}{2} \right)dx$
⇒ $I=\left( \frac{1}{2}\log 3-0 \right)-\underset{0}{\overset{1}{\mathop \int }}\,\left( \frac{{{x}^{2}}}{1~+~2x} \right)dx$
⇒ $I=\left( \frac{1}{2}\log 3-0 \right)-\underset{0}{\overset{1}{\mathop \int }}\,\left( \frac{x}{2}-\frac{\frac{x}{2}}{1~+~2x} \right)dx$
⇒ $I=\left( \frac{1}{2}\log 3 \right)-\frac{1}{2}\underset{0}{\overset{1}{\mathop \int }}\,xdx+\frac{1}{2}\underset{0}{\overset{1}{\mathop \int }}\,\frac{x}{1+2x}dx$
⇒ $I=\frac{1}{2}\log 3-\frac{1}{2}\left( \frac{1}{2}-0 \right)+\frac{1}{4}\underset{0}{\overset{1}{\mathop \int }}\,\frac{1~+~2x-1}{1+2x}dx$
⇒ $I=\frac{1}{2}\log 3-\frac{1}{4}+\frac{1}{4}\underset{0}{\overset{1}{\mathop \int }}\,\frac{1+~2x}{1+2x}dx-\frac{1}{4}\underset{0}{\overset{1}{\mathop \int }}\,\frac{dx}{1+2x}$
⇒ $I=\frac{1}{2}\log 3-\frac{1}{4}+\frac{1}{4}\underset{0}{\overset{1}{\mathop \int }}\,dx-\frac{1}{4}\left[ \frac{1}{2}\log \left( 1+2x \right) \right]_{0}^{1}$
⇒ $I=\frac{1}{2}\log 3-\frac{1}{4}+\frac{1}{4}\left( x \right)_{0}^{1}-\frac{1}{8}\left[ \log \left( 3 \right)-0 \right]$
⇒ $I=\frac{1}{2}\log 3-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}\left[ \log \left( 3 \right) \right]$
⇒ $I=\frac{1}{2}\log 3-\frac{1}{8}\log 3$
⇒ $I=\frac{3}{8}\log 3$
Hence, $\underset{0}{\overset{1}{\mathop \int }}\,x\log \left( 1+2x \right)~dx=\frac{3}{8}\log 3.$
46. $\underset{0}{\overset{\pi }{\mathop \int }}\,x\log \sin x~dx$
Ans: Let $I=\underset{0}{\overset{\pi }{\mathop \int }}\,x\log \sin x~dx$ ……………….. (i)
⇒ $I=\underset{0}{\overset{\pi }{\mathop \int }}\,\left( \pi -x \right)\log \sin \left( \pi -x \right)~dx$
⇒ $I=\underset{0}{\overset{\pi }{\mathop \int }}\,\left( \pi -x \right)\log \sin x~dx$ …………..(ii)
Adding eq (i) and (ii), we get
⇒ $2I=\pi \underset{0}{\overset{\pi }{\mathop \int }}\,\log \sin x~dx$
⇒ $2I=2\pi \underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\log \sin x~dx$
⇒ $I=\pi \underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\log \sin x~dx$ ………………..(iii)
⇒ $I=\pi \underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\log \sin \left( \frac{\pi }{2}-x \right)~dx$
⇒ $I=\pi \underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\log \cos x~dx$ ……………(iv)
Adding eq (iii) and (iv), we get
⇒ $2I=\pi \underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,(\log \sin x+\log \cos x)~dx$
⇒ $2I=\pi \underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\left( \log \sin x.\cos x \right)dx$
⇒ $2I=\pi \underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\left( \log \frac{2}{2}\sin x.\cos x \right)dx$
⇒ $2I=\pi \underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\left( \log \frac{\sin 2x}{2} \right)dx$
⇒ $2I=\pi \underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\left( \log \sin 2x-\log 2 \right)dx$
⇒ $2I=\pi \underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\log \sin 2x~dx-\pi \underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\log 2dx$
⇒ $2I=\pi \underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\log \sin 2x~dx-\pi \log 2~\times \frac{\pi }{2}$
Put $2x=t~\Rightarrow dx=\frac{dt}{2}$
Here, at $x=0\to t=0$ and at $x=\frac{\pi }{2}\to t=\pi $
⇒ $2I=\frac{\pi }{2}\underset{0}{\overset{\pi }{\mathop \int }}\,\log \sin t~dt-\frac{{{\pi }^{2}}}{2}~\log 2~$
⇒ $2I=\frac{\pi }{2}\times 2\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\log \sin t~dt-\frac{{{\pi }^{2}}}{2}~\log 2$
⇒ $2I=\pi \underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\log \sin t~dt-\frac{{{\pi }^{2}}}{2}~\log 2$
⇒ $2I=I-\frac{{{\pi }^{2}}}{2}~\log 2$ [from eq (iii)]
⇒ $I=-\frac{{{\pi }^{2}}}{2}~\log 2$
Hence, $\underset{0}{\overset{\pi }{\mathop \int }}\,x\log \sin x~dx=-\frac{{{\pi }^{2}}}{2}~\log 2.$
47. $\underset{-\frac{\pi }{4}}{\overset{\frac{\pi }{4}}{\mathop \int }}\,\log \left( \sin x+\cos x \right)dx$
Ans: Let $I=\underset{-\frac{\pi }{4}}{\overset{\frac{\pi }{4}}{\mathop \int }}\,\log \left( \sin x+\cos x \right)dx~$……….. (i)
⇒ $I=\underset{-\frac{\pi }{4}}{\overset{\frac{\pi }{4}}{\mathop \int }}\,\log \left[ \sin \left( \frac{\pi }{4}-\frac{\pi }{4}-x \right)+\cos \left( \frac{\pi }{4}-\frac{\pi }{4}-x \right) \right]dx$
⇒ $I=\underset{-\frac{\pi }{4}}{\overset{\frac{\pi }{4}}{\mathop \int }}\,\log \left[ \sin \left( -x \right)+\cos \left( -x \right) \right]dx$
⇒ $I=\underset{-\frac{\pi }{4}}{\overset{\frac{\pi }{4}}{\mathop \int }}\,\log \left( -\sin x+\cos x \right)dx$
⇒ $I=\underset{-\frac{\pi }{4}}{\overset{\frac{\pi }{4}}{\mathop \int }}\,\log \left( \cos x-\sin x \right)dx$ …………..(ii)
Adding eq (i) and (ii),we get
⇒ 2$I=\underset{-\frac{\pi }{4}}{\overset{\frac{\pi }{4}}{\mathop \int }}\,\log \left( \sin x+\cos x \right)dx+\underset{-\frac{\pi }{4}}{\overset{\frac{\pi }{4}}{\mathop \int }}\,\log \left( \cos x-\sin x \right)dx$
⇒ 2$I=\underset{-\frac{\pi }{4}}{\overset{\frac{\pi }{4}}{\mathop \int }}\,\log \left[ \left( \sin x+\cos x \right).\left( \cos x-\sin x \right) \right]dx$
⇒ 2$I=\underset{-\frac{\pi }{4}}{\overset{\frac{\pi }{4}}{\mathop \int }}\,\log \left[ co{{s}^{2}}x-si{{n}^{2}}x \right]dx$
⇒ 2$I=\underset{-\frac{\pi }{4}}{\overset{\frac{\pi }{4}}{\mathop \int }}\,\log \cos 2xdx$
⇒ 2$I=2\underset{0}{\overset{\frac{\pi }{4}}{\mathop \int }}\,\log \cos 2xdx$
⇒ $I=\underset{0}{\overset{\frac{\pi }{4}}{\mathop \int }}\,\log \cos 2xdx$ ……………(iii)
Now, put $2x=t\Rightarrow dx=\frac{dt}{2}$
Here, at $x=0\to t=0$ and at $x=\frac{\pi }{4}\to t=\frac{\pi }{2}$
Therefore,
⇒ $I=\frac{1}{2}\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\log \cos t~dt$ ………… (iv)
⇒ $I=\frac{1}{2}\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\log \cos \left( \frac{\pi }{2}-t \right)~dt$
⇒ $I=\frac{1}{2}\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\log \sin t~dt$ …………..(v)
Adding eq (iv) and (v), we get
⇒ $2I=\frac{1}{2}\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\log \cos t~dt+\frac{1}{2}\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\log \sin t~dt$
⇒ $2I=\frac{1}{2}\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\text{log }\!\!~\!\!\text{ sin}t\cos t~dt$
⇒ $4I=\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\log \frac{2}{2}\sin t\cos t~dt$
⇒ $4I=\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\log \frac{\sin 2t}{2}~dt$
⇒ $4I=\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\left( \log \sin 2t-\log 2 \right)~dt$
⇒ $4I=\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\left( \log \sin \left( \frac{\pi }{2}-2t \right) \right)~dt-\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\log 2~dt$
⇒ $4I=\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\left( \log \cos 2t \right)~dt-\frac{\pi }{2}\log 2$
⇒ $4I=2\underset{0}{\overset{\frac{\pi }{4}}{\mathop \int }}\,\left( \log \cos 2t \right)~dt-\frac{\pi }{2}\log 2$
⇒ $4I=2I-\frac{\pi }{2}\log 2$
⇒ $2I=-\frac{\pi }{2}\log 2$
⇒ $I=-\frac{\pi }{4}\log 2$
Hence, $\underset{-\frac{\pi }{4}}{\overset{\frac{\pi }{4}}{\mathop \int }}\,\log \left( \sin x+\cos x \right)dx=-\frac{\pi }{4}\log 2.$
Objective Type Questions
Choose the correct option from given four options in each of the Exercises from 48 to 63.
48. $\int \frac{\cos 2x-\cos 2\theta ~}{\cos x-\cos \theta }dx$ is equal to
(A) $2(\sin x+x\cos \theta )+C$
(B) $2(\sin x-x\cos \theta )+C$
(C) $2(\sin x+2x\cos \theta )+C$
(D) $2(\sin x-2x\cos \theta )+C$
Ans: Let $\text{I}=~\int \frac{\cos 2x-\cos 2\theta ~}{\cos x-\cos \theta }dx~~$
⇒ $\text{I}=~\int \frac{2~co{{s}^{2}}x-1-\left( 2~co{{s}^{2}}\theta -1 \right)}{\cos x-\cos \theta }dx$
⇒ $\text{I}=~\int \frac{2~co{{s}^{2}}x-1-2~co{{s}^{2}}\theta +1}{\cos x-\cos \theta }dx$
⇒ $\text{I}=~\int \frac{2~co{{s}^{2}}x-2~co{{s}^{2}}\theta }{\cos x-\cos \theta }dx$
⇒ $\text{I}=~\int \frac{2\left( ~co{{s}^{2}}x-~co{{s}^{2}}\theta \right)}{(\cos x-\cos \theta )}dx$
⇒ $\text{I}=~\int \frac{2\left( ~co{{s}^{2}}x-~co{{s}^{2}}\theta \right)}{(\cos x-\cos \theta )}dx$
⇒ $\text{I}=~2\int (\cos x+~\cos \theta )dx$
⇒ $\text{I}=~2\left( \sin x+x\cos \theta \right)+C$
Hence, option (A) is correct answer.
49. $\int \frac{dx}{\sin \left( x-a \right)\sin \left( x-b \right)}~$is equal to
(A) $\sin \left( b-a \right)\log \left| \frac{\sin \left( x-b \right)}{\sin \left( x-a \right)} \right|+C$
(B) $\text{cosec}\left( b-a \right)\log \left| \frac{\sin \left( x-a \right)}{\sin \left( x-b \right)} \right|+C$
(C) $\text{cosec}\left( b-a \right)\log \left| \frac{\sin \left( x-b \right)}{\sin \left( x-a \right)} \right|+C$
(D) $\sin \left( b-a \right)\log \left| \frac{\sin \left( x-b \right)}{\sin \left( x-a \right)} \right|+C$
Ans: Let $\text{I}=~\int \frac{dx}{\sin \left( x-a \right)\sin \left( x-b \right)}~$
⇒ $\text{I}=\frac{1}{\sin \left( b-a \right)}\int \frac{\sin \left( b-a \right)~dx}{\sin \left( x-a \right)\sin \left( x-b \right)}~$
⇒ $\text{I}=\frac{1}{\sin \left( b-a \right)}\int \frac{\sin \left( x-a-~x~+~b \right)~}{\sin \left( x-a \right)\sin \left( x-b \right)}dx~$
⇒ $\text{I}=\frac{1}{\sin \left( b-a \right)}\int \frac{\sin \left\{ \left( x-a \right)-\left( ~x-~b \right) \right\}~}{\sin \left( x-a \right)\sin \left( x-b \right)}~dx$
⇒ $\text{I}=\frac{1}{\sin \left( b-a \right)}\int \frac{\sin \left( x-a \right).\cos \left( x-b \right)-~\sin \left( x-b \right).\cos \left( x-a \right)~~}{\sin \left( x-a \right)\sin \left( x-b \right)}~dx$
⇒ $\text{I}=\frac{1}{\sin \left( b-a \right)}\int \frac{\cos \left( x-b \right)}{\sin \left( x-b \right)}dx-\frac{1}{\sin \left( b-a \right)}\int \frac{\cos \left( x-a \right)}{\sin \left( x-a \right)}dx$
⇒ $\text{I}=\frac{1}{\sin \left( b-a \right)}\int \cot \left( x-b \right)dx-\frac{1}{\sin \left( b-a \right)}\int \cot \left( x-a \right)dx$
⇒ $\text{I}=\frac{1}{\sin \left( b-a \right)}\log \left| \sin \left( x-b \right) \right|-\frac{1}{\sin \left( b-a \right)}\log \left| \sin \left( x-a \right) \right|+C$
⇒ $\text{I}=\frac{1}{\sin \left( b-a \right)}\left[ \log \left| \sin \left( x-b \right) \right|-\log \left| \sin \left( x-a \right) \right| \right]+C$
⇒ $\text{I}=\frac{1}{\sin \left( b-a \right)}\log \left| \frac{\left( x-b \right)}{\left( x-a \right)} \right|+C$
⇒ $\text{I}=\text{cosec}\left( b-a \right)\log \left| \frac{\left( x-b \right)}{\left( x-a \right)} \right|+C$
Hence, option (C) is correct answer.
50. $\int ta{{n}^{-1}}\sqrt{x}~dx$ is equal to
(A) $\left( x+1 \right)ta{{n}^{-1}}\sqrt{x}-\sqrt{x}+C$
(B) $~xta{{n}^{-1}}\sqrt{x}-\sqrt{x}+C$
(C) $\sqrt{x}-xta{{n}^{-1}}\sqrt{x}+C$
(D) $\sqrt{x}-\left( x+1 \right)ta{{n}^{-1}}\sqrt{x}+C$
Ans: Let $\text{I}=\int ta{{n}^{-1}}\sqrt{x}~dx$
⇒ $\text{I}=\int 1.~ta{{n}^{-1}}\sqrt{x}~dx$
⇒ $\text{I}=~ta{{n}^{-1}}\sqrt{x}~\int 1~dx-\int \left( \frac{d}{dx}ta{{n}^{-1}}\sqrt{x}~.\int 1~dx \right)dx$
⇒ $\text{I}=~xta{{n}^{-1}}\sqrt{x}~-\int \left( \frac{1}{1+x}.\frac{1}{2\sqrt{x}}~.x \right)dx$
⇒ $\text{I}=~xta{{n}^{-1}}\sqrt{x}~-\frac{1}{2}\int \left( \frac{\sqrt{x}}{1+x} \right)dx$
Now, put $x={{t}^{2}}$
⇒ $dx=2t~dt$
Therefore,
⇒ $\text{I}=~xta{{n}^{-1}}\sqrt{x}~-\frac{1}{2}\int \frac{t}{1+{{t}^{2}}}.~2t~dt$
⇒ $\text{I}=~xta{{n}^{-1}}\sqrt{x}~-\int \frac{{{t}^{2}}}{1+{{t}^{2}}}~dt$
⇒ $\text{I}=~xta{{n}^{-1}}\sqrt{x}~-\int \frac{1+{{t}^{2}}-1}{1+{{t}^{2}}}~dt$
⇒ $\text{I}=~xta{{n}^{-1}}\sqrt{x}~-\int \left( 1-\frac{1}{1+{{t}^{2}}} \right)~dt$
⇒ $\text{I}=~xta{{n}^{-1}}\sqrt{x}~-\int 1~dt+\int \left( \frac{1}{1+{{t}^{2}}} \right)~dt$
⇒ $\text{I}=~xta{{n}^{-1}}\sqrt{x}~-t+ta{{n}^{-1}}t+C$
⇒ $\text{I}=~xta{{n}^{-1}}\sqrt{x}~-\sqrt{x}+ta{{n}^{-1}}\sqrt{x}+C$
⇒ $\text{I}=\left( x+1 \right)ta{{n}^{-1}}\sqrt{x}~-\sqrt{x}+C$
Hence, option (A) is correct answer.
51. $\int {{e}^{x}}{{\left( \frac{1-x~}{1+{{x}^{2}}} \right)}^{2}}dx$ is equal to
(A) $\frac{{{e}^{x}}}{1+{{x}^{2}}}+C~~$
(B) $\frac{-{{e}^{x}}}{1+{{x}^{2}}}+C~~$
(C) $\frac{{{e}^{x}}}{{{\left( 1+{{x}^{2}} \right)}^{2}}}+C~~$
(D) $\frac{-{{e}^{x}}}{{{\left( 1+{{x}^{2}} \right)}^{2}}}+C~~$
Ans: Let $\text{I}=\int {{e}^{x}}{{\left( \frac{1-x~}{1+{{x}^{2}}} \right)}^{2}}dx$
⇒ $\text{I}=\int {{e}^{x}}\left[ \frac{1+{{x}^{2}}-2x~}{{{\left( 1+{{x}^{2}} \right)}^{2}}} \right]dx$
⇒ $\text{I}=\int {{e}^{x}}\left[ \frac{1+{{x}^{2}}~}{{{\left( 1+{{x}^{2}} \right)}^{2}}}-\frac{2x~}{{{\left( 1+{{x}^{2}} \right)}^{2}}} \right]dx$
⇒ $\text{I}=\int {{e}^{x}}\left[ \frac{1~}{\left( 1+{{x}^{2}} \right)}-\frac{2x~}{{{\left( 1+{{x}^{2}} \right)}^{2}}} \right]dx$
⇒ $\text{I}=\frac{{{e}^{x}}~}{\left( 1+{{x}^{2}} \right)}+C$
Hence, option (A) is correct answer.
52. $\int \frac{{{x}^{9}}}{{{\left( 4{{x}^{2}}+1 \right)}^{6}}}dx$ is equal to
(A) $\frac{1}{5x}{{\left( 4+\frac{1}{{{x}^{2}}} \right)}^{-5}}+C$
(B) $\frac{1}{5}{{\left( 4+\frac{1}{{{x}^{2}}} \right)}^{-5}}+C$
(C) $\frac{1}{10x}{{\left( 1+4 \right)}^{-5}}+C$
(D) $\frac{1}{10}{{\left( 4+\frac{1}{{{x}^{2}}} \right)}^{-5}}+C$
Ans: Let $\text{I}=\int \frac{{{x}^{9}}}{{{\left( 4{{x}^{2}}+1 \right)}^{6}}}dx$
⇒ $\text{I}=\int \frac{{{x}^{9}}}{{{\left[ {{x}^{2}}\left( 4+\frac{1}{{{x}^{2}}} \right) \right]}^{6}}}dx$
⇒ $\text{I}=\int \frac{{{x}^{9}}}{{{x}^{12}}{{\left( 4+\frac{1}{{{x}^{2}}} \right)}^{6}}}dx$
⇒ $\text{I}=\int \frac{dx}{{{x}^{3}}{{\left( 4+\frac{1}{{{x}^{2}}} \right)}^{6}}}$
Now, put $4+\frac{1}{{{x}^{2}}}=t$
⇒ $-\frac{2}{{{x}^{3}}}dx=dt$
⇒ $\frac{dx}{{{x}^{3}}}=-\frac{dt}{2}$
Therefore,
⇒ $\text{I}=-\frac{1}{2}\int \frac{dt}{{{\left( t \right)}^{6}}}$
⇒ $\text{I}=-\frac{1}{2}\int {{t}^{-6}}~dt$
⇒ $\text{I}=-\frac{1}{2}~\times ~\frac{{{t}^{-5}}}{-5}+C$
⇒ $\text{I}=\frac{1}{10}{{\left( 4+\frac{1}{{{x}^{2}}} \right)}^{-5}}+C$
Hence, option (D) is correct answer.
53. $\int \frac{dx}{\left( x+2 \right)\left( {{x}^{2}}+1 \right)}=a\log \left| 1+{{x}^{2}} \right|+b~ta{{n}^{-1}}x+\frac{1}{5}\log \left| x+2 \right|+C,~~$ then
(A). $a=-\frac{1}{10}~,~b=-\frac{2}{5}$
(B) $a=\frac{1}{10}~,~b=-\frac{2}{5}$
(C) $a=-\frac{1}{10}~,~b=\frac{2}{5}$
(D) $a=\frac{1}{10}~,~b=\frac{2}{5}$
Ans: Let $I=\int \frac{dx}{\left( x+2 \right)\left( {{x}^{2}}+1 \right)}~$
Now, $\frac{1}{\left( x+2 \right)\left( {{x}^{2}}+1 \right)}=\frac{A}{\left( x+2 \right)}+\frac{Bx+C}{\left( {{x}^{2}}+1 \right)}$
⇒ $\frac{1}{\left( x+2 \right)\left( {{x}^{2}}+1 \right)}=\frac{A\left( {{x}^{2}}+1 \right)+\left( Bx+C \right)~\left( x+2 \right)}{\left( {{x}^{2}}+1 \right)}$
⇒ $1=A\left( {{x}^{2}}+1 \right)+\left( Bx+C \right)~\left( x+2 \right)$
⇒ $1=A{{x}^{2}}+A+B{{x}^{2}}+2Bx+Cx+2C$
⇒ $1={{x}^{2}}\left( A+B \right)+x\left( 2B+C \right)+\left( A+2C \right)$
On comparing both sides, we get
⇒ $A+B=0,~~2B+C=0$ and $A+2C=1$
From above equations, we get
⇒ $A=\frac{1}{5}~,~B=-\frac{1}{5}$ and $C=\frac{2}{5}$
Therefore, $\frac{1}{\left( x+2 \right)\left( {{x}^{2}}+1 \right)}=\frac{1}{5\left( x+2 \right)}+\frac{-\frac{x}{5}+\frac{2}{5}}{\left( {{x}^{2}}+1 \right)}$
⇒ $\int \frac{dx}{\left( x+2 \right)\left( {{x}^{2}}+1 \right)}=\int \frac{dx}{5\left( x+2 \right)}+\int \frac{-\frac{x}{5}+\frac{2}{5}}{\left( {{x}^{2}}+1 \right)}dx$
⇒ $\int \frac{dx}{\left( x+2 \right)\left( {{x}^{2}}+1 \right)}=\int \frac{dx}{5\left( x+2 \right)}-\frac{1}{5}\int \frac{x}{\left( {{x}^{2}}+1 \right)}dx+\frac{2}{5}\int \frac{1}{\left( {{x}^{2}}+1 \right)}dx$
$=\frac{1}{5}\log \left| x+5 \right|-\frac{1}{10}\log \left| 1+{{x}^{2}} \right|+\frac{2}{5}ta{{n}^{-1}}x+C$
Here, $a=-\frac{1}{10}$ and $b=\frac{2}{5}$
Hence, option (C) is correct answer.
54. $\int \frac{{{x}^{3}}}{x+1}dx$ is equal to
(A) $x+\frac{{{x}^{2}}}{2}+\frac{{{x}^{3}}}{3}-\log \left| 1-x \right|+C$
(B) $x+\frac{{{x}^{2}}}{2}-\frac{{{x}^{3}}}{3}-\log \left| 1-x \right|+C$
(C) $x-\frac{{{x}^{2}}}{2}-\frac{{{x}^{3}}}{3}-\log \left| 1+x \right|+C$
(D) $x-\frac{{{x}^{2}}}{2}+\frac{{{x}^{3}}}{3}-\log \left| 1+x \right|+C$
Ans: Let $\text{I}=\int \frac{{{x}^{3}}}{x+1}dx$
⇒ $\text{I}=\int \frac{{{x}^{3}}+1-1}{x+1}dx$
⇒ $\text{I}=\int \frac{{{x}^{3}}+1}{x+1}dx-\int \frac{1}{x+1}dx$
⇒ $\text{I}=\int \left( {{x}^{2}}-x+1 \right)dx-\int \frac{1}{x+1}dx$
⇒ $\text{I}=\frac{{{x}^{3}}}{3}-\frac{{{x}^{2}}}{2}+x-\log \left| x+1 \right|+C$
Hence, option (D) is correct answer.
55. $\int \frac{x+\sin x}{1+\cos x}~dx$ is equal to
(A) $\log \left| 1+\cos x \right|+C$
(B) $\log \left| x+\sin x \right|+C$
(C) $x-\tan \frac{x}{2}+C$
(D) $x\tan \frac{x}{2}+C$
Ans: Let $\text{I}=\int \frac{x+\sin x}{1+\cos x}~dx$
⇒ $\text{I}=\int \frac{x}{1+\cos x}~dx+\int \frac{\sin x}{1+\cos x}~dx$
⇒ $\text{I}={{\text{I}}_{1}}+{{\text{I}}_{2}}$ ………(i), where, ${{\text{I}}_{1}}=\int \frac{x}{1+\cos x}~dx$ & ${{\text{I}}_{2}}=\int \frac{\sin x}{1+\cos x}~dx$
Now, ${{\text{I}}_{1}}=\int \frac{x}{1+\cos x}~dx$
⇒ ${{\text{I}}_{1}}=\int \frac{x}{2~co{{s}^{2}}\frac{x}{2}}~dx$
⇒ ${{\text{I}}_{1}}=\frac{1}{2}\int x~se{{c}^{2}}\frac{x}{2}~dx$
⇒ ${{\text{I}}_{1}}=\frac{1}{2}\left[ x\int ~se{{c}^{2}}\frac{x}{2}~dx-~\int \left( \frac{d}{dx}x.\int ~se{{c}^{2}}\frac{x}{2}~dx~~ \right)dx \right]$
⇒ ${{\text{I}}_{1}}=\frac{1}{2}\left[ 2x\tan \frac{x}{2}-~2\int \tan \frac{x}{2}~dx \right]+C$
⇒ ${{\text{I}}_{1}}=x\tan \frac{x}{2}-~\int \tan \frac{x}{2}~dx+C$ …………. (ii)
And also we have,
⇒ ${{\text{I}}_{2}}=\int \frac{\sin x}{1+\cos x}~dx$
⇒ ${{\text{I}}_{2}}=\int \frac{2\sin \frac{x}{2}~.\cos \frac{x}{2}}{2~co{{s}^{2}}\frac{x}{2}}~dx$
⇒ ${{\text{I}}_{2}}=\int \frac{\sin \frac{x}{2}~}{\cos \frac{x}{2}}~dx$
⇒ ${{\text{I}}_{2}}=\int \tan \frac{x}{2}~dx$ …………..(iii)
Now, put the value of ${{\text{I}}_{1}}$ and ${{\text{I}}_{2}}$ in eq (i),
⇒ $\text{I}=x\tan \frac{x}{2}-~\int \tan \frac{x}{2}~dx+C+\int \tan \frac{x}{2}~dx$
⇒ $\text{I}=x\tan \frac{x}{2}+C$
Hence, option (D) is correct answer.
56. $\int \frac{{{x}^{3}}~dx}{\sqrt{1+~{{x}^{2}}}}=a{{\left( 1+{{x}^{2}} \right)}^{\frac{3}{2}}}+b\sqrt{1+{{x}^{2}}}+C,$ then
(A) $a=\frac{1}{3}~,~b=1$
(B) $a=\frac{-1}{3}~,~b=1$
(C) $a=\frac{-1}{3}~,~b=-1$
(D) $a=\frac{1}{3}~,~b=-1$
Ans: Let $\text{I}=\int \frac{{{x}^{3}}~dx}{\sqrt{1+~{{x}^{2}}}}$
⇒ $\text{I}=\int \frac{{{x}^{2}}.x~dx}{\sqrt{1+~{{x}^{2}}}}$
Put $1+~{{x}^{2}}={{t}^{2}}$
⇒ $2x~dx=2t~dt$
⇒ $x~dx=t~dt$
Therefore,
⇒ $\text{I}=\int \frac{\left( {{t}^{2}}-1 \right)t~dt}{t}$
⇒ $\text{I}=\int \left( {{t}^{2}}-1 \right)dt$
⇒ $\text{I}=\frac{{{t}^{3}}}{3}-t+C$
⇒ $\text{I}=\frac{{{\left( \sqrt{1+{{x}^{2}}} \right)}^{3}}}{3}-\sqrt{1+{{x}^{2}}}+C$
⇒ $\text{I}=\frac{{{\left( 1+{{x}^{2}} \right)}^{\frac{3}{2}}}}{3}-\sqrt{1+{{x}^{2}}}+C$
Here, $a=\frac{1}{3}~,~b=-1$
Hence, option (D) is correct answer.
57 $\underset{-\frac{\pi }{4}}{\overset{\frac{\pi }{4}~}{\mathop \int }}\,~\frac{dx}{1+\cos 2x}$ is equal to
(A) 1
(B) 2
(C) 3
(D) 4
Ans: Let $\text{I}=\underset{-\frac{\pi }{4}}{\overset{\frac{\pi }{4}~}{\mathop \int }}\,~\frac{dx}{1+\cos 2x}$
⇒ $\text{I}=\underset{-\frac{\pi }{4}}{\overset{\frac{\pi }{4}~}{\mathop \int }}\,~\frac{dx}{2~co{{s}^{2}}x}$
⇒ $\text{I}=\frac{1}{2}\underset{-\frac{\pi }{4}}{\overset{\frac{\pi }{4}~}{\mathop \int }}\,~se{{c}^{2}}xdx$
⇒ $\text{I}=\frac{1}{2}~\left[ \tan x \right]_{-\frac{\pi }{4}~}^{\frac{\pi }{4}~}$
⇒ $\text{I}=\frac{1}{2}~\left[ \tan \frac{\pi }{4}~-\tan \left( -\frac{\pi }{4} \right)~ \right]$
⇒ $\text{I}=\frac{1}{2}~\left[ 1+1 \right]$
⇒ $\text{I}=1$
Hence, option (A) is correct answer.
58. $\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\sqrt{1-\sin 2x}~dx$ is equal to
(A) $2\sqrt{2}$
(B) $2\left( \sqrt{2}+1 \right)$
(C) 2
(D) $2\left( \sqrt{2}-1 \right)$
Ans: Let $\text{I}=~\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\sqrt{1-\sin 2x}~dx$
⇒ $\text{I}=~\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\sqrt{si{{n}^{2}}x+co{{s}^{2}}x-2\sin x.\cos x~}~dx$
⇒ $\text{I}=~\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\sqrt{{{\left( \sin x-\cos x \right)}^{2}}~}~dx$
⇒ $\text{I}=~\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,~\left| \sin x-\cos x \right|~dx$
Since, $(\sin x-\cos x)\le 0$, $x\in \left[ 0,~\frac{\pi }{4} \right]$ and $(\sin x-\cos x)\ge 0$, $x\in ~\left[ \frac{\pi }{4},\frac{\pi }{2} \right]$
Therefore,
⇒ $\text{I}=~-\underset{0}{\overset{\frac{\pi }{4}}{\mathop \int }}\,~\left( \sin x-\cos x \right)dx+\underset{\frac{\pi }{4}}{\overset{\frac{\pi }{2}}{\mathop \int }}\,~\left( \sin x-\cos x \right)dx$
⇒ $\text{I}=~-\left[ -\cos x-\sin x \right]_{0}^{\frac{\pi }{4}}+\left[ -\cos x-\sin x \right]_{\frac{\pi }{4}}^{\frac{\pi }{2}}$
⇒ $\text{I}=~\left[ \cos x+\sin x \right]_{0}^{\frac{\pi }{4}}-\left[ \cos x+\sin x \right]_{\frac{\pi }{4}}^{\frac{\pi }{2}}$
⇒ $\text{I}=~\left[ \cos \frac{\pi }{4}+\sin \frac{\pi }{4}-1-0 \right]-\left[ \cos \frac{\pi }{2}+\sin \frac{\pi }{2}-\cos \frac{\pi }{4}-\sin \frac{\pi }{4} \right]$
⇒ $\text{I}=~\left[ \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-1 \right]-\left[ 1-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} \right]$
⇒ $\text{I}=~\left[ \sqrt{2}-1 \right]-\left[ 1-\sqrt{2} \right]$
⇒ $\text{I}=~\sqrt{2}-1-1+\sqrt{2}$
⇒ $\text{I}=~2\sqrt{2}-2$
⇒ $\text{I}=~2(\sqrt{2}-1)$
Hence, option (D) is correct answer.
59. $\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\cos x~{{e}^{\sin x}}dx$ is equal to …………..
Ans: Let $\text{I}=\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\cos x~{{e}^{\sin x}}~dx$
Put $\sin x=t$
⇒ $\cos xdx=dt$
Now, at $x=0\Rightarrow t=0$ and at $x=\frac{\pi }{2}\Rightarrow t=1$
Therefore,
⇒ $\text{I}=\underset{0}{\overset{1}{\mathop \int }}\,{{e}^{t}}~dx~$
⇒ $\text{I}=\left[ {{e}^{t}} \right]_{0}^{1}$
⇒ $\text{I}={{e}^{1}}-{{e}^{0}}$
⇒ $\text{I}=e-1$
Hence, $\underset{0}{\overset{\frac{\pi }{2}}{\mathop \int }}\,\cos x~{{e}^{\sin x}}~dx=e-1.$
60. $\int \frac{x+3~}{{{\left( x+4 \right)}^{2}}}~{{e}^{x}}dx$ = ………
Ans: Let $\text{I}=\int \frac{x+3~}{{{\left( x+4 \right)}^{2}}}~{{e}^{x}}dx$
⇒ $\text{I}=\int {{e}^{x}}\left[ \frac{x+4-1~}{{{\left( x+4 \right)}^{2}}} \right]~dx$
⇒ $\text{I}=\int {{e}^{x}}\left[ \frac{x+4~}{{{\left( x+4 \right)}^{2}}}-\frac{1~}{{{\left( x+4 \right)}^{2}}} \right]~dx$
⇒ $\text{I}=\int {{e}^{x}}\left[ \frac{1~}{x+4}-\frac{1~}{{{\left( x+4 \right)}^{2}}} \right]~dx$
⇒ $\text{I}=\frac{{{e}^{x}}~}{x+4}+C$
Hence, $\int \frac{x+3~}{{{\left( x+4 \right)}^{2}}}~{{e}^{x}}dx=\frac{{{e}^{x}}~}{x+4}+C.$
Fill in the blanks in each of the following Exercise 60 to 63.
61. $\underset{0}{\overset{a}{\mathop \int }}\,\frac{1}{1+4{{x}^{2}}}dx=\frac{\pi }{8}$, then $a=~$………..
Ans: here, we have $\underset{0}{\overset{a}{\mathop \int }}\,\frac{1}{1+4{{x}^{2}}}dx=\frac{\pi }{8}$
⇒ $\frac{1}{4}\underset{0}{\overset{a}{\mathop \int }}\,\frac{1}{\frac{1}{4}+{{x}^{2}}}dx=\frac{\pi }{8}$
⇒ $\underset{0}{\overset{a}{\mathop \int }}\,\frac{1}{{{\left( \frac{1}{2} \right)}^{2}}+{{x}^{2}}}dx=\frac{\pi }{2}$
⇒ $\left[ \frac{1}{\frac{1}{2}}~ta{{n}^{-1}}\left( \frac{x}{\frac{1}{2}} \right) \right]_{0}^{a}=\frac{\pi }{2}$
⇒ $\left[ 2~ta{{n}^{-1}}\left( 2x \right) \right]_{0}^{a}=\frac{\pi }{2}$
⇒ $ta{{n}^{-1}}\left( 2a \right)-ta{{n}^{-1}}\left( 0 \right)=\frac{\pi }{4}$
⇒ $ta{{n}^{-1}}\left( 2a \right)=\frac{\pi }{4}$
⇒ $2a=\tan \frac{\pi }{4}$
⇒ $2a=1$
⇒ $a=\frac{1}{2}$
Hence, value of a is $\frac{1}{2}$ .
Therefore, $\underset{0}{\overset{a}{\mathop \int }}\,\frac{1}{1+4{{x}^{2}}}dx=\frac{\pi }{8}$, then $a=\frac{1}{2}~.$
62. $\int \frac{\sin x}{3+4~co{{s}^{2}}x}dx=$
Ans: Let $\text{I}=\int \frac{\sin x}{3+4~co{{s}^{2}}x}dx$
Put $\cos x=t$
⇒ $-\sin x~dx=dt$
⇒ $\sin x~dx=-dt$
Therefore,
⇒ $\text{I}=-\int \frac{dt}{3+4~{{t}^{2}}}$
⇒ $\text{I}=-\frac{1}{4}\int \frac{dt}{\frac{3}{4}+~{{t}^{2}}}$
⇒ $\text{I}=-\frac{1}{4}\int \frac{dt}{{{\left( \frac{\sqrt{3}}{2} \right)}^{2}}+~{{t}^{2}}}$
⇒ $\text{I}=-\frac{1}{4}~.~\frac{1}{\frac{\sqrt{3}}{2}}ta{{n}^{-1}}\left( \frac{t}{\frac{\sqrt{3}}{2}} \right)+C$
⇒ $\text{I}=-~\frac{1}{2\sqrt{3}}ta{{n}^{-1}}\left( \frac{2t}{\sqrt{3}} \right)+C$
⇒ $\text{I}=-~\frac{1}{2\sqrt{3}}ta{{n}^{-1}}\left( \frac{2\cos x}{\sqrt{3}} \right)+C$
Hence, $\int \frac{\sin x}{3+4~co{{s}^{2}}x}dx=-~\frac{1}{2\sqrt{3}}ta{{n}^{-1}}\left( \frac{2\cos x}{\sqrt{3}} \right)+C.$
63. The value of $\mathop{\int }_{-\pi }^{\pi }si{{n}^{3}}x.co{{s}^{2}}x~dx$ is …………..
Ans: Let $\text{I}=\mathop{\int }_{-\pi }^{\pi }si{{n}^{3}}x.co{{s}^{2}}x~dx~$…………. (i)
⇒ $\text{I}=\mathop{\int }_{-\pi }^{\pi }si{{n}^{3}}\left( \pi -\pi -x \right).co{{s}^{2}}\left( \pi -\pi -x \right)~dx$
⇒ $\text{I}=\mathop{\int }_{-\pi }^{\pi }si{{n}^{3}}\left( -x \right).co{{s}^{2}}\left( -x \right)~dx$
⇒ $\text{I}=-\mathop{\int }_{-\pi }^{\pi }si{{n}^{3}}x.co{{s}^{2}}x~dx$ …………….(ii)
Now, adding eq (i) and (ii), we get
⇒ $2\text{I}=0$
⇒ $\text{I}=0$
Hence, the value of $\mathop{\int }_{-\pi }^{\pi }si{{n}^{3}}x.co{{s}^{2}}x~dx$ is 0.
Importance of Integrals
Students will get a brief knowledge about the concepts that are mentioned in the PDF. The Exemplar PDF of Chapter 7 - Integrals is designed as per the latest syllabus pattern advised by the Central Board of Secondary Education. The PDF is structured by the expert faculty of Vedantu, specifically structured to enhance the learning and understanding capacity of the students. The students following the Exemplar with full dedication will surely achieve good results.
Class 12 is the most important academic year for students. All the Chapters in all the subjects are very important, students do have pressure to perform well in the Exams. Chapter 7 Integrals is such an important Chapter that focuses on the concepts used in other Chapters as well. This Chapter increases the thinking process of the students, questions asked from this Chapter are not difficult so this Chapter can be quite scoring for all students.
Students neglecting the concepts of this Chapter face trouble as the concepts present in this Chapter also help to solve other Chapter questions as well. NCERT Exemplar of Chapter 7 consists of a textbook solution for Class 12. There are many important concepts but the most important concepts are mentioned below. This Chapter basically focuses on the questions asked on topics like -
Integrations
Properties of Integrals
Geometrical representation
Comparison between integration and differentiation
Definite Integral - limit of the sum
Different
methods of integration
Properties of definite Integral and some other important question
Those students who want to have a good grip on the concepts must focus on the structured solutions mentioned in the Exemplar. Students can register themselves on Vedantu’s website for other important topics. Vedantu also offers online study support to the students, the online present material consists of additional questions, notes, sample papers, Exemplars. All the study material is designed and approved by the community of faculty that consists of a group of teachers that focuses on the quality of the content present from the Vedantu’s end.
FAQs on NCERT Exemplar for Class 12 Maths Chapter-7 (Book Solutions)
1. From where do students can get the Exemplar for Chapter 7 Integral for Class 12?
The NCERT Exemplar for Chapter 7 Integral of Class 12 is available on Vedantu.com. Students reach out to the website and can get a free PDF for Chapter 7. The PDF of Chapter 7 - Integrals consists of important topics and additional questions that will help students to learn and practice to score more marks in their Examinations. The PDF is available at Vedantu’s official website for free.
2. Is Chapter 7 important for Class 12 students?
Class 12 is the most important Class for students as well as the toughest Class. Students do have mental pressure to perform well in their boards. All the chapters of every subject are important as Chapter 7 Integrals. This Chapter increases the thinking process of the students, questions asked from this Chapter are not really tough though this Chapter can be a score booster for all students. Students neglecting the concepts of this Chapter go through problems as the concepts present in the respective Chapter help to solve other Chapter questions as well.
3. What are the important concepts for the Chapter 7 Integrals?
Chapter 7 Integrals do have many important concepts and the most important topics are -Integrations, Properties of Integrals, Geometrical representation, Comparison between integration and differentiation , Definite Integral - limit of the sum, Different methods of integration, Properties of definite Integral, and some other important question. Students focusing on these topics will surely achieve good marks.
4. How is Vedantu beneficial for Class 12 students?
Vedantu is a website that focuses on the development of students. This site helps students to avail important study material like notes, sample papers, Exemplars, additional questions, and others. Students can get free study by just registering themselves on Vedantu’s official website i.e. Vedantu.com. Vedantu also offers live Classes for the students to re-understand the concepts taught in Class. Students can clear their doubts through live sessions.