Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 12 Chemistry Chapter 4 - Chemical Kinetics

ffImage
Last updated date: 17th Apr 2024
Total views: 776.1k
Views today: 12.76k

NCERT Class 12 Chemistry Chapter 4: Complete Resource for Chemical Kinetics

Chemical Kinetics is a branch of Chemistry which deals with chemical reaction, its factors and mechanism. It is closely related to the chemical reaction and physical process. Based on its varying rate, chemical kinetics Class 12 is divided into swift, prolonged and moderate reaction.


Don't Miss Out: Get Your Free JEE Main Rank Predictor 2024 Instantly!


Students learn various subtopics related to chemical kinetics like dependence on the rate of concentration, integrated equations, collision theory, catalyst, temperature dependence, and molecularity mechanism.


Chapter 4 Chemistry Class 12 is a vital part of the fundamental development of the concepts of Physical Chemistry. Though studying without an appropriate guide can be problematic for students as their knowledge of concepts can become vague. This would further lead to poor scores in board exams. This is why a student should refer to Chemical Kinetics Class 12 CBSE NCERT Solution.


Class:

NCERT Solutions for Class 12

Subject:

Class 12 Chemistry

Chapter Name:

Chapter 4 - Chemical Kinetics

Content-Type:

Text, Videos, Images and PDF Format

Academic Year:

2024-25

Medium:

English and Hindi

Available Materials:

  • Chapter Wise

  • Exercise Wise

Other Materials

  • Important Questions

  • Revision Notes



Chemical Kinetics Chapter at a Glance - Class 12 NCERT Solutions

  • Chemical kinetics is the study of chemical reactions with respect to reaction rates, effect of various variables, rearrangement of atoms and formation of intermediates.

  • The rate of a reaction is concerned with decrease in concentration of reactants or increase in the concentration of products per unit time.

  • It can be expressed as an instantaneous rate at a particular instant of time and average rate over a large interval of time.

  • A number of factors such as temperature, concentration of reactants and catalyst affect the rate of a reaction.

  • Mathematical representation of the rate of a reaction is given by rate law. 

  • It has to be determined experimentally and cannot be predicted.

  • Order of a reaction with respect to a reactant is the power of its concentration which appears in the rate law equation. The order of a reaction is the sum of all such powers of concentration of terms for different reactants.

  • Rate constant is the proportionality factor in the rate law.

  • Rate constant and order of a reaction can be determined from rate law or its integrated rate equation.

  • Molecularity is defined only for an elementary reaction. Its values are limited from 1 to 3 whereas order can be 0, 1, 2, 3, an integer or even a fraction.

  • Molecularity and order of an elementary reaction are the same.

  • Temperature dependence of rate constants is described by Arrhenius equation,k=Ae-Ea/RT, Ea corresponds to the activation energy and is given by the energy difference between activated complex and the reactant molecules, and A (Arrhenius factor or pre-exponential factor) corresponds to the collision frequency.

  • The equation clearly shows that increase of temperature or lowering of Ea will lead to an increase in the rate of reaction and presence of a catalyst lowers the activation energy by providing an alternate path for the reaction.

  • According to collision theory, another factor P called steric factor which refers to the orientation of molecules which collide, is important and contributes to effective collisions, thus, modifying the Arrhenius equation to k = PZABe E-a/RT

Competitive Exams after 12th Science
More Free Study Material for Chemical Kinetics
icons
Revision notes
696k views 12k downloads
icons
Important questions
670.8k views 12k downloads

Access NCERT Solution for Class 12 Chapter 4- Chemical Kinetics

Subtopics for Class 12 Chemistry Chapter 4 – Chemical Kinetics

Class 12 NCERT Solutions Chemistry Chapter 4 - Chemical Kinetics is fundamental to many of the concepts that you will study in the future. Given below are a few related subtopics that students should be aware of while studying Chapter 4 of Class 12 Chemistry.

  1. Rate of a Chemical Reaction

  2. Factors Influencing the Rate of a Reaction

    1. Dependence of Rate on Concentration

    2. Rate Expression and Rate Constant

    3. Order of a Reaction

    4. Molecularity of a Reaction

  3. Integrated Rate Equations

    1. Zero Order Reactions

    2. First-Order Reactions

    3. Half-Life of a Reaction

  4. Pseudo First Order Reaction

  5. Temperature Dependence of the Rate of a Reaction

    1. Effect of Catalyst Ex 4.6 – Collision Theory of Chemical Reactions


Mastering Class 12 Chemistry Chapter 4: Chemical Kinetics - Question and Answers, and Tips for Success

Intext Exercise

1. For the reaction $\text{R}\to \text{P}$,  the concentration of a reactant changes from 0.03 M to 0.02 M in 25 minutes. Calculate the average rate of reaction using units of time both in minutes and seconds.

Ans: The average rate of the reaction can be calculated by dividing the change in the rate of decreasing the rate of reactant by the time taken. This is given below:

\[\text{Average rate = - }\frac{\text{ }\!\!\Delta\!\!\text{  }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}{\text{ }\!\!\Delta\!\!\text{ t}}\] 

This can be written as:

\[\text{Average rate = - }\frac{{{\text{ }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}_{\text{2}}}\text{- }\!\![\!\!\text{ R}{{\text{ }\!\!]\!\!\text{ }}_{\text{1}}}}{{{\text{t}}_{\text{2}}}\text{-}{{\text{t}}_{\text{1}}}}\] 

\[{{\text{R}}_{\text{1}}}\text{ = 0}\text{.03 M}\] 

\[{{\text{R}}_{2}}\text{ = 0}\text{.02 M}\] 

\[{{\text{t}}_{\text{2}}}\text{ - }{{\text{t}}_{\text{1}}}\text{ = 25 min}\] 

Putting the values, we get:

\[\text{Average rate = - }\frac{0.02-0.03}{25}\] 

\[\text{Average rate = - }\frac{-0.01}{25}=4\text{  }\!\!\times\!\!\text{  1}{{\text{0}}^{-4}}\text{ M mi}{{\text{n}}^{-1}}\]

So, the average rate in minutes will be $4\text{  }\!\!\times\!\!\text{  1}{{\text{0}}^{-4}}\text{ M mi}{{\text{n}}^{-1}}$ 

Now, to find the average rate in seconds we have to divide the above answer by 60. So, the answer will be:

\[\text{Average rate = - }\frac{4\text{  }\!\!\times\!\!\text{  1}{{\text{0}}^{-4}}\text{ }}{60}=\text{ 6}\text{. 66  }\!\!\times\!\!\text{  1}{{\text{0}}^{-6}}\text{ M }{{\text{s}}^{-1}}\] 

Therefore, the average rate in seconds will be $6.66\text{  }\!\!\times\!\!\text{  1}{{\text{0}}^{-6}}\text{ M }{{\text{s}}^{-1}}$ 


2. In a reaction, 2A $\to $ Products, the concentration of A decreases from $\text{0}\text{.5 mol }{{\text{L}}^{\text{-1}}}$ to $\text{0}\text{.4 mol }{{\text{L}}^{\text{-1}}}$ in 10 minutes. Calculate the rate during this interval.

Ans: The average rate of the reaction can be calculated by dividing the change in the rate of decreasing the rate of reactant by the time taken. This is given below: 

\[\text{Average rate = - }\frac{1}{2}\frac{\text{ }\!\!\Delta\!\!\text{  }\!\![\!\!\text{ A }\!\!]\!\!\text{ }}{\text{ }\!\!\Delta\!\!\text{ t}}\] 

This is due the fact that the reaction given is:

2A $\to $ Products

So, the average rate will be written as:

\[\text{Average rate = - }\frac{1}{2}\frac{{{\text{ }\!\![\!\!\text{ A }\!\!]\!\!\text{ }}_{\text{2}}}\text{- }\!\![\!\!\text{ A}{{\text{ }\!\!]\!\!\text{ }}_{\text{1}}}}{{{\text{t}}_{\text{2}}}\text{-}{{\text{t}}_{\text{1}}}}\] 

\[{{\text{A}}_{\text{1}}}\text{ = 0}\text{.5 M}\] 

\[{{\text{A}}_{2}}\text{ = 0}\text{.4 M}\] 

\[{{\text{t}}_{\text{2}}}\text{ - }{{\text{t}}_{\text{1}}}\text{ = 10 min}\] 

Putting the values, we get:

\[\text{Average rate = - }\frac{1}{2}\text{  }\!\!\times\!\!\text{  }\frac{0.4-0.5}{10}\] 

\[\text{Average rate = - }\frac{1}{2}\text{  }\!\!\times\!\!\text{  }\frac{-0.1}{10}=5\text{  }\!\!\times\!\!\text{  1}{{\text{0}}^{-3}}\text{ M mi}{{\text{n}}^{-1}}\]

So, the average rate will be $\text{5  }\!\!\times\!\!\text{  1}{{\text{0}}^{-3}}\text{ M mi}{{\text{n}}^{-1}}$


3. For a reaction, $\text{A + B }\to \text{ Product}$, the rate law is given by: $\text{r = k  }\!\![\!\!\text{ A}{{\text{ }\!\!]\!\!\text{ }}^{\text{1/2}}}\text{  }\!\![\!\!\text{ B}{{\text{ }\!\!]\!\!\text{ }}^{\text{2}}}$. What is the order of the reaction?

Ans: The order of the reaction can be calculated by adding the stoichiometry coefficients of the reactants in the given rate of the reaction.     

Given the rate is $\text{r = k  }\!\![\!\!\text{ A}{{\text{ }\!\!]\!\!\text{ }}^{\text{1/2}}}\text{  }\!\![\!\!\text{ B}{{\text{ }\!\!]\!\!\text{ }}^{\text{2}}}$ 

So, the order will be:

\[\text{Order = 2 + }\frac{\text{1}}{\text{2}}\text{ = 2}\text{.5}\] 

So, the order of the reaction is 2.5.


4. The conversion of the molecules X to Y follows second order kinetics. If concentration of x is increased to three times how will it affect the rate of formation of Y?

Ans: The reaction will be:

\[\text{X }\to \text{ Y}\] 

As the question says that this reaction follows the second order reaction, we can write the rate law equation as:

\[\text{Rate = k }\!\![\!\!\text{ X}{{\text{ }\!\!]\!\!\text{ }}^{\text{2}}}\text{ = k}{{\text{a}}^{\text{2}}}\]  

If [X] = a mol/ L

It is said that the concentration of X increases by three times, so we can write:

[X] = 3a mol/ L

Therefore, the rate of reaction will be:

\[\text{Rate = k (3a}{{\text{)}}^{\text{2}}}\text{ = 9 k}{{\text{a}}^{\text{2}}}\] 

Thus, the rate of the reaction will increase by 9 times or the rate formation will increase by 9 times.


5. A first order reaction has a rate constant $\text{1}\text{.15  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-3}}}\text{ }{{\text{s}}^{\text{-1}}}$. How long will 5 g reactant take to reduce to 3 g?  

Ans: The initial amount of the reactant is given as 5 g. We can write:

\[{{\text{ }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}_{\text{0}}}\text{ = 5 g}\]

The final amount of the reactant is given as 3 g. We can write:

[R] = 3 g

We are also given the value of rate constant as:

\[\text{Rate constant = 1}\text{.15  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-3}}}\text{ }{{\text{s}}^{\text{-1}}}\] 

We know that the reaction is a 1st order reaction, the time can be calculated by:

\[\text{t = }\frac{\text{2}\text{.303}}{\text{k}}\text{ log}\frac{{{\text{ }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}_{\text{0}}}}{\text{ }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}\] 

Putting the values in the above formula, we get:

\[\text{t = }\frac{\text{2}\text{.303}}{1.15\text{ x 1}{{\text{0}}^{-3}}}\text{ log}\frac{5}{3}\] 

\[\text{t = }\frac{\text{2}\text{.303}}{1.15\text{  }\!\!\times\!\!\text{  1}{{\text{0}}^{-3}}}\text{  }\!\!\times\!\!\text{  0}\text{.2219}\] 

t = 444 seconds

So, the time taken will be 444 seconds.


6. Time required to decompose $\text{S}{{\text{O}}_{\text{2}}}\text{C}{{\text{l}}_{\text{2}}}$ to half its initial amount is 60 minutes. If the decomposition is a first order reaction, calculate the rate constant of the reaction.

Ans: We are given that the decomposition of $\text{S}{{\text{O}}_{\text{2}}}\text{C}{{\text{l}}_{\text{2}}}$ is a first order reaction. So, we can write:

\[{{\text{t}}_{\text{1/2}}}\text{ = }\frac{\text{0}\text{.693}}{\text{k}}\] 

It is mentioned that the time required for the initial amount to become half is 60 minutes.

\[{{\text{t}}_{\text{1/2}}}\text{ = 60 min}\]

Therefore, $\text{k = }\frac{\text{0}\text{.693}}{{{\text{t}}_{\text{1/2}}}}$ 

Putting the value, we get:

\[\text{k = }\frac{\text{0}\text{.693}}{\text{60 }\!\!\times\!\!\text{ 60}}\text{ = 1}\text{.925 }\!\!~\!\!\text{  }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-4}}}\text{ }{{\text{s}}^{\text{-1}}}\]

Thus, the rate constant is $\text{1}\text{.925 }\!\!~\!\!\text{  }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-4}}}\text{ }{{\text{s}}^{\text{-1}}}$.


7. What will be the effect of temperature on rate constant?

Ans: An increase of 10 degrees in temperature causes a reaction's rate constant to almost double in size. In any case, the Arrhenius equation gives the exact temperature dependency of a chemical reaction rate.

The Arrhenius equation is given below:

\[\text{k = A }{{\text{e}}^{\text{-}{{\text{E}}_{\text{a}}}\text{/Rt}}}\] 

Where, A is the Arrhenius factor or the frequency factor,

T is the temperature,

R is the gas constant,

${{\text{E}}_{\text{a}}}$ is the activation energy.


8. The rate of the chemical reaction doubles for an increase of 10 K in absolute temperature from 298 K. Calculate ${{\text{E}}_{\text{a}}}$.

Ans: The formula that can be used to solve the question is:

\[\text{log}\frac{{{\text{k}}_{\text{1}}}}{{{\text{k}}_{\text{2}}}}\text{ = }\frac{{{\text{E}}_{\text{a}}}}{\text{2}\text{.303R}}\left[ \frac{{{\text{T}}_{\text{2}}}\text{-}{{\text{T}}_{\text{1}}}}{{{\text{T}}_{\text{1}}}{{\text{T}}_{\text{2}}}} \right]\] 

${{\text{T}}_{\text{1}}}$ temperature given is absolute temperature and it is equal to 298 K.

${{\text{T}}_{2}}$ = 298 + 10 = 308 K

It is given that the rate of the chemical reaction  double for an increase of 10 K, therefore, we can write the values of rate constant as:

\[{{\text{k}}_{\text{1}}}\text{ = x}\] 

\[{{\text{k}}_{\text{2}}}\text{ = 2x}\] 

Also, $\text{R = 8}\text{.314 J }{{\text{K}}^{\text{-1}}}\text{ mo}{{\text{l}}^{\text{-1}}}$ 

Now, putting all the values in the formula, we get:

\[\text{log}\frac{\text{2x}}{\text{x}}\text{ = }\frac{{{\text{E}}_{\text{a}}}}{\text{2}\text{.303  }\!\!\times\!\!\text{  8}\text{.314}}\left[ \frac{\text{10}}{\text{298  }\!\!\times\!\!\text{  308}} \right]\] 

\[\text{log2 = }\frac{{{\text{E}}_{\text{a}}}}{\text{2}\text{.303  }\!\!\times\!\!\text{  8}\text{.314}}\left[ \frac{\text{10}}{\text{298  }\!\!\times\!\!\text{  308}} \right]\] 

\[{{\text{E}}_{\text{a}}}\text{ = }\frac{2.303\text{  }\!\!\times\!\!\text{  8}\text{.314  }\!\!\times\!\!\text{  298  }\!\!\times\!\!\text{  308  }\!\!\times\!\!\text{  log 2}}{10}\] 

\[{{\text{E}}_{\text{a}}}\text{ = 52897}\text{.78  J mo}{{\text{l}}^{-1}}\] 

\[{{\text{E}}_{\text{a}}}\text{ = 52}\text{.89 kJ mo}{{\text{l}}^{-1}}\]


9. The activation energy for the reaction $\text{2H}{{\text{I}}_{\text{(g)}}}\to {{\text{H}}_{\text{2}}}_{_{\text{(g)}}}\text{+}{{\text{I}}_{\text{2}}}_{_{\text{(g)}}}$ is $\text{209}\text{.5 kJ mo}{{\text{l}}^{\text{-1}}}$  at 581 K. Calculate the fraction of molecules of molecules having energy equal to or greater than activation energy.

Ans: We are given the activation energy as $\text{209}\text{.5 kJ mo}{{\text{l}}^{\text{-1}}}$

T = 581 K

\[\text{R = 8}\text{.314 J }{{\text{K}}^{\text{-1}}}\text{ mo}{{\text{l}}^{\text{-1}}}\]

Now, the fraction of molecules of reactants having energy equal to or greater than activation energy is given as:

\[\text{x = }{{\text{e}}^{{{\text{E}}_{\text{a}}}\text{/RT}}}\] 

\[\text{ln x =}\frac{\text{-}{{\text{E}}_{\text{a}}}}{\text{RT}}\] 

\[\text{log x =}\frac{\text{-}{{\text{E}}_{\text{a}}}}{\text{2}\text{.303 RT}}\] 

\[\text{log x =}\frac{209500}{\text{2}\text{.303  }\!\!\times\!\!\text{  8}\text{.314  }\!\!\times\!\!\text{  581}}\text{ }=\text{ }18.8323\]

Now, taking the antilog:

x = Antilog (18.8323)

\[\text{x = 1}\text{.471  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-19}}}\] 


NCERT Exercise

1. From the rate expression for the following reactions, determine their order of reaction and the dimension of the rate constants.

(i). $\text{3 NO(g) }\to {{\text{N}}_{\text{2}}}\text{O(g)  Rate = k }\!\![\!\!\text{ NO}{{\text{ }\!\!]\!\!\text{ }}^{\text{2}}}$ 

Ans: We are given:

\[\text{Rate = k }\!\![\!\!\text{ NO}{{\text{ }\!\!]\!\!\text{ }}^{\text{2}}}\] 

From this we can see that the order of the reaction = 2

\[\text{k = }\frac{\text{rate}}{{{\text{ }\!\![\!\!\text{ No }\!\!]\!\!\text{ }}^{\text{2}}}}\] 

Dimensions will be:

\[\text{k = }\frac{\text{mol }{{\text{L}}^{\text{-1}}}\text{ }{{\text{s}}^{\text{-1}}}}{{{\text{(mol }{{\text{L}}^{\text{-1}}}\text{)}}^{\text{2}}}}\] 

\[\text{=}\frac{\text{mol }{{\text{L}}^{\text{-1}}}\text{ }{{\text{s}}^{\text{-1}}}}{\text{mo}{{\text{l}}^{\text{2}}}\text{ }{{\text{L}}^{\text{2}}}}\] 

\[\text{= L mo}{{\text{l}}^{\text{-1}}}\text{ }{{\text{s}}^{\text{-1}}}\]


(ii).${{\text{H}}_{\text{2}}}{{\text{O}}_{\text{2}}}\text{(aq)+3}{{\text{I}}^{\text{-}}}\text{(aq)+2}{{\text{H}}^{\text{+}}}\to \text{2}{{\text{H}}_{\text{2}}}\text{O(l)+I}_{\text{3}}^{\text{-}}\text{  Rate=k }\!\![\!\!\text{ }{{\text{H}}_{\text{2}}}{{\text{O}}_{\text{2}}}\text{ }\!\!]\!\!\text{  }\!\![\!\!\text{ }{{\text{I}}^{\text{-}}}\text{ }\!\!]\!\!\text{ }$  

Ans: Ans: \[Rate =k[{{H}_{2}}{{O}_{2}}][{{I}^{-}}]\] 

From this we can see that the order of the reaction = 2

\[k=\frac{rate}{[{{H}_{2}}{{O}_{2}}][{{I}^{-}}]}\]

Dimensions will be:

\[\text{k = }\frac{\text{mol }{{\text{L}}^{\text{-1}}}\text{ }{{\text{s}}^{\text{-1}}}}{{{\text{(mol }{{\text{L}}^{\text{-1}}}\text{)}}^{\text{2}}}}\] 

\[\text{=}\frac{\text{mol }{{\text{L}}^{\text{-1}}}\text{ }{{\text{s}}^{\text{-1}}}}{\text{mo}{{\text{l}}^{\text{2}}}\text{ }{{\text{L}}^{\text{2}}}}\] 

\[\text{= L mo}{{\text{l}}^{\text{-1}}}\text{ }{{\text{s}}^{\text{-1}}}\]


(iii). $\text{C}{{\text{H}}_{\text{3}}}\text{CHO(g)}\to \text{C}{{\text{H}}_{\text{4}}}\text{(g)+ CO(g)  Rate = k }\!\![\!\!\text{ C}{{\text{H}}_{\text{3}}}\text{CHO}{{\text{ }\!\!]\!\!\text{ }}^{\text{3/2}}}$ 

Ans: \[\text{Rate = k }\!\![\!\!\text{ C}{{\text{H}}_{3}}CHO{{]}^{3/2}}\] 

From this we can see that the order of the reaction = $\frac{3}{2}$ 

\[\text{k = }\frac{\text{rate}}{{{\text{ }\!\![\!\!\text{ C}{{\text{H}}_{3}}CHO]}^{\frac{3}{2}}}}\] 

Dimensions will be:

\[\text{k = }\frac{\text{mol }{{\text{L}}^{\text{-1}}}\text{ }{{\text{s}}^{\text{-1}}}}{{{\text{(mol }{{\text{L}}^{\text{-1}}}\text{)}}^{3/2}}}\] 

\[\text{=}\frac{\text{mol }{{\text{L}}^{\text{-1}}}\text{ }{{\text{s}}^{\text{-1}}}}{\text{mo}{{\text{l}}^{\frac{3}{2}}}\text{ }{{\text{L}}^{\frac{3}{2}}}}\] 

\[\text{= }{{\text{L}}^{\frac{1}{2}}}\text{ mo}{{\text{l}}^{\text{-}\frac{1}{2}}}\text{ }{{\text{s}}^{\text{-1}}}\]


(iv). ${{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}\text{Cl(g)}\to {{\text{C}}_{\text{2}}}{{\text{H}}_{\text{4}}}\text{(g)+ HCl(g)  Rate = k }\!\![\!\!\text{ }{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}\text{Cl }\!\!]\!\!\text{ }$ 

Ans: \[\text{Rate = k }\!\![\!\!\text{ }{{\text{C}}_{2}}{{H}_{5}}Cl]\] 

From this we can see that the order of the reaction = 1

\[\text{k = }\frac{\text{rate}}{\text{ }\!\![\!\!\text{ }{{\text{C}}_{2}}{{H}_{5}}Cl]}\] 

Dimensions will be:

\[\text{k = }\frac{\text{mol }{{\text{L}}^{\text{-1}}}\text{ }{{\text{s}}^{\text{-1}}}}{\text{(mol }{{\text{L}}^{\text{-1}}})}\] 

\[\text{= }{{\text{s}}^{\text{-1}}}\]


2. For a reaction:

$\text{2A+B }\to \text{ }{{\text{A}}_{\text{2}}}\text{B}$ 

The $rate=k[A]{{[B]}^{2}}$ with $\text{k = 2}\text{.0 x 1}{{\text{0}}^{\text{-6}}}\text{ mo}{{\text{l}}^{\text{-2}}}\text{ }{{\text{L}}^{\text{2}}}\text{ }{{\text{s}}^{\text{-1}}}$.

Calculate the initial rate of the reaction when $\text{ }\!\![\!\!\text{ A }\!\!]\!\!\text{  = 0}\text{.1 mol }{{\text{L}}^{\text{-1}}}$, $\text{ }\!\![\!\!\text{ B }\!\!]\!\!\text{  = 0}\text{.2 mol }{{\text{L}}^{\text{-1}}}$. Calculate the rate of reaction after [A] is reduced to $\text{0}\text{.06 mol }{{\text{L}}^{\text{-1}}}$.

Ans: We are given the rate of the reaction as:

\[rate=k[A]{{[B]}^{2}}\]

Putting the values in this, we get the rate as:

\[\text{rate = 2}\text{.0  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-6}}}\text{  }\!\!\times\!\!\text{  0}\text{.1  }\!\!\times\!\!\text{  (0}\text{.2}{{\text{)}}^{2}}\] 

\[\text{rate = 8}\text{.0  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-9}}}\text{ mol }{{\text{L}}^{-1}}\text{ }{{\text{s}}^{-1}}\]  

When [A] is reduced from $0.10\text{ mol }{{\text{L}}^{-1}}$ to $0.06\text{ mol }{{\text{L}}^{-1}}$. So, the amount of [A] reacted will be:

\[=0.10-0.06=0.04\text{ mol }{{\text{L}}^{-1}}\]

Therefore, the concentration of B reacted will be:

\[=\frac{1}{2}\text{  }\!\!\times\!\!\text{  0}\text{.04 = 0}\text{.02 mol }{{\text{L}}^{-1}}\] 

Hence, new [B] = 0.2 – 0.02 = $0.18\text{ mol }{{\text{L}}^{-1}}$ 

Now, the new rate of the reaction will be:

\[\text{rate = 2}\text{.0  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-6}}}\text{  }\!\!\times\!\!\text{  0}\text{.06  }\!\!\times\!\!\text{  (0}\text{.18}{{\text{)}}^{2}}\] 

\[\text{rate = 3}\text{.89  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-9}}}\text{ mol }{{\text{L}}^{-1}}\text{ }{{\text{s}}^{-1}}\]  

Therefore, the rate of the reaction is $\text{3}\text{.89  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-9}}}\text{ mol }{{\text{L}}^{-1}}\text{ }{{\text{s}}^{-1}}$.


3. The decomposition of $\text{N}{{\text{H}}_{\text{3}}}$ on the platinum surface is zero order reaction. What are the rates of production of ${{\text{N}}_{\text{2}}}$ and ${{\text{H}}_{\text{2}}}$ if $\text{k = 2}\text{.5  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-4}}}\text{ mo}{{\text{l}}^{\text{-1}}}\text{ L }{{\text{s}}^{\text{-1}}}$ ?

Ans: The following equation represents the breakdown of ammonia on the platinum surface.

\[\text{2N}{{\text{H}}_{{{\text{3}}_{\text{(g)}}}}}\xrightarrow{\text{Pt}}{{\text{N}}_{\text{2}}}_{_{\text{(g)}}}\text{+3}{{\text{H}}_{\text{2}}}_{_{\text{(g)}}}\] 

Therefore, we can write the rate of the reaction as:

\[\text{Rate = -}\frac{\text{1}}{\text{2}}\frac{\text{d }\!\![\!\!\text{ N}{{\text{H}}_{\text{3}}}\text{ }\!\!]\!\!\text{ }}{\text{dt}}\text{ = }\frac{\text{d }\!\![\!\!\text{ }{{\text{N}}_{\text{2}}}\text{ }\!\!]\!\!\text{ }}{\text{dt}}\text{ = }\frac{\text{1}}{\text{3}}\frac{\text{d }\!\![\!\!\text{ }{{\text{H}}_{\text{2}}}\text{ }\!\!]\!\!\text{ }}{\text{dt}}\] 

But we are given that the reaction is a zero order reaction.

So, \[\text{Rate = -}\frac{\text{1}}{\text{2}}\frac{\text{d }\!\![\!\!\text{ N}{{\text{H}}_{\text{3}}}\text{ }\!\!]\!\!\text{ }}{\text{dt}}\text{ = }\frac{\text{d }\!\![\!\!\text{ }{{\text{N}}_{\text{2}}}\text{ }\!\!]\!\!\text{ }}{\text{dt}}\text{ = }\frac{\text{1}}{\text{3}}\frac{\text{d }\!\![\!\!\text{ }{{\text{H}}_{\text{2}}}\text{ }\!\!]\!\!\text{ }}{\text{dt}}\text{ = 2}\text{.5  }\!\!\times\!\!\text{  1}{{\text{0}}^{-4}}\text{ mol }{{\text{L}}^{-1}}\text{ }{{\text{s}}^{-1}}\] 

Thus, the rate of production of ${{\text{N}}_{\text{2}}}$ will be:

\[\text{ }\frac{\text{d }\!\![\!\!\text{ }{{\text{N}}_{\text{2}}}\text{ }\!\!]\!\!\text{ }}{\text{dt}}\text{ = 2}\text{.5  }\!\!\times\!\!\text{  1}{{\text{0}}^{-4}}\text{ mol }{{\text{L}}^{-1}}\text{ }{{\text{s}}^{-1}}\]

And the rate of production of ${{\text{H}}_{\text{2}}}$ will be:

\[\frac{\text{d }\!\![\!\!\text{ }{{\text{H}}_{\text{2}}}\text{ }\!\!]\!\!\text{ }}{\text{dt}}\text{ = 3  }\!\!\times\!\!\text{  2}\text{.5  }\!\!\times\!\!\text{  1}{{\text{0}}^{-4}}\text{ mol }{{\text{L}}^{-1}}\text{ }{{\text{s}}^{-1}}=7.\text{5  }\!\!\times\!\!\text{  1}{{\text{0}}^{-4}}\text{ mol }{{\text{L}}^{-1}}\text{ }{{\text{s}}^{-1}}\] 


4. The decomposition of dimethyl ether leads to the formation of $\text{C}{{\text{H}}_{\text{4}}}$, ${{\text{H}}_{\text{2}}}$ and CO and the reaction rate is given by $\text{Rate = k  }\!\![\!\!\text{ C}{{\text{H}}_{\text{3}}}\text{OC}{{\text{H}}_{\text{3}}}{{\text{ }\!\!]\!\!\text{ }}^{\text{3/2}}}$ 

The rate of reaction is followed by increase in pressure in a closed vessel, so the rate can also be expressed in terms of the partial pressure of dimethyl ether, i.e.,

$\text{Rate = k (}{{\text{P}}_{\text{C}{{\text{H}}_{\text{3}}}\text{OC}{{\text{H}}_{\text{3}}}}}{{\text{)}}^{\text{3/2}}}$ 

If the pressure is measured in bar and time in minutes, then what are the units of rate and rate   constants?

Ans: If the pressure is measured in bar and time in minutes, then unit of rate will be:

\[\text{= bar mi}{{\text{n}}^{\text{-1}}}\] 

We are given the rate of the reaction as: $\text{Rate = k  }\!\![\!\!\text{ C}{{\text{H}}_{\text{3}}}\text{OC}{{\text{H}}_{\text{3}}}{{\text{ }\!\!]\!\!\text{ }}^{\text{3/2}}}$ 

Therefore, $\text{k = }\frac{\text{Rate}}{\text{  }\!\![\!\!\text{ C}{{\text{H}}_{\text{3}}}\text{OC}{{\text{H}}_{\text{3}}}{{\text{ }\!\!]\!\!\text{ }}^{\text{3/2}}}}$ 

So, we can write the units of rate constant as:

\[\text{k = }\frac{\text{bar mi}{{\text{n}}^{\text{-1}}}}{\text{ba}{{\text{r}}^{\text{3/2}}}}\text{ = ba}{{\text{r}}^{\text{-1/2}}}\text{ mi}{{\text{n}}^{\text{-1}}}\]

So, the units are \[\text{ba}{{\text{r}}^{\text{-1/2}}}\text{ mi}{{\text{n}}^{\text{-1}}}\]


6. Mention the factors that affect the rate of a chemical reaction.

Ans: Factors that influence a reaction's speed include.

  • Reactant nature: The rate of reaction is affected by the kind of reactant. For example, ionic compound reactions are quicker than covalent compound reactions.

  • The state of the reactants: Solid reactions are sluggish, liquid reactions are rapid, and gas reactions are very quick.

  • Temperature: In addition, temperature has a significant impact on response rate. Every 10 degrees Celsius increase in temperature doubles the pace of reaction.

  • Presence of catalyst: The rate of reaction is also affected by the presence of a catalyst in the reaction. It enhances the pace of reaction by increasing reaction surface area, by generating unstable intermediates with the substrate, and by offering a lower activation energy alternative path.


7. A reaction is second order with respect to a reactant. How is the rate of reaction affected if the concentration of the reactant is:

(i). Doubled

Ans: Let us assume that the concentration of the reactant be [A] = a

Rate of the reaction will be:

\[\text{R = k }\!\![\!\!\text{ A}{{\text{ }\!\!]\!\!\text{ }}^{\text{2}}}\text{ = k}{{\text{a}}^{\text{2}}}\] 

It is said that the concentration of A increases by two times, so we can write:

[A] = 2a mol/ L

Therefore, the rate of reaction will be:

\[\text{Rate = k (2a}{{\text{)}}^{\text{2}}}\text{ = 4 k}{{\text{a}}^{\text{2}}}\] 

Thus, the rate of the reaction will increase by 4 times.


(ii). Reduced to half

It is said that the concentration of A reduced to half, so we can write:

[X] = $\frac{1}{2}$ a mol/ L

Therefore, the rate of reaction will be:

\[\text{Rate = k }{{\left[ \frac{1}{2}a \right]}^{2}}\text{ = }\frac{1}{4}\text{ k}{{\text{a}}^{\text{2}}}\] 

Thus, the rate of the reaction will reduce by ¼ times.


8. What is the effect of temperature on the rate constant of a reaction? How can this temperature effect on rate constant be represented quantitatively?

Ans: An increase of 10 degrees in temperature causes a reaction's rate constant to almost double in size. In any case, the Arrhenius equation gives the exact temperature dependency of a chemical reaction rate.

The Arrhenius equation is given below:

\[\text{k = A }{{\text{e}}^{\text{-}{{\text{E}}_{\text{a}}}\text{/Rt}}}\] 

Where, A is the Arrhenius factor or the frequency factor,

T is the temperature,

R is the gas constant,

${{\text{E}}_{\text{a}}}$ is the activation energy.

The formula can also be written as:

\[\text{log}\frac{{{\text{k}}_{\text{2}}}}{{{\text{k}}_{\text{1}}}}\text{ = }\frac{{{\text{E}}_{\text{a}}}}{\text{2}\text{.303R}}\left[ \frac{{{\text{T}}_{\text{2}}}\text{-}{{\text{T}}_{\text{1}}}}{{{\text{T}}_{\text{1}}}{{\text{T}}_{\text{2}}}} \right]\] 

Where ${{\text{k}}_{\text{2}}}$is the rate constant at temperature \[{{\text{T}}_{\text{2}}}\] 

${{\text{k}}_{1}}$ is the rate constant at temperature ${{\text{T}}_{\text{1}}}$ 


9. In a pseudo first order hydrolysis of ester in water, the following results were obtained

t/s

0

30

60

90

$\text{ }\!\![\!\!\text{ Ester }\!\!]\!\!\text{ mol }{{\text{L}}^{\text{-1}}}$

0.55

0.31

0.17

0.085

(i). Calculate the average rate of reaction between the time interval 30 to 60 seconds.

Ans: Between the time interval of 30 to 60 sec the average rate of reaction will be calculated as:

\[\text{= }\frac{\text{d }\!\![\!\!\text{ Ester }\!\!]\!\!\text{ }}{\text{dt}}\] 

Putting the values from the data given in the question, we can write:

\[\text{= }\frac{0.31-0.17}{60-30}=\frac{0.14}{30}\] 

\[\text{= 4}\text{.67  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-3}}}\text{ mol }{{\text{L}}^{\text{-1}}}\text{ }{{\text{s}}^{\text{-1}}}\] 


(ii). Calculate  the pseudo first order rate constant for the hydrolysis of ester.

Ans: The rate law formula for pseudo first order reaction will be:

\[\text{k = }\frac{\text{2}\text{.303}}{\text{t}}\text{ log}\frac{{{\text{ }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}_{\text{0}}}}{\text{ }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}\]

Now, when t = 30 s, then we rate constant will be:

\[{{\text{k}}_{1}}\text{ = }\frac{\text{2}\text{.303}}{30}\text{ log}\frac{0.55}{0.31}=1.91\text{  }\!\!\times\!\!\text{  1}{{\text{0}}^{-2}}\text{ }{{\text{s}}^{-1}}\] 

Now, when t = 60 s, then we rate constant will be:

\[{{\text{k}}_{2}}\text{ = }\frac{\text{2}\text{.303}}{60}\text{ log}\frac{0.55}{0.17}=1.96\text{  }\!\!\times\!\!\text{  1}{{\text{0}}^{-2}}\text{ }{{\text{s}}^{-1}}\]

Now, when t = 90 s, then we rate constant will be:

\[{{\text{k}}_{3}}\text{ = }\frac{\text{2}\text{.303}}{90}\text{ log}\frac{0.55}{0.085}=2.075\text{  }\!\!\times\!\!\text{  1}{{\text{0}}^{-2}}\text{ }{{\text{s}}^{-1}}\]

So, we can calculate the average rate constant as:

\[\text{k = }\frac{{{\text{k}}_{\text{1}}}\text{ + }{{\text{k}}_{\text{2}}}\text{ + }{{\text{k}}_{\text{3}}}}{\text{3}}\] 

\[\text{=1}\text{.98  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-2}}}\text{ }{{\text{s}}^{\text{-1}}}\]


10. A reaction is first order in A and second order in B.

(i). Write the differential rate equation

Ans: The differential rate equation can be written as:

\[\text{-}\frac{\text{d }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}{\text{dt}}\text{ = k }\!\![\!\!\text{ A }\!\!]\!\!\text{  }\!\![\!\!\text{ B}{{\text{ }\!\!]\!\!\text{ }}^{\text{2}}}\] 


(ii). How is the rate affected by increasing the concentration of B three times?

Ans: The concentration of B is increased by 3 times, then B =3B

Therefore, the rate will be:

 \[\text{-}\frac{\text{d }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}{\text{dt}}\text{ = k }\!\![\!\!\text{ A }\!\!]\!\!\text{  }\!\![\!\!\text{ 3B}{{\text{ }\!\!]\!\!\text{ }}^{\text{2}}}=9\text{ }\times \text{  }\!\![\!\!\text{ A }\!\!]\!\!\text{  }\!\![\!\!\text{ B}{{\text{ }\!\!]\!\!\text{ }}^{\text{2}}}\]  

Therefore, the rate will increase by 9 times.


(iii). How is the rate affected when the concentration of both A and B are doubled?

Ans: The concentration of A is doubled, then A = 2A

The concentration of B is doubled, then B = 2B

Therefore, the rate will be:

\[\text{-}\frac{\text{d }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}{\text{dt}}\text{ = k }\!\![\!\!\text{ 2A }\!\!]\!\!\text{  }\!\![\!\!\text{ 2B}{{\text{ }\!\!]\!\!\text{ }}^{\text{2}}}=8\text{ }\times \text{  }\!\![\!\!\text{ A }\!\!]\!\!\text{  }\!\![\!\!\text{ B}{{\text{ }\!\!]\!\!\text{ }}^{\text{2}}}\] 

Therefore, the rate will increase by 8 times.


11. In a reaction between A and B the initial rate of reaction $\text{(}{{\text{r}}_{\text{0}}}\text{)}$ was measured for different concentrations of A and B as given below:

$\text{A/mol }{{\text{L}}^{\text{-1}}}$ 

0.20

0.20

0.04

$\text{B/mol }{{\text{L}}^{\text{-1}}}$ 

0.30

0.10

0.05

${{\text{r}}_{\text{0}}}\text{/mol }{{\text{L}}^{\text{-1}}}\text{ }{{\text{s}}^{\text{-1}}}$ 

$\text{5}\text{.07  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-5}}}$ 

$\text{5}\text{.07  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-5}}}$

$\text{1}\text{.43  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-4}}}$ 

What is the order of the reaction with respect to A and B?

Ans: Let us assume that the order of the reaction with respect to A be x and with respect to B be y.

Therefore, we can write:

\[{{\text{r}}_{\text{0}}}\text{ = k  }\!\![\!\!\text{ A}{{\text{ }\!\!]\!\!\text{ }}^{\text{x}}}\text{  }\!\![\!\!\text{ B}{{\text{ }\!\!]\!\!\text{ }}^{\text{y}}}\] 

\[\text{5}\text{.07  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-5}}}\text{ = k  }\!\![\!\!\text{ 0}\text{.20}{{\text{ }\!\!]\!\!\text{ }}^{\text{x}}}\text{  }\!\![\!\!\text{ 0}\text{.30}{{\text{ }\!\!]\!\!\text{ }}^{\text{y}}}\text{    }.........(i)\] 

\[\text{5}\text{.07  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-5}}}\text{ = k  }\!\![\!\!\text{ 0}\text{.20}{{\text{ }\!\!]\!\!\text{ }}^{\text{x}}}\text{  }\!\![\!\!\text{ 0}\text{.10}{{\text{ }\!\!]\!\!\text{ }}^{\text{y}}}\text{    }.........(ii)\] 

\[\text{1}\text{.43  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-5}}}\text{ = k  }\!\![\!\!\text{ 0}\text{.40}{{\text{ }\!\!]\!\!\text{ }}^{\text{x}}}\text{  }\!\![\!\!\text{ 0}\text{.05}{{\text{ }\!\!]\!\!\text{ }}^{\text{y}}}\text{    }.........(iii)\]

Let us divide (i) by (ii), we get:

\[\frac{\text{5}\text{.07  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-5}}}}{\text{5}\text{.07  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-5}}}\text{ }}\text{ = }\frac{\text{k  }\!\![\!\!\text{ 0}\text{.20}{{\text{ }\!\!]\!\!\text{ }}^{\text{x}}}\text{  }\!\![\!\!\text{ 0}\text{.30}{{\text{ }\!\!]\!\!\text{ }}^{\text{y}}}}{\text{ k  }\!\![\!\!\text{ 0}\text{.20}{{\text{ }\!\!]\!\!\text{ }}^{\text{x}}}\text{  }\!\![\!\!\text{ 0}\text{.10}{{\text{ }\!\!]\!\!\text{ }}^{\text{y}}}}\text{ }\] 

\[\text{=1 = }\frac{{{\text{ }\!\![\!\!\text{ 0}\text{.30 }\!\!]\!\!\text{ }}^{\text{y}}}}{{{\text{ }\!\![\!\!\text{ 0}\text{.10 }\!\!]\!\!\text{ }}^{\text{y}}}}\] 

\[\text{= }{{\left( \frac{\text{0}\text{.30}}{\text{0}\text{.10}} \right)}^{\text{x}}}\text{ = }{{\left( \frac{\text{0}\text{.30}}{\text{0}\text{.10}} \right)}^{\text{y}}}\] 

Therefore, y = 0

Now, dividing (iii) by (i), we get:

\[\frac{\text{1}\text{.43  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-4}}}}{\text{5}\text{.07  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-5}}}\text{ }}\text{ = }\frac{\text{k  }\!\![\!\!\text{ 0}\text{.40}{{\text{ }\!\!]\!\!\text{ }}^{\text{x}}}\text{  }\!\![\!\!\text{ 0}\text{.05}{{\text{ }\!\!]\!\!\text{ }}^{\text{y}}}}{\text{ k  }\!\![\!\!\text{ 0}\text{.20}{{\text{ }\!\!]\!\!\text{ }}^{\text{x}}}\text{  }\!\![\!\!\text{ 0}\text{.30}{{\text{ }\!\!]\!\!\text{ }}^{\text{y}}}}\text{ }\] 

\[\frac{\text{1}\text{.43  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-4}}}}{\text{5}\text{.07  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-5}}}\text{ }}\text{ = }\frac{\text{k  }\!\![\!\!\text{ 0}\text{.40}{{\text{ }\!\!]\!\!\text{ }}^{\text{x}}}\text{ }}{\text{ k  }\!\![\!\!\text{ 0}\text{.20}{{\text{ }\!\!]\!\!\text{ }}^{\text{x}}}\text{ }}\] 

Because y = 0

\[\text{= 2}\text{.821 = }{{\text{2}}^{\text{x}}}\] 

Now, taking log on both sides.

log 2.821 = x log 2

\[\text{x = }\frac{\text{log 2}\text{.821}}{\text{log 2}}\] 

x = 1.496

x = 1.5

Thus, the order of the reaction according to A is 1.5 and according to B is 0.



12. The following results have been obtained during the kinetic studies of the reaction.

\[\text{2A + B}\to \text{ C + D}\]

Experiment

$\text{A/mol }{{\text{L}}^{\text{-1}}}$

$\text{B/mol }{{\text{L}}^{\text{-1}}}$

Initial rate of formation of $\text{D/mol }{{\text{L}}^{\text{-1}}}\text{mi}{{\text{n}}^{\text{-1}}}$ 

I

0.1

0.1

$\text{6}\text{.0  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-3}}}$ 

II

0.3

0.2

$\text{7}\text{.3  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-2}}}$ 

III

0.3

0.4

$\text{2}\text{.88  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-1}}}$ 

IV

0.4

0.1

$\text{2}\text{.40  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-2}}}$ 

Determine the rate law and the rate constant for the reaction.

Ans: Let us assume that the order of the reaction with respect to A be x and with respect to B be y.

Therefore, we can write:

\[\text{Rate = k  }\!\![\!\!\text{ A}{{\text{ }\!\!]\!\!\text{ }}^{\text{x}}}\text{  }\!\![\!\!\text{ B}{{\text{ }\!\!]\!\!\text{ }}^{\text{y}}}\] 

\[\text{6}\text{.0  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-3}}}\text{ = k  }\!\![\!\!\text{ 0}\text{.1}{{\text{ }\!\!]\!\!\text{ }}^{\text{x}}}\text{  }\!\![\!\!\text{ 0}\text{.1}{{\text{ }\!\!]\!\!\text{ }}^{\text{y}}}\text{    }.........(i)\] 

\[\text{7}\text{.2  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-2}}}\text{ = k  }\!\![\!\!\text{ 0}\text{.3}{{\text{ }\!\!]\!\!\text{ }}^{\text{x}}}\text{  }\!\![\!\!\text{ 0}\text{.2}{{\text{ }\!\!]\!\!\text{ }}^{\text{y}}}\text{    }.........(ii)\] 

\[\text{2}\text{.88 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-1}}}\text{ = k }\!\!~\!\!\text{   }\!\![\!\!\text{ 0}\text{.3}{{\text{ }\!\!]\!\!\text{ }}^{\text{x}}}\text{ }\!\!~\!\!\text{   }\!\![\!\!\text{ 0}\text{.1}{{\text{ }\!\!]\!\!\text{ }}^{\text{y}}}\text{ }\!\!~\!\!\text{   }\!\!~\!\!\text{  }.........\text{(iii)}\]

\[\text{2}\text{.40  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-2}}}\text{ = k  }\!\![\!\!\text{ 0}\text{.4}{{\text{ }\!\!]\!\!\text{ }}^{\text{x}}}\text{  }\!\![\!\!\text{ 0}\text{.1}{{\text{ }\!\!]\!\!\text{ }}^{\text{y}}}\text{    }.........(iv) \] 

Let us divide (iv) by (i), we get:

\[\frac{\text{2}\text{.40  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-2}}}}{\text{6}\text{.0  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-3}}}\text{ }}\text{ = }\frac{\text{k  }\!\![\!\!\text{ 0}\text{.4}{{\text{ }\!\!]\!\!\text{ }}^{\text{x}}}\text{  }\!\![\!\!\text{ 0}\text{.1}{{\text{ }\!\!]\!\!\text{ }}^{\text{y}}}}{\text{ k  }\!\![\!\!\text{ 0}\text{.1}{{\text{ }\!\!]\!\!\text{ }}^{\text{x}}}\text{  }\!\![\!\!\text{ 0}\text{.1}{{\text{ }\!\!]\!\!\text{ }}^{\text{y}}}}\text{ }\] 

\[\text{=4 = }\frac{{{\text{ }\!\![\!\!\text{ 0}\text{.4 }\!\!]\!\!\text{ }}^{x}}}{{{\text{ }\!\![\!\!\text{ 0}\text{.1 }\!\!]\!\!\text{ }}^{x}}}\] 

\[\text{= 4 = }{{\left( \frac{\text{0}\text{.4}}{\text{0}\text{.1}} \right)}^{x}}\] 

Therefore, x = 1

Now, dividing (iii) by (ii), we get:

\[\frac{\text{2}\text{.88  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-1}}}}{\text{7}\text{.2  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-2}}}\text{ }}\text{ = }\frac{\text{k  }\!\![\!\!\text{ 0}\text{.3}{{\text{ }\!\!]\!\!\text{ }}^{\text{x}}}\text{  }\!\![\!\!\text{ 0}\text{.4}{{\text{ }\!\!]\!\!\text{ }}^{\text{y}}}}{\text{ k  }\!\![\!\!\text{ 0}\text{.3}{{\text{ }\!\!]\!\!\text{ }}^{\text{x}}}\text{  }\!\![\!\!\text{ 0}\text{.2}{{\text{ }\!\!]\!\!\text{ }}^{\text{y}}}}\text{ }\] 

\[\text{= 4 = }{{\left( \frac{\text{0}\text{.4}}{\text{0}\text{.2}} \right)}^{y}}\] 

\[\text{= 4 = }{{\text{2}}^{\text{y}}}\] 

\[\text{= }{{\text{2}}^{2}}\text{ = }{{\text{2}}^{\text{y}}}\] 

y = 2

Thus, the order of the reaction according to A is 1 and according to B is 2.

So, the rate law is:

\[\text{Rate = k }\!\![\!\!\text{ A }\!\!]\!\!\text{  }\!\![\!\!\text{ B}{{\text{ }\!\!]\!\!\text{ }}^{\text{2}}}\] 

\[\text{k = }\frac{\text{Rate}}{\text{ }\!\![\!\!\text{ A }\!\!]\!\!\text{  }\!\![\!\!\text{ B}{{\text{ }\!\!]\!\!\text{ }}^{\text{2}}}}\] 

Now, putting the values for each experiment, we get:

From experiment I:

\[\text{k = }\frac{6.0\text{  }\!\!\times\!\!\text{  1}{{\text{0}}^{-3}}}{\text{ }\!\![\!\!\text{ 0}\text{.1 }\!\!]\!\!\text{  }\!\![\!\!\text{ 0}\text{.1}{{\text{ }\!\!]\!\!\text{ }}^{\text{2}}}}\] 

\[\text{= 6}\text{.0 }{{\text{L}}^{\text{2}}}\text{ mo}{{\text{l}}^{\text{-2}}}\text{ mi}{{\text{n}}^{\text{-1}}}\]

From experiment II:

\[\text{k = }\frac{\text{7}\text{.3  }\!\!\times\!\!\text{  1}{{\text{0}}^{-2}}}{\text{ }\!\![\!\!\text{ 0}\text{.3 }\!\!]\!\!\text{  }\!\![\!\!\text{ 0}\text{.2}{{\text{ }\!\!]\!\!\text{ }}^{\text{2}}}}\] 

\[\text{= 6}\text{.0 }{{\text{L}}^{\text{2}}}\text{ mo}{{\text{l}}^{\text{-2}}}\text{ mi}{{\text{n}}^{\text{-1}}}\]

From experiment III:

\[\text{k = }\frac{\text{2}\text{.88  }\!\!\times\!\!\text{  1}{{\text{0}}^{-1}}}{\text{ }\!\![\!\!\text{ 0}\text{.3 }\!\!]\!\!\text{  }\!\![\!\!\text{ 0}\text{.4}{{\text{ }\!\!]\!\!\text{ }}^{\text{2}}}}\]

\[\text{= 6}\text{.0 }{{\text{L}}^{\text{2}}}\text{ mo}{{\text{l}}^{\text{-2}}}\text{ mi}{{\text{n}}^{\text{-1}}}\] 

From experiment IV:

\[\text{k = }\frac{\text{2}\text{.40  }\!\!\times\!\!\text{  1}{{\text{0}}^{-2}}}{\text{ }\!\![\!\!\text{ 0}\text{.4 }\!\!]\!\!\text{  }\!\![\!\!\text{ 0}\text{.1}{{\text{ }\!\!]\!\!\text{ }}^{\text{2}}}}\] 

\[\text{= 6}\text{.0 }{{\text{L}}^{\text{2}}}\text{ mo}{{\text{l}}^{\text{-2}}}\text{ mi}{{\text{n}}^{\text{-1}}}\]

Therefore, the rate constant will be k $\text{= 6}\text{.0 }{{\text{L}}^{\text{2}}}\text{ mo}{{\text{l}}^{\text{-2}}}\text{ mi}{{\text{n}}^{\text{-1}}}$


13. The reaction between A and B is first order with respect to A and zero order with respect to B. Fill in the blanks in the following table:

Experiment

$\text{A/mol }{{\text{L}}^{\text{-1}}}$

$\text{B/mol }{{\text{L}}^{\text{-1}}}$

Initial rate $\text{D/mol }{{\text{L}}^{\text{-1}}}\text{mi}{{\text{n}}^{\text{-1}}}$ 

I

0.1

0.1

$\text{2}\text{.0  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-2}}}$ 

II

---

0.2

$\text{4}\text{.0  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-2}}}$ 

III

0.4

0.4

----

IV

----

0.2

$\text{2}\text{.0  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-2}}}$

Ans: We are given that, the reaction between A and B is first order with respect to A and zero order with respect to B.

Therefore, the rate of the reaction is given by:

\[\text{Rate = k }\!\![\!\!\text{ A}{{\text{ }\!\!]\!\!\text{ }}^{\text{1}}}{{\text{ }\!\![\!\!\text{ B }\!\!]\!\!\text{ }}^{\text{0}}}\] 

So, we can write:

\[\text{Rate = k }\!\![\!\!\text{ A }\!\!]\!\!\text{ }\]

According to the experiment I we can write:

\[\text{2}\text{.0  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-2}}}\text{ = k(0}\text{.1)}\] 

\[\text{k = 0}\text{.2 mi}{{\text{n}}^{\text{-1}}}\] 

According to the experiment II we can write:

\[4.0\text{  }\!\!\times\!\!\text{  1}{{\text{0}}^{-2}}=(0.2)\text{  }\!\![\!\!\text{ A }\!\!]\!\!\text{ }\] 

\[\text{ }\!\![\!\!\text{ A }\!\!]\!\!\text{  = 0}\text{.2 mol }{{\text{L}}^{\text{-1}}}\] 

According to the experiment III we can write:

\[\text{Rate = 0}\text{.2  }\!\!\times\!\!\text{  0}\text{.4}\]

\[\text{= 0}\text{.08 mol }{{\text{L}}^{\text{-1}}}\text{ mi}{{\text{n}}^{\text{-1}}}\] 

According to the experiment III we can write:

\[2.0\text{  }\!\!\times\!\!\text{  1}{{\text{0}}^{-2}}=(0.2)\text{  }\!\![\!\!\text{ A }\!\!]\!\!\text{ }\] 

\[\text{ }\!\![\!\!\text{ A }\!\!]\!\!\text{  = 0}\text{.1 mol }{{\text{L}}^{\text{-1}}}\]


14. Calculate the half-life of a first order reaction from their rate constants given below:

(i). $\text{200 }{{\text{s}}^{\text{-1}}}$ 

Ans: Half-life of the reaction can be related with the rate constant of the reaction as:

\[{{\text{t}}_{\text{1/2}}}\text{ = }\frac{\text{0}\text{.693}}{\text{k}}\] 

Putting the value of time, we get:

\[\text{k = }\frac{\text{0}\text{.693}}{\text{200}}\text{ = 3}\text{.46  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-3}}}\text{ s}\] 

So, the rate of the reaction is $\text{3}\text{.46  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-3}}}\text{ s}$


(ii). $\text{2 mi}{{\text{n}}^{\text{-1}}}$ 

Ans: Half-life of the reaction can be related with the rate constant of the reaction as:

\[{{\text{t}}_{\text{1/2}}}\text{ = }\frac{\text{0}\text{.693}}{\text{k}}\] 

Putting the value of time, we get:

\[\text{k = }\frac{\text{0}\text{.693}}{\text{2}}\text{ = 0}\text{.346 min}\] 

So, the rate of the reaction is 0.346 min.


(iii). $\text{4 year}{{\text{s}}^{\text{-1}}}$ 

Ans: Half-life of the reaction can be related with the rate constant of the reaction as:

\[{{\text{t}}_{\text{1/2}}}\text{ = }\frac{\text{0}\text{.693}}{\text{k}}\] 

Putting the value of time, we get:

\[\text{k = }\frac{\text{0}\text{.693}}{4}\text{ = 0}\text{.173 years}\] 

So, the rate of the reaction is 0.173 years.



15. The half-life for radioactive decay of $^{\text{14}}\text{C}$ is 5730 years. An archeological artifact containing wood had only 80% of the $^{\text{14}}\text{C}$ found in a living tree. Estimate the age of the sample.

Ans: The given reaction in the above question is radioactive decay and the radioactive decay follows the first order kinetics. Therefore, the decay constant:

\[\text{ }\!\!\lambda\!\!\text{  = }\frac{\text{0}\text{.693}}{{{\text{t}}_{\text{1/2}}}}\] 

We are given a half-life of 5730 years. 

\[\text{ }\!\!\lambda\!\!\text{  = }\frac{\text{0}\text{.693}}{5730}\text{ year}{{\text{s}}^{-1}}\]  

To find the age of the sample, we can write:

\[\text{t = }\frac{\text{2}\text{.303}}{\text{ }\!\!\lambda\!\!\text{ }}\text{ log}\frac{{{\text{ }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}_{\text{0}}}}{\text{ }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}\] 

80% of the wood is found so, the initial amount can be taken as 100 and the final amount as 80. Putting the values, we get:

\[\text{t = }\frac{\text{2}\text{.303}}{\frac{0.693}{5730}}\text{ log}\frac{100}{80}\] 

t = 1845 years

Therefore, the age of the sample is 1845 years.


16. The experiment data for decomposition of ${{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}$

\[\text{ }\!\![\!\!\text{ 2}{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}\to \text{4N}{{\text{O}}_{\text{2}}}\text{+}{{\text{O}}_{\text{2}}}\text{ }\!\!]\!\!\text{ }\] 

In gas phase at 318 K are given below:

t/s

0

400

800

1200

1600

2000

2400

1800

3200

$\text{1}{{\text{0}}^{\text{-2}}}\text{  }\!\!\times\!\!\text{   }\!\![\!\!\text{ }{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}\text{ }\!\!]\!\!\text{ /mol }{{\text{L}}^{\text{-1}}}$ 

1.63

1.36

1.14

0.93

0.78

0.64

0.53

0.43

0.35

(i). Plot [${{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}$] against t

Ans: The graph is given below:


Change in conc. of N2O5

(ii). Find the half-life period for the reaction

Ans: Time corresponding to the concentration, 

$\frac{\text{1}\text{.630  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-2}}}}{\text{2}}\text{ mol }{{\text{L}}^{\text{-1}}}\text{=0}\text{.815  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-2}}}\text{ mol }{{\text{L}}^{\text{-1}}}$  is the half-life.

From the graph, the half life obtained is 1440 s.


(iii). Draw the graph between $\text{log }\!\![\!\!\text{ }{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}\text{ }\!\!]\!\!\text{ }$ and t

Ans: 

T(s)

$\text{1}{{\text{0}}^{\text{-2}}}\text{  }\!\!\times\!\!\text{   }\!\![\!\!\text{ }{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}\text{ }\!\!]\!\!\text{ /mol }{{\text{L}}^{\text{-1}}}$ 

$\text{log }\!\![\!\!\text{ }{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}\text{ }\!\!]\!\!\text{ }$ 

0

1.63

-1.79

400

1.36

-1.87

800

1.14

-1.94

1200

0.93

-2.03

1600

0.78

-2.11

2000

0.64

-2.19

2400

0.53

-2.28

2800

0.43

-2.37

3200

0.35

-2.46


Dinitrogen pentaoxide with time

(iv). What is the rate law?

Ans: The rate law of the reaction will be:

\[\text{Rate = k }\!\![\!\!\text{ }{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}\text{ }\!\!]\!\!\text{ }\] 


(v). Calculate the rate constant.

Ans: From the plot $\text{ }\!\![\!\!\text{ }{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}\text{ }\!\!]\!\!\text{ }$ v/s t, is given by:

\[\text{= -}\frac{\text{k}}{\text{2}\text{.303}}\] 

Therefore, we obtain:

\[\text{= -}\frac{\text{k}}{\text{2}\text{.303}}=\frac{0.67}{3200}\] 

\[\text{= 4}\text{.82  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-4}}}\text{ mol }{{\text{L}}^{\text{-1}}}\text{ }{{\text{s}}^{\text{-1}}}\] 


(vi). Calculate the half-life period from k and compare it will (ii)

Ans: Half-life is given by:

\[{{t}_{1/2}}=\frac{0.693}{k}=\frac{0.693}{4.82\text{  }\!\!\times\!\!\text{  1}{{\text{0}}^{-4}}}s\]

= 1438 seconds.

The value of half-life calculated from the k is very close to that obtained from the graph.



16. The rate constant for a first order reaction is $\text{60 }{{\text{s}}^{\text{-1}}}$ . How much time will it take to reduce the initial concentration of the reactant to its 1/16th value?

Ans: As we know that:

\[\text{t = }\frac{\text{2}\text{.303}}{\text{k}}\text{ log}\frac{{{\text{ }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}_{\text{0}}}}{\text{ }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}\] 

The initial value of the reactant has become 1/16th. Now, putting the values, we get:

\[\text{t = }\frac{\text{2}\text{.303}}{60}\text{ log}\frac{16}{1}\] 

\[\text{t = }\frac{\text{2}\text{.303}}{\text{60}}\text{ log16 = 4}\text{.62  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-2}}}\text{ s}\] 

Therefore, the time required will be $4.62\text{  }\!\!\times\!\!\text{  1}{{\text{0}}^{-2}}\text{ s}$.


17. During a nuclear explosion, one of the products is $^{\text{90}}\text{Sr}$ with a half-life of 28.1 years. If 1 $\text{ }\!\!\mu\!\!\text{ g}$ of $^{\text{90}}\text{Sr}$ was absorbed in the bones of a newly born baby instead of calcium, how much of it will remain after 10 years and 60 years if it is not lost metabolically. 

Ans: As radioactive disintegration follows first order kinetics.

Decay constant of $^{\text{90}}\text{Sr}$ (k) = $\frac{0.693}{{{t}_{1/2}}}=\frac{0.693}{28.1}=2.466\text{  }\!\!\times\!\!\text{  1}{{\text{0}}^{-2}}\text{ }{{\text{y}}^{-1}}$ 

To calculate the amount left after 10 years.

\[\text{a = 1  }\!\!\mu\!\!\text{ g}\] 

$t = 10 years$

\[\text{k=2}\text{.466  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-2}}}\text{ }{{\text{y}}^{\text{-1}}}\] 

$(a-x) = ?$

\[\text{k = }\frac{\text{2}\text{.303}}{\text{t}}\text{ log}\frac{\text{a}}{\text{a-x}}\] 

\[\text{2}\text{.466  }\!\!\times\!\!\text{  1}{{\text{0}}^{-2}}\text{ = }\frac{\text{2}\text{.303}}{10}\text{ log}\frac{1}{\text{a-x}}\] 

\[\text{log(a-x) = -0}\text{.1071}\] (a-x) = Antilog -0.1071 = 0.7814 \[\text{ }\!\!\mu\!\!\text{ g}\]

To calculate the amount left after 60 years.

\[\text{k = }\frac{\text{2}\text{.303}}{\text{t}}\text{ log}\frac{\text{a}}{\text{a-x}}\] 

\[\text{2}\text{.466 }\!\!\times\!\!\text{ 1}{{\text{0}}^{-2}}\text{ = }\frac{\text{2}\text{.303}}{60}\text{ log}\frac{1}{\text{a-x}}\] \[\text{log(a-x) = -0}\text{.6425}\]

(a-x) = Antilog -0.6425 = 0.2278 $\text{ }\!\!\mu\!\!\text{ g}$ 


18. For a first order reaction, show that time required for 99% completion is twice the time required for the completion of 90% of reaction. 

Ans: For first order reaction, we can write:

\[{{t}_{99\text{ % } \!\!\!\!\text{ }}}=\frac{2.303}{k}\log \frac{a}{a-x}\] 

99% completion means that x = 99% of a = 0.99 a

So, we can write:

\[{{t}_{99\text{ % } \!\!\!\!\text{ }}}=\frac{2.303}{k}\log \frac{a}{a-0.99a}\]

\[{{{t}}_{\text{99 % }\!\!\!\!\text{ }}}\text{ = }\frac{\text{2}\text{.303}}{\text{k}}\text{ log 1}{{\text{0}}^{2}}\] 

\[{{t}_{\text{99%}\text{ }}}\text{ = 2}\times \frac{\text{2}\text{.303}}{\text{k}}\]

90% completion means that x = 90% of a = 0.90 a

\[{{t}_{99\text{ % } \!\!\!\!\text{ }}}=\frac{2.303}{k}\log \frac{a}{a-0.90a}\]

\[{{{t}}_{\text{99 % }\!\!\!\!\text{ }}}\text{ = }\frac{\text{2}\text{.303}}{\text{k}}\text{ log 1}{{\text{0}}^{}}\] 

\[{{t}_{\text{99%}\text{ }}}\text{ =}\frac{\text{2}\text{.303}}{\text{k}}\]

Now, we can take the ratio as given below:

\[\frac{{{t}_{99\text{%}\!\!\!\!\text{ }}}}{{{t}_{90\text{%}\!\!\!\!\text{ }}}}=\frac{\left( \frac{2\text{ x 2}\text{.303}}{k} \right)}{\left( \frac{2.303}{k} \right)}\] 

Hence, the time required for 99% completion of a first order reaction is twice the time required for the completion of 90% of the reaction.


19. A first order reaction takes 40 min for 30% decomposition. Calculate ${{\text{t}}_{\text{1/2}}}$.

Ans: 30% decomposition means that x = 30% of a = 0.30 a

Since, the reaction is of 1st order, we can write:

\[\text{k = }\frac{\text{2}\text{.303}}{\text{t}}\text{ log}\frac{\text{a}}{\text{a-x}}\] 

Time is given as 40 min. So, putting the values, we get:

\[\text{k = }\frac{\text{2}\text{.303}}{40}\text{ log}\frac{\text{a}}{\text{a-0}\text{.30a}}\] 

\[\text{k = }\frac{\text{2}\text{.303}}{40}\text{ log}\frac{10}{7}{{\min }^{-1}}\] 

\[\text{k = }\frac{\text{2}\text{.303}}{40}\text{  }\!\!\times\!\!\text{  0}\text{.1549 mi}{{\text{n}}^{-1}}=8.918\text{  }\!\!\times\!\!\text{  1}{{\text{0}}^{-3}}{{\min }^{-1}}\]  

Now, we can calculate the half-life period as we have the rate constant value.

We can write:

\[{{t}_{1/2}}=\frac{0.693}{k}=\frac{0.693}{8.918\text{  }\!\!\times\!\!\text{  1}{{\text{0}}^{-3}}}=7.77\text{ }\min \]

So, the half-life is 7.77 min.


20. For the decomposition of azoisopropane to hexane and nitrogen at 543 K, the following data are obtained:

T (sec)

P (mm of Hg)

0

35.0

360

54.0

720

63.0

Calculate the rate constant.

Ans:  The decomposition of azoisopropane to hexane and nitrogen at 54.3 k is represented by the following equation.


products and reactants with time

Total pressure after time t, we will be:

\[{{\text{P}}_{\text{t}}}\text{ = (}{{\text{P}}_{\text{o}}}\text{-p) + p + p}\] 

\[{{\text{P}}_{\text{t}}}\text{=}{{\text{P}}_{\text{o}}}\text{+p}\] 

\[\text{p=}{{\text{P}}_{\text{t}}}-{{\text{P}}_{\text{o}}}\] 

Now, we can substitute the value of p for the pressure of reactant at time t

\[\text{=}{{\text{P}}_{\text{o}}}\text{-p}\] 

\[\text{=}{{\text{P}}_{\text{o}}}\text{-(}{{\text{P}}_{\text{t}}}\text{-}{{\text{P}}_{\text{o}}}\text{)}\]

\[\text{= 2}{{\text{P}}_{\text{o}}}\text{ - }{{\text{P}}_{\text{t}}}\] 

Now, we can apply the rate constant formula of 1st order reaction.

\[\text{k = }\frac{\text{2}\text{.303}}{\text{t}}\text{ log}\frac{\text{P}}{\text{2}{{\text{P}}_{\text{o}}}\text{-}{{\text{P}}_{\text{t}}}}\] 

When t = 360 s,

Putting the values, we get:

\[\text{k = }\frac{\text{2}\text{.303}}{360}\text{ log}\frac{35.0}{\text{2  }\!\!\times\!\!\text{  35 - 54}}=2.175\text{  }\!\!\times\!\!\text{  1}{{\text{0}}^{-3}}\text{ }{{\text{s}}^{-1}}\]  

When t = 720 s,

Putting the values, we get:

\[\text{k = }\frac{\text{2}\text{.303}}{720}\text{ log}\frac{35.0}{\text{2  }\!\!\times\!\!\text{  35 - 63}}=2.235\text{  }\!\!\times\!\!\text{  1}{{\text{0}}^{-3}}\text{ }{{\text{s}}^{-1}}\]

Now, we can find the average value:

\[\text{k = }\frac{\text{(2}\text{.175  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-3}}}\text{)+(2}\text{.235  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-3}}}\text{)}}{\text{2}}\text{ }{{\text{s}}^{\text{-1}}}\] 

\[\text{k = 2}\text{.20  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-3}}}\text{ }{{\text{s}}^{\text{-1}}}\]


21. The following data were obtained during the first order thermal decomposition of $\text{S}{{\text{O}}_{\text{2}}}\text{C}{{\text{l}}_{\text{2}}}$ at a constant volume.

\[\text{S}{{\text{O}}_{\text{2}}}\text{C}{{\text{l}}_{{{\text{2}}_{\text{(g)}}}}}\to \text{S}{{\text{O}}_{{{\text{2}}_{\text{(g)}}}}}\text{+C}{{\text{l}}_{{{\text{2}}_{\text{(g)}}}}}\]    

Experiment

Time/ s

Total pressure/ atm

1

0

0.5

2

100

0.6

Calculate the rate of the reaction when total pressure is 0.65 atm.

Ans: The given reaction shows the thermal decomposition of $\text{S}{{\text{O}}_{\text{2}}}\text{C}{{\text{l}}_{\text{2}}}$ at constant volume.


Concentration of reactants and product with time

Total pressure after time t, we will be:

\[{{\text{P}}_{\text{t}}}\text{ = (}{{\text{P}}_{\text{o}}}\text{-p) + p + p}\] 

\[{{\text{P}}_{\text{t}}}\text{=}{{\text{P}}_{\text{o}}}\text{+p}\] 

\[\text{p=}{{\text{P}}_{\text{t}}}-{{\text{P}}_{\text{o}}}\] 

Now, we can substitute the value of p for the pressure of reactant at time t

\[\text{=}{{\text{P}}_{\text{o}}}\text{-p}\] 

\[\text{=}{{\text{P}}_{\text{o}}}\text{-(}{{\text{P}}_{\text{t}}}\text{-}{{\text{P}}_{\text{o}}}\text{)}\]

\[\text{= 2}{{\text{P}}_{\text{o}}}\text{ - }{{\text{P}}_{\text{t}}}\] 

Now, we can apply the rate constant formula of 1st order reaction.

\[\text{k = }\frac{\text{2}\text{.303}}{\text{t}}\text{ log}\frac{\text{P}}{\text{2}{{\text{P}}_{\text{o}}}\text{-}{{\text{P}}_{\text{t}}}}\] 

When the t = 100 s

\[\text{k = }\frac{\text{2}\text{.303}}{100}\text{ log}\frac{0.5}{\text{2  }\!\!\times\!\!\text{  0}\text{.5 - 0}\text{.6}}\] 

\[\text{k = 2}\text{.231  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-3}}}\text{ }{{\text{s}}^{\text{-1}}}\] 

When ${{\text{P}}_{\text{t}}}$ = 0.65 atm 

Therefore, pressure of $\text{S}{{\text{O}}_{\text{2}}}\text{C}{{\text{l}}_{\text{2}}}$ at time t total pressure is 0.65 atm, is

${{\text{P}}_{\text{S}{{\text{O}}_{\text{2}}}\text{C}{{\text{l}}_{\text{2}}}}}\text{=2}{{\text{P}}_{\text{o}}}\text{-}{{\text{P}}_{\text{t}}}$ 

= 2 $\text{ }\!\!\times\!\!\text{ }$ 0.50 – 0.65

= 0.35 atm

Therefore, the rate of equation, when total pressure is 0.65 atm, is given by:

\[\text{Rate = k(}{{\text{P}}_{\text{S}{{\text{O}}_{\text{2}}}\text{C}{{\text{l}}_{\text{2}}}}}\text{)}\] 

\[\text{Rate = (2}\text{.33 x 1}{{\text{0}}^{\text{-3}}}\text{)(0}\text{.354) = 7}\text{.8  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-4}}}\text{atm }{{\text{s}}^{\text{-1}}}\] 


22. The rate constant for the decomposition of ${{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}$ at various temperature is given below:

$\text{T}{{\text{/}}^{\text{o}}}\text{c}$ 

0

20

40

60

80

$\text{1}{{\text{0}}^{\text{5}}}\text{  }\!\!\times\!\!\text{  k/s}$ 

0.0787

1.70

25.7

178

2140

Draw a graph between ln K and 1/T and calculate the values of A and ${{\text{E}}_{\text{a}}}$. Predict the rate constant at $\text{3}{{\text{0}}^{\text{o}}}$ and $\text{5}{{\text{0}}^{\text{o}}}$C.

Ans: As the data is given we can write:

$\text{T}{{\text{/}}^{\text{o}}}\text{c}$ 

0

20

40

60

80

T/K

273

293

313

333

353

$\frac{\text{1}}{\text{T}}\text{/}{{\text{k}}^{\text{-1}}}$ 

$\text{3}\text{.66  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-3}}}$ 

$\text{3}\text{.41  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-3}}}$ 

$\text{3}\text{.19  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-3}}}$ 

$\text{3}\text{.0  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-3}}}$ 

$\text{2}\text{.83  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-3}}}$ 

$\text{1}{{\text{0}}^{\text{5}}}\text{  }\!\!\times\!\!\text{  k/s}$ 

0.0787

4.075

25.7

178

2140

ln K

-7.147

-4.075

-1.359

-0.577

3.063

The graph is draw below:


Graph between lnK and T-1

Slope of the line, will be given as:

\[\frac{{{\text{y}}_{\text{2}}}\text{-}{{\text{y}}_{\text{1}}}}{{{\text{x}}_{\text{2}}}\text{-}{{\text{x}}_{\text{1}}}}\text{ = 12}\text{.301 K}\] 

According to the Arrhenius equation,

\[\text{Slope = -}\frac{{{\text{E}}_{\text{a}}}}{\text{R}}\] 

\[\text{= }{{\text{E}}_{\text{a}}}\text{= -slope  }\!\!\times\!\!\text{  R}\]

= (-12.301) (8.314)

\[\text{=102}\text{.27 KJ mo}{{\text{l}}^{\text{-1}}}\] 

Again,

\[\text{ln k = ln A - }\frac{{{\text{E}}_{\text{a}}}}{\text{RT}}\] 

\[\text{ln A = ln k + }\frac{{{\text{E}}_{\text{a}}}}{\text{RT}}\] 

As T = 273 K and ln k = -7.147

Applying this in the formula, we get:

\[\text{ln A = -7}\text{.147 - }\frac{102.27\text{ }\!\!\times\!\!\text{ 1}{{\text{0}}^{3}}}{8.314\text{ }\!\!\times\!\!\text{ 273}}=37.911\] So, \[\text{A=2}\text{.91 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{6}}}\]

When T = 30 + 273 K = 303 K

\[\frac{\text{1}}{\text{T}}\text{ = 0}\text{.0033K = 3}\text{.3  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-3}}}\text{K}\] 

Now, at $\frac{\text{1}}{\text{T}}\text{ = 0}\text{.0033K = 3}\text{.3  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-3}}}\text{K}$

ln k = - 2.8

Therefore, $\text{k = 6}\text{.08  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-2}}}\text{ }{{\text{s}}^{\text{-1}}}$  

When T = 50 + 273 K = 323 K

\[\frac{\text{1}}{\text{T}}\text{ = 0}\text{.0031K = 3}\text{.1  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-3}}}\text{K}\] 

Now, at $\frac{\text{1}}{\text{T}}\text{ = 0}\text{.0031K = 3}\text{.1  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-3}}}\text{K}$

ln k = - 0.5

Therefore, $\text{k = 0}\text{.607 }{{\text{s}}^{\text{-1}}}$


23. The rate constant for the decomposition of hydrocarbons is $\text{2}\text{.418  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-5}}}\text{ }{{\text{s}}^{\text{-1}}}$ at 546 K. If the energy of activation is 179.9 kJ /mol, what will be the value of pre-exponential factor.

Ans: We are given some values as:

\[\text{K = 2}\text{.418  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-5}}}\text{ }{{\text{s}}^{\text{-1}}}\]   

\[T = 546 K\]

\[{{\text{E}}_{\text{a}}}\text{ = 179}\text{.9 kJ mo}{{\text{l}}^{\text{-1}}}=179.9\text{  }\!\!\times\!\!\text{  1}{{\text{0}}^{3}}\text{ J mo}{{\text{l}}^{-1}}\] 

We the Arrhenius equation is:

\[\text{k = A }{{\text{e}}^{\text{-}{{\text{E}}_{\text{a}}}\text{/RT}}}\] 

In the log form, this can be written as:

\[\text{ln k = ln A - }\frac{{{\text{E}}_{\text{a}}}}{\text{RT}}\] 

\[\text{log k = log A - }\frac{{{\text{E}}_{\text{a}}}}{\text{2}\text{.303 RT}}\] 

\[\text{log k = log (2}\text{.418  }\!\!\times\!\!\text{  1}{{\text{0}}^{-5}}\text{) - }\frac{179.9\text{  }\!\!\times\!\!\text{  1}{{\text{0}}^{3}}}{\text{2}\text{.303 }\!\!\times\!\!\text{  8}\text{.314  }\!\!\times\!\!\text{  546}}\] 

= (0.3835 – 5) + 17.2082 = 12.5917

Therefore, A = antilog (12.5917)

\[\text{A = 3}\text{.912  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{12}}}\text{ }{{\text{s}}^{\text{-1}}}\] 


24. Consider a certain reaction $\text{A }\to \text{ Products}$ with $\text{k = 2}\text{.0  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-2}}}\text{ }{{\text{s}}^{\text{-1}}}$. Calculate the concentration of A remaining after 100s if the initial concentration of A is $\text{1}\text{.0 mol }{{\text{L}}^{\text{-1}}}$.


Ans: We are given some values, that are given below:

\[\text{k = 2}\text{.0  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-2}}}\text{ }{{\text{s}}^{\text{-1}}}\] 

\[t = 100 s\]

\[{{\text{ }\!\![\!\!\text{ A }\!\!]\!\!\text{ }}_{\text{o}}}\text{=1}\text{.0 mol }{{\text{L}}^{\text{-1}}}\] 

As we can see that the units of k are given in ${{\text{s}}^{\text{-1}}}$, this means that the reaction is a first order reaction.

Therefore, we can write:

\[\text{k = }\frac{\text{2}\text{.303}}{\text{t}}\text{ log}\frac{{{\text{ }\!\![\!\!\text{ A }\!\!]\!\!\text{ }}_{\text{0}}}}{\text{ }\!\![\!\!\text{ A }\!\!]\!\!\text{ }}\] 

Putting the values, we get:

\[\text{2}\text{.0  }\!\!\times\!\!\text{  1}{{\text{0}}^{-2}}\text{ = }\frac{\text{2}\text{.303}}{100}\text{ log}\frac{1.0}{\text{ }\!\![\!\!\text{ A }\!\!]\!\!\text{ }}\] 

\[\text{2}\text{.0  }\!\!\times\!\!\text{  1}{{\text{0}}^{-2}}\text{ = }\frac{\text{2}\text{.303}}{100}\text{ (-log }\!\![\!\!\text{ A }\!\!]\!\!\text{ )}\] 

\[\text{(-log }\!\![\!\!\text{ A }\!\!]\!\!\text{ ) = }\frac{\text{2}\text{.0  }\!\!\times\!\!\text{  1}{{\text{0}}^{-2}}\text{  }\!\!\times\!\!\text{  100}}{2.303}\] 

\[\text{ }\!\![\!\!\text{ A }\!\!]\!\!\text{  =antilog }\left( \frac{\text{2}\text{.0  }\!\!\times\!\!\text{  1}{{\text{0}}^{-2}}\text{  }\!\!\times\!\!\text{  100}}{2.303} \right)\] 

\[=0.135\text{ mol }{{\text{L}}^{-1}}\] 

Therefore, the remaining amount of A is $0.135\text{ mol }{{\text{L}}^{-1}}$.


25. Sucrose decomposes in acid solution into glucose and fructose according to the first order rate law with${{\text{t}}_{\text{1/2}}}\text{ = 3}\text{.00 hours}$. What fraction of a sample of sucrose remains after 8 hours?

Ans: The given reaction is a first order reaction. So, we can write:

\[\text{k = }\frac{\text{2}\text{.303}}{\text{t}}\text{ log}\frac{{{\text{ }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}_{\text{0}}}}{\text{ }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}\] 

It is given that the half-life is 3 hours. Therefore, we can write:

\[\text{k = }\frac{\text{0}\text{.693}}{{{\text{t}}_{\text{1/2}}}}\] 

So, putting the values in this, we get:

\[\text{k = }\frac{\text{0}\text{.693}}{\text{3}}\text{ = 0}\text{.231 }{{\text{h}}^{\text{-1}}}\] 

Now, we can put this value of rate constant in the first order reaction formula.

\[\text{0}\text{.231 = }\frac{\text{2}\text{.303}}{8}\text{ log}\frac{{{\text{ }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}_{\text{0}}}}{\text{ }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}\] 

\[\text{log}\frac{{{\text{ }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}_{\text{0}}}}{\text{ }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}\text{ = }\frac{\text{0}\text{.231  }\!\!\times\!\!\text{  8}}{2.303}\text{ }\] 

\[\text{log}\frac{{{\text{ }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}_{\text{0}}}}{\text{ }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}\text{ = 0}\text{.8024}\] 

\[\frac{{{\text{ }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}_{\text{0}}}}{\text{ }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}\text{ = antilog (0}\text{.8024)}\] 

\[\frac{{{\text{ }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}_{\text{0}}}}{\text{ }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}\text{ = 6}\text{.3445}\] 

Or we can write:

\[\frac{\text{ }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}{{{\text{ }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}_{0}}}\text{ = 0}\text{.158}\] 

Therefore, the fraction of sample of sucrose that remains after 8 hours is 0.158.


26. The decomposition of hydrocarbon follows the equation $\text{k = (4}\text{.5  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{11}}}\text{ }{{\text{s}}^{\text{-1}}}\text{)}{{\text{e}}^{\text{-280000K/T}}}$. Calculate ${{\text{E}}_{\text{a}}}$.

Ans: According to the Arrhenius equation,

\[\text{k = A}{{\text{e}}^{\text{-}{{\text{E}}_{\text{a}}}\text{/RT}}}\]   

We are given the equation as:

\[\text{k = (4}\text{.5  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{11}}}\text{ }{{\text{s}}^{\text{-1}}}\text{)}{{\text{e}}^{\text{-280000K/T}}}\] 

Therefore, the formula can be written as:

\[\text{-}\frac{{{\text{E}}_{\text{a}}}}{\text{RT}}\text{ = -}\frac{\text{28000 K}}{\text{T}}\] 

This can be written as:

\[{{\text{E}}_{\text{a}}}\text{ = 28000  }\!\!\times\!\!\text{  R}\] 

\[{{\text{E}}_{\text{a}}}\text{ = 28000  }\!\!\times\!\!\text{  8}\text{.314 = 232}\text{.79 kJ mo}{{\text{l}}^{\text{-1}}}\] 

Therefore, the value of ${{\text{E}}_{\text{a}}}$ is $\text{232}\text{.79 kJ mo}{{\text{l}}^{\text{-1}}}$


27. The rate constant for the first order decomposition of ${{\text{H}}_{\text{2}}}{{\text{O}}_{\text{2}}}$ is given by the following equation: 

$\text{log k = 14}\text{.34 - 1}\text{.25  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{4}}}\text{ K/T}$ 

Calculate ${{\text{E}}_{\text{a}}}$ for this reaction and at what temperature will its half-period be 256 minutes?    

Ans: According to the Arrhenius equation,

\[\text{k = A}{{\text{e}}^{\text{-}{{\text{E}}_{\text{a}}}\text{/RT}}}\]

This can be written as:

\[\text{ln k = ln A - }\frac{{{\text{E}}_{\text{a}}}}{\text{RT}}\] 

In the log form it can be written as:

\[\text{log k = log A - }\frac{{{\text{E}}_{\text{a}}}}{\text{2}\text{.303 RT}}\] 

We are given:

\[\text{log k = 14}\text{.34 - 1}\text{.25  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{4}}}\text{ K/T}\] 

Comparing these two, we get:

\[\frac{{{\text{E}}_{\text{a}}}}{\text{2}\text{.303 RT}}\text{ = }\frac{\text{1}\text{.25  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{4}}}\text{ K}}{\text{T}}\] 

\[{{\text{E}}_{\text{a}}}\text{ = 2}\text{.303 R  }\!\!\times\!\!\text{  1}\text{.25  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{4}}}\text{ K}\] 

\[{{\text{E}}_{\text{a}}}\text{ = 2}\text{.303  }\!\!\times\!\!\text{  8}\text{.314  }\!\!\times\!\!\text{  1}\text{.25  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{4}}}\text{ K}\] 

\[{{\text{E}}_{\text{a}}}\text{ = 239}\text{.34 kJ mo}{{\text{l}}^{-1}}\] 

We are given a half-life of 256 minutes.

\[\text{k = }\frac{\text{0}\text{.693}}{{{\text{t}}_{\text{1/2}}}}\] 

\[\text{k = }\frac{\text{0}\text{.693}}{\text{256  }\!\!\times\!\!\text{  60}}\text{ = 4}\text{.51  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-5}}}\text{ }{{\text{s}}^{\text{-1}}}\] 

Now, we have the value of rate constant, we can put in the equation:

\[\text{log(4}\text{.51  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-5}}}\text{) = 14}\text{.34 - }\frac{\text{1}\text{.25  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{4}}}}{\text{T}}\] 

T = 669 K


28. The decomposition of A into product has value of k as $\text{4}\text{.5  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{3}}}\text{ }{{\text{s}}^{\text{-1}}}$  at $\text{1}{{\text{0}}^{\text{o}}}\text{C}$ and energy of activation $\text{60 kJ mo}{{\text{l}}^{\text{-1}}}$. At what temperature would k be $\text{1}\text{.5  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{4}}}\text{ }{{\text{s}}^{\text{-1}}}$?

Ans: We are some information:

\[{{\text{k}}_{\text{1}}}\text{ = 4}\text{.5  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{3}}}\] 

\[{{\text{T}}_{\text{1}}}\text{ = 10 + 273 = 283 K}\] 

\[{{\text{k}}_{2}}\text{ = 1}\text{.5  }\!\!\times\!\!\text{  1}{{\text{0}}^{4}}\] 

\[{{\text{T}}_{\text{2}}}=?\] 

\[{{\text{E}}_{\text{a}}}\text{ = 60 kJ mo}{{\text{l}}^{\text{-1}}}\] 

Applying Arrhenius equation:

\[\text{log}\frac{{{\text{k}}_{\text{2}}}}{{{\text{k}}_{\text{1}}}}\text{ = }\frac{{{\text{E}}_{\text{a}}}}{\text{2}\text{.303R}}\left( \frac{{{\text{T}}_{\text{2}}}\text{-}{{\text{T}}_{\text{1}}}}{{{\text{T}}_{\text{1}}}{{\text{T}}_{\text{2}}}} \right)\] 

Putting the values, we can write:

\[\text{log}\frac{1.5\text{  }\!\!\times\!\!\text{  1}{{\text{0}}^{4}}}{4.5\text{  }\!\!\times\!\!\text{  1}{{\text{0}}^{3}}}\text{ = }\frac{60}{\text{2}\text{.303  }\!\!\times\!\!\text{  8}\text{.314}}\left( \frac{{{\text{T}}_{\text{2}}}\text{-283}}{\text{283}{{\text{T}}_{\text{2}}}} \right)\] 

\[\text{log 3}\text{.333 = 3133}\text{.63}\left( \frac{{{\text{T}}_{\text{2}}}\text{-283}}{\text{283}{{\text{T}}_{\text{2}}}} \right)\] 

\[\frac{0.5228}{3133.63}=\left( \frac{{{\text{T}}_{\text{2}}}\text{-283}}{\text{283}{{\text{T}}_{\text{2}}}} \right)\] 

\[\text{0}\text{.0472}{{\text{T}}_{\text{2}}}\text{ = }{{\text{T}}_{\text{2}}}\text{ - 283}\] 

\[{{\text{T}}_{\text{2}}}\text{ = 297 K }\] 

Or we can write:

\[{{\text{T}}_{\text{2}}}\text{ = 2}{{\text{4}}^{\text{o}}}\text{C}\] 


29. The time required for 10% completion of a first order reaction at 298 k is equal to that required for its 25% completion at 308 K. If the value of A is $\text{4  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{10}}}\text{ }{{\text{s}}^{\text{-1}}}$ , Calculate k at 318 K and ${{\text{E}}_{\text{a}}}$.

Ans: There are two cases in this question. As the reaction given is first order reaction, we can use:

\[\text{k = }\frac{\text{2}\text{.303}}{\text{t}}\text{ log}\frac{\text{a}}{\text{a-x}}\] 

For case 1:

\[{{\text{k}}_{\text{298K}}}\text{ = }\frac{\text{2}\text{.303}}{{{\text{t}}_{\text{1}}}}\text{ log}\frac{\text{a}}{\text{a - 0}\text{.10a}}\] 

\[{{\text{k}}_{\text{298K}}}\text{ = }\frac{\text{2}\text{.303}}{{{\text{t}}_{\text{1}}}}\text{ log}\frac{10}{9}\] 

\[{{\text{k}}_{\text{298K}}}\text{ = }\frac{\text{2}\text{.303}}{{{\text{t}}_{\text{1}}}}\text{  }\!\!\times\!\!\text{  0}\text{.0458}\] 

\[{{\text{t}}_{\text{1}}}\text{ = }\frac{\text{0}\text{.1055}}{{{\text{k}}_{\text{298K}}}}\] 

For case 2:

\[{{\text{k}}_{\text{308K}}}\text{ = }\frac{\text{2}\text{.303}}{{{\text{t}}_{2}}}\text{ log}\frac{\text{a}}{\text{a - 0}\text{.25a}}\] 

\[{{\text{k}}_{\text{308K}}}\text{ = }\frac{\text{2}\text{.303}}{{{\text{t}}_{2}}}\text{ log}\frac{4}{3}\] 

\[{{\text{k}}_{\text{308K}}}\text{ = }\frac{\text{2}\text{.303}}{{{\text{t}}_{2}}}\text{  }\!\!\times\!\!\text{  0}\text{.125}\] 

\[{{\text{t}}_{2}}\text{ = }\frac{\text{0}\text{.2879}}{{{\text{k}}_{\text{308K}}}}\]

But ${{\text{t}}_{\text{1}}}\text{ = }{{\text{t}}_{\text{2}}}$ 

Hence,

\[\frac{\text{0}\text{.1055}}{{{\text{k}}_{\text{298K}}}}\text{ = }\frac{\text{0}\text{.2879}}{{{\text{k}}_{\text{308K}}}}\] 

\[\frac{{{\text{k}}_{\text{308K}}}}{{{\text{k}}_{\text{298K}}}}\text{ = 2}\text{.7289}\]  

Now, applying the Arrhenius equation,

\[\text{log}\frac{{{\text{k}}_{\text{308K}}}}{{{\text{k}}_{\text{298K}}}}\text{ = }\frac{{{\text{E}}_{\text{a}}}}{\text{2}\text{.303R}}\left( \frac{{{\text{T}}_{\text{2}}}\text{-}{{\text{T}}_{\text{1}}}}{{{\text{T}}_{\text{1}}}{{\text{T}}_{\text{2}}}} \right)\] 

\[\text{log(2}\text{.7289) = }\frac{{{\text{E}}_{\text{a}}}}{\text{2}\text{.303  }\!\!\times\!\!\text{  8}\text{.314}}\left( \frac{\text{308-298}}{298\text{  }\!\!\times\!\!\text{  308}} \right)\] 

\[{{\text{E}}_{\text{a}}}\text{ = 76}\text{.623 kJ mo}{{\text{l}}^{\text{-1}}}\] 

Now, the calculation of k at 318 K

\[\text{log k = log A - }\frac{{{\text{E}}_{\text{a}}}}{\text{2}\text{.303RT}}\]

\[\text{log k = log (4  }\!\!\times\!\!\text{  1}{{\text{0}}^{10}}\text{) - }\frac{7623}{\text{2}\text{.303  }\!\!\times\!\!\text{  8}\text{.314  }\!\!\times\!\!\text{  318}}\] 

\[\text{log k = 10}\text{.6021 - 12}\text{.5843 = -1}\text{.9822}\] 

k = Antilog (-1.9822) = $\text{antilog (\bar{2}}\text{.0178) = 1}\text{.042  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-2}}}\text{ }{{\text{s}}^{\text{-1}}}$ 

Therefore, k is $\text{1}\text{.042  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-2}}}\text{ }{{\text{s}}^{\text{-1}}}$.


30. The rate of a reaction quadruples when the temperature changes from 293 K to 313 K. Calculate the energy of activation of the reaction assuming that it does not change with temperature.

Ans: We are given that:

\[{{\text{k}}_{\text{2}}}\text{ = 4 }{{\text{k}}_{\text{1}}}\] 

\[{{\text{T}}_{\text{1}}}\text{ = 293K}\]

\[{{\text{T}}_{2}}\text{ = 313K}\]  

According the Arrhenius equation, we get:

\[\text{log}\frac{{{\text{k}}_{2}}}{{{\text{k}}_{1}}}\text{ = }\frac{{{\text{E}}_{\text{a}}}}{\text{2}\text{.303R}}\left( \frac{{{\text{T}}_{\text{2}}}\text{-}{{\text{T}}_{\text{1}}}}{{{\text{T}}_{\text{1}}}{{\text{T}}_{\text{2}}}} \right)\] 

Putting the values, we get:

\[\text{log}\frac{\text{4}{{\text{k}}_{1}}}{{{\text{k}}_{1}}}\text{ = }\frac{{{\text{E}}_{\text{a}}}}{\text{2}\text{.303  }\!\!\times\!\!\text{  8}\text{.314}}\left( \frac{\text{313-293}}{293\text{  }\!\!\times\!\!\text{  313}} \right)\] 

\[\text{0}\text{.6021 = }\frac{{{\text{E}}_{\text{a}}}}{\text{2}\text{.303  }\!\!\times\!\!\text{  8}\text{.314}}\left( \frac{\text{313-293}}{293\text{  }\!\!\times\!\!\text{  313}} \right)\] 

\[{{\text{E}}_{\text{a}}}\text{=}\frac{\text{0}\text{.6021  }\!\!\times\!\!\text{  2}\text{.303  }\!\!\times\!\!\text{  8}\text{.314  }\!\!\times\!\!\text{  293  }\!\!\times\!\!\text{  313}}{\text{20}}\] 

\[{{\text{E}}_{\text{a}}}\text{ = 52863}\text{.00 J mo}{{\text{l}}^{\text{-1}}}\] 

\[{{\text{E}}_{\text{a}}}\text{ = 52}\text{.863 kJ mo}{{\text{l}}^{\text{-1}}}\] 

Therefore, the required activation energy is $\text{52}\text{.863 kJ mo}{{\text{l}}^{\text{-1}}}$.


Chemical Kinetics Class 12 NCERT Solutions PDF Download

Physical Chemistry which is a crucial part of the subject requires thorough reading and understanding of the concepts. Therefore, focussing on qualitative ways of preparation rather than quantitative measures would turn out to be fruitful for an aspiring board examinee.

To solve this issue of preparing from qualitative sources, educational sites like Vedantu provide free solutions in PDF format. The Chemical Kinetics Class 12 NCERT Solutions PDF is free to download and provides an elaborate explanation of the topic. Prepared under expert supervision, these solutions are the perfect partner of high scoring students.


CBSE Class 12 Chemistry Chemical Kinetics NCERT Solutions

The students will learn about the practical methods of determining equations by initial rate data method, logarithm data method, half-line method, by integrated rate equation and isolation method in Chapter 4 Chemistry Class 12. They will also learn the integrated rate equations which include zero-order reaction, first line, and half-line methods. Moreover, there are eight sub-topics which are prepared to help in the all-round development of students.

For a better understanding of topics, the solution has been divided into in-text questions and additional NCERT exercises. There are nine in-text questions in ch 4 Chemistry Class 12 book, with 30 additional exercises. To make the best out of their preparation, students can refer to the Class 12th Chemistry Chapter 4 NCERT solution which gives answers apt for scoring well.


In-text Questions: NCERT Solution of Chemical Kinetics Class 12th

The nine intext question makes students access their reasoning and logical skill by asking questions like average rate of reaction, the effect of rate of formation of y in a reaction, rate constant, a fraction of molecules and rate of reaction when the concentration of reactants is doubled or reduced. Furthermore, students can follow Class 12 Chemistry ch 4 NCERT solutions to understand the pattern of writing answers that can help fetch a better score.


NCERT Exercises: Chemical Kinetics Class 12th

Apart from the nine intext questions, Chapter 4 Chemistry Class 12 solutions contain an additional 30 exercises designed for comprehensive knowledge of students. The Chemical Kinetics Class 12 solutions contain questions like rate expressions for chemical reaction, an initial rate of reaction for an equation, units of rate, and rate constant when pressure is measured in bar, time and energy activation of the reaction assuming that it doesn't change with temperature, etc.

(Image will be uploaded soon)


Marks Distribution of NCERT Solutions Class 12 Chemistry Chemical Kinetics

Chemical kinetics Class 12

Understanding 

Application

VSA

-

1(1)

SAII

3(1)

-

SAI

-

-

LA

-

-


NCERT Solutions Class 12 Chemistry - Related Links

Check out the links provided below to access CBSE Class 12 Chemistry syllabus, important questions, revision notes,  previous years’ questions papers and sample papers.


How is Class 12 Chemical Kinetics Solutions Beneficial?

  • Devote time to in-depth reading and understanding of concepts for board exam preparation.

  • Chemical kinetics Class 12 NCERT solutions strengthen the fundamentals.

  • Solutions offer elaborate explanations with diagrams and illustrations.

  • Prepared under expert supervision for accuracy.

  • Solutions are easily downloadable and accessible.

  • Provides accurate answers for board exams.

  • Apt for self-assessment.

  • Helpful in competitive exam preparation.

  • Chapter 4 Chemistry Class 12 carries four marks and can be easily scored with clear concepts.

  • Quality solutions aid in self-assessment, identifying strong and weak areas for additional practice.

  • Vedantu's expert-created NCERT Solutions for Chemistry Class 12 Chapter 4 Chemical Kinetics help brush up on concepts and formulas.

  • Solutions align with the expected answer format and the latest CBSE pattern.

  • Regular practice with sample papers and previous year's question papers enhances clarity.

  • Following Vedantu's NCERT Solutions for Chemistry Class 12 ensures efficient and effective use of time for CBSE board exam preparation.

  • Gain confidence in sitting for CBSE board exams by utilizing Vedantu's solutions.


Conclusion

Vedantu's Class 12 Chemistry Chemical Kinetics NCERT Solutions offer a comprehensive and valuable resource for students studying this subject. The solutions provided are well-structured, easy to understand, and cover all the important topics and concepts outlined in the NCERT textbook. The explanations are concise yet thorough, ensuring that students grasp the underlying principles of chemical kinetics effectively. Additionally, Vedantu's solutions provide ample practice exercises and examples to reinforce learning and help students develop problem-solving skills. Overall, Vedantu's Class 12 Chemistry Chemical Kinetics NCERT Solutions serve as a reliable companion for students, enabling them to enhance their understanding and performance in this critical area of study.

FAQs on NCERT Solutions for Class 12 Chemistry Chapter 4 - Chemical Kinetics

1. How to Score Good Grades in Chemistry Chapter 4?

A candidate must prepare a study schedule and allot time for each chapter. Students need to solve various chemical equations to sharpen their problem-solving skill. They need to understand the theories and must know where to apply the formulas. Solving mock test papers and previous year questions will also help in preparation.


Students can also prepare for the board exam by sitting for an online exam on different websites, and by tallying their answer papers with correct answers. These portals provide affordable facilities like test evaluation, suggestion and marks fetching solutions.

2. What is Chemical Kinetics?

Chemical kinetics is the branch of Physical Chemistry that is related to understanding the rates of chemical reactions. It is related to thermodynamics that deals with the process of time and movement. Moreover, it includes studying experimental conditions regarding the speed of chemical reaction and its mechanism.


The reaction rate differs depending upon the reacting substances. The formation of ion exchange, Acid and base reactions, and salts are usually fast reactions. Furthermore, the covalent bond formation takes place between the molecules, and the reactions tend to get slower when large molecules are formed. The rate of transformation into products is greatly influenced by nature and strength of bonds in reactant molecules.

3. What are the Sub-Topics in Chemical Kinetic?

The chemical kinetic chapter of Class 12 is vital as well as the scoring chapter. It contains a wide range of sub-topics which give detailed knowledge on the nature and mechanism of this branch of physical Chemistry. The sub-topics include - 

  • Rate of chemical reaction.

  • Dependence on the rate of concentration.

  • Integrated rate equations.

  • Molecularity and mechanism.

  • Temperature dependence.

  • Effect of catalyst.

  • Collision theory of chemical reaction.

  • Important formulas.

Apart from these topics, formulas like rate law, integrated rate law, units of the rate constant, linear plot to determine constant and half-line for zero, first, second and all order is also given.

4. Where can I get the NCERT Solution for Class 12 Chemistry Chapter 4?

Chapter 4 in Class 12 Chemistry is “Chemical Kinetics”. Students who find difficulty in answering any questions provided in the NCERT can take the help of NCERT Solutions for Class 12 Chemistry available on Vedantu. These solutions can be found on the page Chemical Kinetics NCERT Solutions. The solutions have been carefully designed by experts to provide students with solutions that will help enhance their understanding of various concepts taught in this chapter. Students can also download the Vedantu app to access these solutions for free.

5. What are the most important topics covered in Class 12 Chemistry Chapter 4?

Chapter 4 Chemical Kinetics in Class 12 Chemistry talks about different chemical reactions and physical processes in detail. It includes various topics like dependence on the rate of concentration, molecularity mechanism, collision theory, temperature dependence, integrated equations, and catalysts. The other more important topics that students may need to put extra focus on while preparing for their exam include First Order Reaction Kinetics, Arrhenius Equation, and Order and Molecularity.

6. Why should I refer to the NCERT Solutions for Class 12 Chemistry Chapter 4?

Chemistry in Class 12 can often seem difficult to comprehend for students. Being able to score well in the Class 12 Board Exams requires students to have a strong grip on every subject. To be able to achieve a thorough understanding of all concepts that have been taught in Class 12 Chemistry, referring to NCERT Solutions for Class 12 Chemistry Chapter 4 will provide students with extra practice and revision.

7. How many questions are covered in NCERT Solutions for Class 12 Chemistry Chapter 4?

There are a total of 39 questions that have been provided in Class 12 Chemistry NCERT for Chapter 4 Chemical Kinetics. These have been divided into nine Intext Questions and 30 questions under NCERT Exercise. The majority of these questions require students to solve numericals related to the given reactions. Students can find step-by-step solutions explained in detail for each of these questions on the page Chemical Kinetics NCERT Solutions on the official website of Vedantu at free of cost.

8. What is chapter-wise weightage for Class 12 Chemistry?

According to the marking scheme provided by CBSE for Board Exams 2021, chapters in the syllabus for Class 12 Chemistry have been divided into three sections. The following table shows the division of marks out of a total of 70 marks in the theory exam:

Chapters 

Marks

1, 2, 3, 4, and 5

23

7, 8, and 9

19

10, 11, 12, 13, and 14

28

Total Marks

70