Mimicry Meaning

Mimicry meaning in biology, says that it is an evolved resemblance that exists between an organism and another unknown subject. Most of the time, the unknown subject is found to be an organism that belongs to a different species. Mimicry is something that can evolve between different species or different individuals of the same species. Mimicry is responsible for protecting different species from predators, thus making it an antipredator adaptation. One can get a clear idea of the meaning of mimicry from this paragraph.


Mimicry starts evolving when a receiver such as a predator starts perceiving the similarity between a mimic, the organism that is believed to have a resemblance (mimic meaning in biology) and a model, the organism which the mimic resembles, and as a result, the predator aims to change the behaviour of the model in a particular way that will give some selective advantage for the mimic. The resemblances that tend to evolve in mimicry are of many types, such as visual, acoustic, chemical, tactile or electric or sometimes the combinations of these sensory modalities.

[Image will be Uploaded Soon]

Biology Mimicry - Different Types

Mimicry of organisms is most probably clear from the above paragraphs where we explained mimicry meaning. Now let’s discuss the different types of mimicry that exist in nature. We will discuss each in a brief way:-

Batesian Mimicry

In 1862, Henry W. Bates, an English naturalist, published a book that explained some unexpected and unique similarities in the appearance of two distinct family butterflies who were found in Brazilian Forest. One of these butterflies is known as Heliconiinae, they are conspicuously coloured and are unpalatable birds, and the other one is known as Pieridae; they are considered edible to predators. 

According to Bates, the coloured species which are inedible act as a warning for the predators, who learned that they are inedible from experience. If the edible species get the same colour pattern as the inedible ones, then they can get saved from the predators. This form of mimicry is known as Batesian mimicry. It was named like this in order to honour the discoverer.

Aggressive Mimicry

In some situations, it is seen that the predator seems to take advantage of mimicry in order to resemble its prey or a parasite its host. To describe aggressive mimicry in simple words, just say the phrase "a wolf in sheep's clothing"; it will clearly describe the meaning of aggressive mimicry. This type of mimicry doesn't involve warning mechanisms. In this case, the mimic tries to adopt some marks of its model so that it will have some advantage over the model or over a third species that might interact with the model.

The model might get mimicked only for a single stage in the life cycle; this is similar to the case of parasitic cuckoos, where the eggs tend to resemble the host. The model might also be a prey of the mimic's victim; this is similar to the case of anglerfishes which have rod like spines naturally which are tipped with a fleshy "bait" in order to lure the fishes who are within reach.

Mullerian Mimicry

Bates observed some resemblance between some unrelated butterflies, including danaids (milkweed butterfly) which he was unable to explain. All of these butterflies were considered to be inedible. There was no point or any requirement for such species to adopt a warning colouration because they have ample defence which can protect them from predators.

In 1878, Fritz Muller, who was a known German zoologist, published an explanation for Bate's paradox; he suggested that this paradox might be an advantage for one inedible species in making a predator learn from another. Once the predator has learned that they had to avoid a particular colour pattern that they have contact with initially, then they will start avoiding every species edible or inedible having the same colour pattern. 

When the predator gets the initial experience, it might cause death or damage to the inedible individual who was responsible for providing the experience. This shows that there is some cost to pay for making the predator learn the inedibility of a particular species. Predators didn't inherit this knowledge; they learn about the inedibility of a species from experience only.

Other inedible species which are resembling the one who taught the predator inedibility don't need to sacrifice individuals to teach the same predator. Species that have the same colouring pattern as the one who taught the predator inedibility get secured automatically. When inedible species start to resemble each other, it is known as Mullerian mimicry.

FAQs (Frequently Asked Questions)

1. What do You Understand by the Term Automimicry?

The automimicry phenomenon includes the advantages gained by some members of a particular species by resembling others of the same species through mimicry. Males who belong to the family of bees and wasps, although defenceless, are protected from the predators because of their female-like resemblance, and predators don't attack females because they are equipped with stringers. Some butterflies also get protection from predators due to their ability to absorb, tolerate and retain the poisons from the plants where they used to feed. Every butterfly does not have this protection because some of them feed on nonpoisonous plants, but predators avoid these butterflies if they have already sampled a protected butterfly in the past.

2. Give Some Examples of Mimicry in Nature.

Some Examples of Mimicry in Nature are as Follows:

There are several kingsnakes that look just like coral snakes. Kingsnakes are considered to be harmless, which is why they are an easy target for predators. But coral snakes are considered venomous and can defend themselves. So by mimicking coral snakes, kingsnakes are able to secure themselves from predators. There are also some zone-tailed hawks who use to mimic turkey vultures in order to catch prey. Zone-tailed hawks move along with vultures and tend to catch their prey with a surprise, thus not giving the prey enough time to escape from it.