Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Miscellaneous Exercise

ffImage
banner

NCERT Solutions for Class 12 Maths Chapter 2 Miscellaneous Exercise - Free PDF Download

NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions includes solutions to all Miscellaneous Exercise problems. Inverse Trigonometric Functions Class 12 NCERT Solutions Miscellaneous Exercises are based on the ideas presented in Maths Chapter 2. This activity is crucial for both the CBSE Board examinations and competitive tests. To perform well on the board exam, download the NCERT Solutions for Class 12 Maths Inverse Trigonometric Functions Miscellaneous Exercise in PDF format and practice them offline.

toc-symbolTable of Content
toggle-arrow
Popular Vedantu Learning Centres Near You
centre-image
Sharjah, Sharjah
location-imgKing Abdul Aziz St - Al Mahatta - Al Qasimia - Sharjah - United Arab Emirates
Visit Centre
centre-image
Abu Dhabi, Abu-Dhabi
location-imgMohammed Al Otaiba Tower - 1401, 14th Floor - opposite to Nissan Showroom West Zone building - Al Danah - Zone 1 - Abu Dhabi - United Arab Emirates
Visit Centre
centre-image
22 No Phatak, Patiala
location-img#2, Guhman Road, Near Punjabi Bagh, 22 No Phatak-Patiala
Visit Centre
centre-image
Chhoti Baradari, Patiala
location-imgVedantu Learning Centre, SCO-144 -145, 1st & 2nd Floor, Chotti Baradari Scheme Improvement Trust, Patiala-147001
Visit Centre
centre-image
Janakpuri, Delhi
location-imgVedantu Learning Centre, A-1/173A, Najafgarh Road, Opposite Metro Pillar 613, Block A1, Janakpuri, New Delhi 110058
Visit Centre
centre-image
Tagore School, Gudha-Gorji
location-imgTagore Public School Todi, Gudha Gorji, Jhunjhunu, Rajasthan 333022
Visit Centre
View More
Courses
Competitive Exams after 12th Science

Access NCERT Class 12 Maths Chapter 2 Inverse Trigonometric Functions Miscellaneous Exercise

Miscellaneous Solutions

1. Evaluate cos-1(cos13 π 6) 

Ans: Consider cos13 π 6

cos13 π 6 

=cos(π + π 6) 

=cos( π 6) 

Further solving,

cos-1(cos13 π 6) 

=cos-1(cos( π 6)) 

= π 6 

Therefore, cos-1(cos13 π 6)= π 6


2. Evaluate tan-1(tanπ 6) 

Ans: Consider tanπ 6

tanπ 6

=tan( π + π 6)

=tan( π 6)

Further solving,

tan-1(tanπ 6)

=tan-1(tan( π 6))

= π 6

Therefore, tan-1(tanπ 6)= π 6


3. Using inverse trigonometric identities, prove that 2sin-135=tan-1247

Ans: Assuming 2sin-135α  ----(1)

sin α 2=35 

cos α 2=1-(35)2 

 cos α 2=45 

Hence,

sin α =2(35)(45) 

sin α =2425 

cos α =1-(2425)2 

cos α =725 

Therefore, 

tan α =247

 α =tan-1(247)

From Equation (1), it is proved that 

2sin-135=tan-1(247)


4. Using inverse trigonometric identities, prove that sin-1817+sin-135=tan-17736

Ans: Assuming sin-1817α  

sin α =817 

cos α =1-(817)2 

cos α =1517 

Hence,

Therefore, 

tan α =815 

 α =tan-1(815) 

sin-1(817)=tan-1(815) ----(1) 

Assuming that sin-135β 

sin β =35 

cos β =1-(35)2 

cos β =45 

Therefore, 

tan β =34 

 β =tan-1(34) 

sin-1(35)=tan-1(34) ----(2) 

Consider 

sin-1(817)+sin-1(35)

From Equations (1) and (2),

sin-1(817)+sin-1(35) 

=tan-1(815)+tan-1(34) 

=tan-1(815+341-(815 × 34)) 

=tan-1(7736) 

Hence, it is proved that sin-1817+sin-135=tan-17736


5. Using inverse trigonometric identities, prove that cos-145+cos-11213=cos-13365

Ans: Assuming cos-145α  

cos α =45 

sin α =1-(45)2 

sin α =35 

Therefore, 

tan α =34 

  α =tan-1(34) 

cos-1(45)=tan-1(34) ----(1) 

Assuming that cos-11213β 

cos β =1213 

sin β =1-(1213)2 

 sin β =513 

Therefore, 

tan β =512 

 β =tan-1(512) 

cos-1(1213)=tan-1(512) ----(2) 

Consider 

cos-1(45)+cos-1(1213)

From Equations (1) and (2),

cos-1(45)+cos-1(1213) 

=tan-1(34)+tan-1(512) 

=tan-1(34+5121-(34 × 512)) 

=tan-1(5633) 

=cos-1(3365) 

Hence, it is proved that cos-145+cos-11213=cos-13365


6. Using inverse trigonometric identities, prove that cos-11213+sin-135=sin-15665

Ans: Assuming cos-11213α  

cos α =1213 

sin α =1-(1213)2 

sin α =513 

Therefore, 

tan α =512 

 α =tan-1(512) 

cos-1(1213)=tan-1(512) ----(1) 

Assuming that sin-135β 

sin β =35 

cos β =1-(35)2 

cos β =45 

Therefore, 

tan β =34 

 β =tan-1(34) 

sin-1(35)=tan-1(34) ----(2) 

Consider 

cos-1(1213)+sin-1(35)

From Equations (1) and (2),

cos-1(1213)+sin-1(35) 

=tan-1(512)+tan-1(34) 

=tan-1(34+5121-(34 × 512)) 

=tan-1(5633) 

=sin-1(5665) 

Hence, it is proved that cos-11213+sin-135=sin-15665


7. Using inverse trigonometric identities, prove that tan-16316=sin-1513+cos-135

Ans: Assuming sin-1513α  

sin α =513 

cos α =1-(513)2 

cos α =1213 

Therefore, 

tan α =512 

 α =tan-1(512) 

sin-1(513)=tan-1(512) ----(1) 

Assuming that cos-135β 

cos β =35 

sin β =1-(35)2 

sin β =45 

Therefore, 

tan β =43 

 β =tan-1(43) 

cos-1(35)=tan-1(43) ----(2) 

Consider 

sin-1(513)+cos-1(35)

From Equations (1) and (2),

sin-1(513)+cos-1(35) 

=tan-1(512)+tan-1(43) 

 =tan-1(43+5121-(43 × 512)) 

=tan-1(6316) 

Hence, it is proved that tan-16316=sin-1513+cos-135


8. Using inverse trigonometric identities, prove that tan1x=12cos1(1x1+x),x[0,1]

Ans: Assuming x=tan2 α  

Consider

tan-1x 

 =tan-1tan2 α  

=tan-1tan α  

α  

tan-1xα ----(1)

Consider 

12cos-1(1-x1+x) 

=12cos-1(1-tan2 α 1+tan2 α ) 

=12cos-1cos2 α  

α  

12cos-1(1-x1+x)α  -----(2)

From Equations (1) and (2),

It is proved that tan-1x=12cos-1(1-x1+x)


9. Using inverse trigonometric identities, prove that cot1(1+sinx+1sinx1+sinx1sinx)=x2,x(0,π4)

Ans: We know that 

1+sin x=cosx2+sinx2 

1-sin x=cosx2-sinx2 

Consider

cot-1(1+sin x+1-sin x1+sin x-1-sin x) 

=cot-1((cosx2+sinx2)+(cosx2-sinx2)(cosx2+sinx2)-(cosx2-sinx2)) 

cot-1(cotx2) 

=x2 

It is proved that cot-1(1+sin x+1-sin x1+sin x-1-sin x)=x2


10. Using inverse trigonometric identities, prove that tan1(1+x1x1+x+1x)=π412cos1x,12x1

Ans: Assuming

x=cos2 β  

1+x 

=1+cos2 β  

=2cos β  

1-x 

=1-cos2 β  

=2sin β 


Consider

tan-1(1+x-1-x1+x+1-x) 

=tan-1(2cos β -2sin β 2cos β +2sin β ) 

=tan-1(1-tan β 1+tan β ) 

=tan-1(tan( π 4β )) 

= π 4β  

= π 4-12cos-1x 

It is proved that tan-1(1+x-1-x1+x+1-x)= π 4-12cos-1x


11. For what value of x does the equation 2tan-1(cos x)=tan-1(2cosecx) satisfy?

Ans: Consider 2tan-1(cos x)=tan-1(2cosecx)

tan-1(2cos x1-cos2x)=tan-1(2cosecx) 

2cos x1-cos2x=2cosecx 

sin xcos x=sin2x 

sin x(cos x-sin x)=0 

sin x=0,cos x-sin x=0 

x=0, π 4 

Therefore, 2tan-1(cos x)=tan-1(2cosecx) is satisfied for x=0, π 4


12. For what value of x does the equation tan-11-x1+x=12tan-1x,(x > 0) satisfy?

Ans: Consider tan-11-x1+x=12tan-1x

tan-1(tan( π 4-tan-1x))=12tan-1x 

 π 4-tan-1x=12tan-1x 

 π 4=32tan-1x 

tan-1x= π 6 

x=13 

Therefore, tan-11-x1+x=12tan-1x is satisfied for x=13


13. The expression sin(tan-1x),|x|<1 is equal to

(A) x1-x2

(B) 11-x2

(C) 11+x2

(D) x1+x2

Ans: Assuming 

x=tan β  

 β =tan-1x 

sin(tan-1x) 

=sin β  

=x1+x2 

Hence, sin(tan-1x)=x1+x2

Therefore, the correct option is option D


14. For what value of x does the equation sin-1(1-x)-2sin-1x= π 2 satisfy?

(A) 0,12

(B) 1,12

(C) 0

(D) 12

Ans: Consider

sin-1(1-x)-2sin-1x= π 2 

-2sin-1x= π 2-sin-1(1-x) 

-2sin-1x=cos-1(1-x) -----(1)

Assuming 

cos-1(1-x)β  

cos β =1-x 

sin β =1-(1-x)2 

sin β =2x-x2 

 β =sin-12x-x2 

cos-11-x=sin-12x-x2 -----(2)

Substituting Equation (2) in (1)

-2sin-1x=sin-12x-x2 

sin-1(-2x1-x2)=sin-12x-x2 

-2x1-x2=2x-x2 

4x2-4x4=2x-x2 

4x4-5x2+2x=0 

x=0,12,-1 ± 174 

But considering the given options and also when x=12, the equation sin-1(1-x)-2sin-1x= π 2 doesn’t satisfy

Thus, x=0 is the only solution.

Hence the correct option is C


Conclusion

Miscellaneous Exercise in Class 12 Maths Chapter 2 is crucial for understanding various concepts thoroughly. It covers diverse problems that require the application of multiple formulas and techniques. It's important to focus on understanding the underlying principles behind each question rather than just memorizing solutions. Remember to understand the theory behind each concept, practice regularly, and refer to solved examples to master this exercise effectively.


Class 12 Maths Chapter 2: Exercises Breakdown

Exercise

Number of Questions

Exercise 2.1

14 Questions and Solutions

Exercise 2.2

15 Questions and Solutions


CBSE Class 12 Maths Chapter 2 Other Study Materials


Chapter-Specific NCERT Solutions for Class 12 Maths

Given below are the chapter-wise NCERT Solutions for Class 12 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.


Additional Study Materials for Class 12 Maths 

WhatsApp Banner

FAQs on NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Miscellaneous Exercise

1. Can you give an example of how to use the NCERT solutions for a typical problem?

While I cannot provide specific solutions due to copyright, I can explain the approach using a general example. Suppose a question asks for the value of sin1 (1/2). Here, you'd use the concept of the inverse sine function to find the angle whose sine value is 1/2. Referring to the unit circle in your NCERT book, you'll find that the angle whose sine is 1/2 is π/6. The solutions would guide you through this process.

2. How can I solve problems involving functions like cos1 (-√3/2)?

Similar to the previous question, you'll use the inverse cosine function to find the angle whose cosine is -√3/2. The solutions will provide guidance, but remember that cosine repeats every 2π. This means there might be multiple solutions.The principal value range (0 to π) for cos1 (-√3/2) is 5π/6, but depending on the context, other answers like 7π/6 might also be valid.

3. Can the NCERT solutions help me solve for tan1 (1)?

Yes, the solutions can definitely help. The inverse tangent function tan1 gives the angle whose tangent is the given value. The solutions would guide you towards finding the answer, which is π/4 for tan1 (1).

4. What approach should I take for problems involving trigonometric identities?

The NCERT Solutions often use trigonometric identities to simplify expressions before applying inverse trigonometric functions. It's important to have a strong understanding of these identities. Revisit the relevant sections in your NCERT book to solidify your grasp on these identities before tackling such problems in the solutions.

5. Where can I find solutions to other problems in the miscellaneous exercise?

The NCERT textbook itself provides solutions to some problems within the miscellaneous exercise section. Additionally, Vedantu offers various online resources for comprehensive solutions. You can find them through a web search using terms like "NCERT Solutions Class 12 Maths Chapter 2 Miscellaneous Exercise".


By understanding these approaches and utilizing the NCERT solutions along with other resources, you'll be well-equipped to conquer the challenges presented in the miscellaneous exercise section of Chapter 2 on Inverse Trigonometric Functions.