NCERT Solutions for Class 12 Maths Chapter 5 Exercise 5.3 - FREE PDF Download
NCERT Solutions for Class 12 Maths Chapter 5 Ex 5.3 by Vedantu, is crucial for understanding how functions behave, how they change, and how they can be manipulated using calculus. Exercise 5.3 focuses on the concepts of differentiability and provides a variety of problems that help reinforce your understanding of this topic. By working through these solutions, you’ll gain confidence in tackling different differentiation problems, which is essential for success in board exams and competitive exams like JEE. Vedantu’s step-by-step solutions are designed to make learning easy and effective.
Glance on NCERT Solutions Maths Chapter 5 Exercise 5.3 Class 12 | Vedantu
Product and Quotient rules help to differentiate a function that is multiplied or divided by each other.
The chain rule is used to break complex functions into simple parts to find their derivatives.
Higher order derivatives are the second, third, or further derivatives of a function. In simple words, it is differentiating a function multiple times results in higher order derivatives.
Derivatives of implicit functions is the process of differentiating an implicit equation with respect to the desired variable x while treating the other variables as unspecified functions of x.
Derivatives of inverse trigonometric functions are the process of finding angles for the given trigonometric value.
Ex 5.3 Class 12 has 15 fully solved questions for Chapter 5 Continuity and Differentiability.
Topics Covered in Class 12 Maths Chapter 5 Exercise 5.3
Derivatives of Implicit functions
Derivatives of Inverse trigonometric functions
Access PDF for Maths NCERT Chapter 5 Continuity and Differentiability Exercise 5.3 Class 12
1. Find $ \frac{dy}{dx}:2x+3y=\sin x $
Ans: The given relationship is $ 2x+3y=\sin x $
Differentiating the above relationship with respect to $ x $ ,
We get
$ \Rightarrow \text{ } $ $ \frac{d}{dy}(2x+3y)=\frac{d}{dx}(\sin x) $
$ \Rightarrow \frac{d}{dx}(2x)+\frac{d}{dx}(3y)=\cos x $
$ \Rightarrow 2+3\frac{dy}{dx}=\cos x $
$ \Rightarrow 3\frac{dy}{dx}=\cos x-2 $
$ \therefore \frac{dx}{dy}=\frac{\cos x-2}{3} $
2. Find $ \frac{dy}{dx}:2x+3y=\sin y $
Ans: The given relationship is $ 2x+3y=\sin y $
Differentiating the above relationship with respect to $ x $ , We obtain
$ \Rightarrow \text{ } $ $ \frac{d}{dx}(2x)+\frac{d}{dx}(3y)=\frac{d}{dx}(\sin y) $
$ \Rightarrow 2+3\frac{dy}{dx}=\cos y\frac{dy}{dx}\quad [ $ By using chain rule]
$ \Rightarrow 2=(cosy $ $ -3)\frac{dy}{dx} $
$ \therefore \frac{dy}{dx}=\frac{2}{\cos y-3} $
3. Find $ \frac{dy}{dx}:ax+b{{y}^{2}}=\cos y $
Ans: The given relationship is $ ax+b{{y}^{2}}=\cos y $ .
Differentiating the above relationship with respect to $ x $ , we obtain
$ \Rightarrow \text{ } $ $ \frac{d}{dx}(\alpha x)+\frac{d}{dx}\left( b{{y}^{2}} \right)=\frac{d}{dx}(\cos y) $
$ \Rightarrow a+b\frac{d}{dx}\left( {{y}^{2}} \right)=\frac{d}{dx}(\cos y) $
$ \frac{d}{dx}\left( {{y}^{2}} \right)=2y\frac{dy}{dx} $ and $ \frac{d}{dx}(\cos y)=-\sin y\frac{dy}{dx} $
Using the chain rule,
We get,
$ \Rightarrow \text{ } $ $ a+b\times 2y\frac{dy}{dx}=-\sin y\frac{dy}{dx} $
$ \Rightarrow (2by+\sin y)\frac{dy}{dx}=-a $
$ \therefore \frac{dy}{dx}=\frac{-a}{2by+\sin y} $
4. Find $ \frac{dy}{dx}:xy+{{y}^{2}}=\tan x+y $
Ans: The given relationship is $ xy+{{y}^{2}}=\tan x+y $
Differentiating the above relationship with respect to $ x $ , We obtain
$ \Rightarrow \text{ } $ $ \frac{d}{dx}\left( xy+{{y}^{2}} \right)=\frac{d}{dx}(\tan x+y) $
$ \Rightarrow \frac{d}{dx}(xy)+\frac{d}{dx}\left( {{y}^{2}} \right)=\frac{d}{dx}(\tan x)+\frac{dy}{dx} $
$ \Rightarrow \left[ y\cdot \frac{d}{dx}(x)+x\cdot \frac{dy}{dx} \right]+2y\frac{dy}{dx}={{\sec }^{2}}x+\frac{dy}{dx}\quad $ [Using product rule and chain rule]
$ \Rightarrow y\cdot 1+x\frac{dy}{dx}+2y\frac{dy}{dx}={{\sec }^{2}}x+\frac{dy}{dx} $
$ \Rightarrow (x+2y-1)\frac{dy}{dx}={{\sec }^{2}}x-y $
$ \therefore \frac{dy}{dx}=\frac{{{\sec }^{2}}x-y}{(x+2y-1)} $
5. Find $ \frac{dy}{dx}:{{x}^{2}}+xy+{{y}^{2}}=100 $
Ans: The given relationship is $ {{x}^{2}}+xy+{{y}^{2}}=100 $ .
Differentiating the above relationship with respect to $ x $ , We obtain
$ \Rightarrow \text{ } $ $ \frac{d}{dx}\left( {{x}^{2}}+xy+{{y}^{2}} \right)=\frac{d}{dx}(100) $ Derivative of the constant function is 0
$ \Rightarrow \frac{d}{dx}\left( {{x}^{2}} \right)+\frac{d}{dx}(xy)+\frac{d}{dx}\left( {{y}^{2}} \right)=0 $
$ \Rightarrow 2x+\left[ y\cdot \frac{d}{dx}(x)+x\cdot \frac{dy}{dx} \right]+2y\frac{dy}{dx}=0 $ Using product rule and chain rule
$ \Rightarrow 2x+y.1+x\cdot \frac{dy}{dx}+2y\frac{dy}{dx}=0 $
$ \Rightarrow 2x+y+(x+2y)\frac{dy}{dx}=0 $
$ \therefore \frac{dy}{dx}=-\frac{2x+y}{x+2y} $
6. Find $ \frac{dy}{dx}:{{x}^{3}}+{{x}^{2}}y+x{{y}^{2}}+{{y}^{3}}=81 $
Ans: The given relationship is $ {{x}^{3}}+{{x}^{2}}y+x{{y}^{2}}+{{y}^{3}}=81 $ .
Differentiating the above relationship with respect to $ x $ ,
We get,
$ \Rightarrow \text{ } $ $ \frac{d}{dx}\left( {{x}^{3}}+{{x}^{2}}y+x{{y}^{2}}+{{y}^{3}} \right)=\frac{d}{dx}(81) $
$ \Rightarrow \frac{d}{dx}\left( {{x}^{3}} \right)+\frac{d}{dx}\left( {{x}^{2}}y \right)+\frac{d}{dx}{x{y}^{2}}+\frac{d}{dx}\left( {{y}^{3}} \right)=0 $
$ \Rightarrow 3{{x}^{2}}+\left[ y\frac{d}{dx}\left( {{x}^{2}} \right)+{{x}^{2}}\frac{dy}{dx} \right]+\left[ {{y}^{2}}\frac{d}{dx}(x)+x\frac{d}{dx}\left( {{y}^{2}} \right) \right]+3{{y}^{2}}\frac{dy}{dx}=0 $
$ \Rightarrow 3{{x}^{2}}+\left[ y\cdot 2x+{{x}^{2}}\frac{dy}{dx} \right]+\left[ {{y}^{2}}\cdot 1+x\cdot 2y\cdot \frac{dy}{dx} \right]+3{{y}^{2}}\frac{dy}{dx}=0 $
$ \Rightarrow \left( {{x}^{2}}+2xy+3{{y}^{2}} \right)\frac{dy}{dx}+\left( 3{{x}^{2}}+2xy+{{y}^{2}} \right)=0 $
$ \therefore \frac{dy}{dx}=\frac{-\left( 3{{x}^{2}}+2xy+{{y}^{2}} \right)}{\left( {{x}^{2}}+2xy+3{{y}^{2}} \right)} $
7. Find $ \frac{dx}{dy}:{{\sin }^{2}}y+\cos xy=k $
Ans: The given relationship is $ {{\sin }^{2}}y+\cos xy=k $
Differentiating the above relationship with respect to $ x $ ,
We get,
$ \Rightarrow \text{ } $ $ \frac{d}{dx}\left( {{\sin }^{2}}y+\cos xy \right)=\frac{d}{dx}(k ) $
$ \Rightarrow \frac{d}{dx}\left( {{\sin }^{2}}y \right)+\frac{d}{dx}(\cos xy)=0 $
Using the chain rule,
We get $ \frac{d}{dx}\left( {{\sin }^{2}}y \right)=2\sin y\frac{d}{dx}(\sin y)=2\sin y\cos y\frac{dy}{dx} $
$ \frac{d}{dx}(\cos xy)=-\sin xy\frac{d}{dx}(xy)=-\sin xy\left[ y\frac{d}{dx}(x)+x\frac{dy}{dx} \right] $
$ =-\sin xy\left[ y\cdot 1+x\frac{dy}{dx} \right]=-y\sin xy-x\sin xy\frac{dy}{dx} $
From the above equations we get $ 2\sin y\cos y\frac{dy}{dx}-y\sin xy-x\sin xy\frac{dy}{dx}=0 $
$ \Rightarrow (2\sin y\cos y-x\sin xy)\frac{dy}{dx}=y\sin xy $
$ \Rightarrow (\sin 2y-x\sin xy)\frac{dx}{dy}=y\sin xy $
$ \frac{dx}{dy}=\frac{y\sin xy}{\sin 2y-x\sin xy} $
8. Find $ \frac{dy}{dx}={{\sin }^{2}}x+{{\cos }^{2}}y=1 $
Ans: The given relationship is $ {{\sin }^{2}}x+{{\cos }^{2}}y=1 $
Differentiating the above relationship with respect to $ x $ ,
We get $ \frac{dy}{dx}\left( {{\sin }^{2}}x+{{\cos }^{2}}y \right)=\frac{d}{dx}(1) $
$ \Rightarrow \frac{d}{dx}\left( {{\sin }^{2}}x \right)+\frac{d}{dx}\left( {{\cos }^{2}}y \right)=0 $
$ \Rightarrow 2\sin x\cdot \frac{d}{dx}(\sin x)+2\cos y\cdot \frac{d}{dx}(\cos y)=0 $
$ \Rightarrow 2\sin x\cos x+2\cos y(-\sin y)\cdot \frac{dy}{dx}=0 $
$ \sin 2x-\sin 2y\frac{dy}{dx}=0 $
$ \frac{dx}{dy}=\frac{\sin 2x}{\sin 2y} $
9. Find $ \frac{dy}{dx}=y={{\sin }^{-1}}\left( \frac{2x}{1+{{x}^{2}}} \right) $
Ans: The given relationship is $ y={{\sin }^{-1}}\left( \frac{2x}{1+{{x}^{2}}} \right) $
$ y={{\sin }^{-1}}\left( \frac{2x}{1+{{x}^{2}}} \right) $
$ \Rightarrow \sin y=\frac{2x}{1+{{x}^{2}}} $
Differentiating the above relationship with respect to $ x $ ,
We get,
$ \Rightarrow \text{ } $ $ \frac{d}{dx}(\sin y)=\frac{d}{dx}\left( \frac{2x}{1+{{x}^{2}}} \right) $
$ \Rightarrow \cos y\frac{dy}{dx}=\frac{d}{dx}\left( \frac{2x}{1+{{x}^{2}}} \right) $
The function $ \frac{2x}{1+{{x}^{2}}} $ is of the form of $ \frac{u}{v} $ . Therefore, by quotient rule, we get $ \frac{d}{dx}\left( \frac{2x}{1+{{x}^{2}}} \right)=\frac{\left( 1+{{x}^{2}} \right)\frac{d}{dx}(2x)-2x\cdot \frac{d}{dx}\left( 1+{{x}^{2}} \right)}{{{\left( 1+{{x}^{2}} \right)}^{2}}}$
$ =\frac{\left( 1+{{x}^{2}} \right)\cdot 2-2x[0+2x]}{{{\left( 1+{{x}^{2}} \right)}^{2}}}=\frac{2+2{{x}^{2}}-4{{x}^{2}}}{{{\left( 1+{{x}^{2}} \right)}^{2}}}=\frac{2\left( 1-{{x}^{2}} \right)}{{{\left( 1+{{x}^{2}} \right)}^{2}}} $
Also, $ \sin y=\frac{2x}{1+{{x}^{2}}} $
$ \Rightarrow \cos y=\sqrt{1-{{\sin }^{2}}y}=\sqrt{1-{{\left( \frac{2x}{1+{{x}^{2}}} \right)}^{2}}}=\sqrt{\frac{{{\left( 1+{{x}^{2}} \right)}^{2}}-4{{x}^{2}}}{{{\left( 1+{{x}^{2}} \right)}^{2}}}} $
$ =\sqrt{\frac{{{\left( 1-{{x}^{2}} \right)}^{2}}}{{{\left( 1-{{x}^{2}} \right)}^{2}}}}=\frac{1-{{x}^{2}}}{1+{{x}^{2}}} $
From above equations , we get
$ \Rightarrow \text{ } $ $ \frac{1-{{x}^{2}}}{1+{{x}^{2}}}\times \frac{dy}{dx}=\frac{2\left( 1-{{x}^{2}} \right)}{{{\left( 1+{{x}^{2}} \right)}^{2}}} $
$ \Rightarrow \frac{dy}{dx}=\frac{2}{1+{{x}^{2}}} $
10. Find $\dfrac{d y}{d x} \text { in, } y=\tan ^{-1}\left(\dfrac{3 x-x^{3}}{1-3 x^{2}}\right),-\dfrac{1}{\sqrt{3}} < x < \dfrac{1}{\sqrt{3}}$
Ans: $y=\tan ^{-1}\left(\dfrac{3 x-x^{3}}{1-3 x^{2}}\right)$
Putting $\mathrm{x}=\tan \theta$
$y=\tan ^{-1}\left(\dfrac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}\right) \\$
$y=\tan ^{-1}(\tan 3 \theta) \quad\left(\tan 3 \theta=\dfrac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}\right) \\$
$y=3 \theta$
Differentiating both sides w.r.t. $x$.
$\dfrac{d(y)}{d x}=\dfrac{d 3\left(\tan ^{-1} x\right)}{d x} \\$
$\dfrac{d y}{d x}=3 \dfrac{d\left(\tan ^{-1} x\right)}{d x} \\$
$\dfrac{d y}{d x}=3\left(\dfrac{1}{1+x^{2}}\right) \quad\left(\left(\tan ^{-1} x\right)^{\prime}=\dfrac{1}{1+x^{2}}\right) \\$
$\dfrac{d y}{d x}=\dfrac{3}{1+x^{2}}$
11. Find $ \frac{dy}{dx}:y={{\cos }^{-1}}\left( \frac{1-{{x}^{2}}}{1+{{x}^{2}}} \right),0 < x < 1 $
Ans: The given relationship is,
$ y={{\cos }^{-1}}\left( \frac{1-{{x}^{2}}}{1+{{x}^{2}}} \right) $
$ \Rightarrow \cos y=\frac{1-{{x}^{2}}}{1+{{x}^{2}}} $
$ \Rightarrow \frac{1-{{\tan }^{2}}\frac{y}{2}}{1+{{\tan }^{2}}\frac{y}{2}}=\frac{1-{{x}^{2}}}{1+{{x}^{2}}} $
On comparing L.H.S. and R.H.S. of the above relationship,
We get
$ \Rightarrow \text{ } $ $ \tan \frac{y}{2}=x $
$ \Rightarrow {\text{\; }}y = 2\left( {{{\tan }^{ - 1}}x} \right)$
Differentiating the above relationship with respect to
x,
We get
$ \Rightarrow {\text{ }}$ $\frac{{dy}}{{dx}} = \frac{{d\left( {2{{\tan }^{ - 1}}x} \right)}}{{dx}}$
$ \Rightarrow \frac{{dy}}{{dx}} = 2\frac{{d\left( {{{\tan }^{ - 1}}x} \right)}}{{dx}}$
$ \Rightarrow \frac{{dy}}{{dx}} = 2\left( {\frac{1}{{1 + {x^2}}}} \right)$
$\therefore \frac{{dy}}{{dx}} = \frac{2}{{1 + {x^2}}}$
12. Find $ \frac{dy}{dx}:y={{\sin }^{-1}}\left( \frac{1-{{x}^{2}}}{1+{{x}^{2}}} \right),0 < x < 1 $
Ans: The given relationship is $ y={{\sin }^{-1}}\left( \frac{1-{{x}^{2}}}{1+{{x}^{2}}} \right) $
$ y={{\sin }^{-1}}\left( \frac{1-{{x}^{2}}}{1+{{x}^{2}}} \right) $
$ \Rightarrow \sin y=\frac{1-{{x}^{2}}}{1+{{x}^{2}}} $
$ \Rightarrow \left( 1+{{x}^{2}} \right)\sin y=1-{{x}^{2}} $
$ \Rightarrow (1+\sin y){{x}^{2}}=1-\sin y $
$ \Rightarrow {{x}^{2}}=\frac{1-\sin y}{1+\sin y} $
$ \Rightarrow {{x}^{2}}=\frac{{{\left( \cos \frac{y}{2}-\sin \frac{y}{2} \right)}^{2}}}{{{\left( \cos \frac{y}{2}+\sin \frac{y}{x} \right)}^{2}}} $
$ \Rightarrow x=\frac{\cos \frac{y}{2}-\sin \frac{y}{2}}{\cos \frac{y}{2}+\sin \frac{y}{2}} $
$ \Rightarrow x=\frac{1-\tan \frac{y}{2}}{1+\tan \frac{y}{2}} $
$ \Rightarrow x=\tan \left( \frac{\pi }{4}-\frac{\pi }{2} \right) $
Differentiating the above relationship with respect to $ x $ ,
We get,
$ \Rightarrow \text{ } $ $ \frac{d}{dx}(x)=\frac{d}{dx}\left[ \tan \left( \frac{\pi }{4}-\frac{y}{2} \right) \right] $
$ \Rightarrow 1={{\sec }^{2}}\left( \frac{\pi }{4}-\frac{y}{2} \right)\cdot \frac{d}{dt}\left( \frac{\pi }{4}-\frac{y}{2} \right) $
$ \Rightarrow 1=\left[ 1+{{\tan }^{2}}\left( \frac{\pi }{4}-\frac{y}{2} \right)\left( -\frac{1}{2}\frac{dy}{dx} \right) \right. $
$ \Rightarrow 1=\left( 1+{{x}^{2}} \right)\left( -\frac{1}{2}\frac{dy}{dx} \right) $
$ \Rightarrow \frac{dy}{dx}=\frac{-2}{1+{{x}^{2}}} $
13. Find $ \frac{dy}{dx}=y={{\cos }^{-1}}\left( \frac{2x}{1+{{x}^{2}}} \right),-1 < x < 1 $
Ans: The given relationship is
$ y={{\cos }^{-1}}\left( \frac{2x}{1+{{x}^{2}}} \right) $
$ y={{\cos }^{-1}}\left( \frac{2x}{1+{{x}^{2}}} \right) $
$ \Rightarrow \cos y=\frac{2x}{1+{{x}^{2}}} $
Differentiating the above relationship with respect to $ \text{x} $ ,
We get,
$ \Rightarrow \text{ } $ $ \frac{d}{dx}(\cos y)=\frac{d}{dx}\left( \frac{2x}{1+{{x}^{2}}} \right) $
$ \Rightarrow -\sin y\frac{dy}{dx}=\frac{\left( 1+{{x}^{2}} \right)\cdot \frac{d}{dx}(2x)-2x\cdot \frac{d}{dt}\left( 1+{{x}^{2}} \right)}{{{\left( 1+{{x}^{2}} \right)}^{2}}} $
$ \Rightarrow -\sqrt{1-{{\cos }^{2}}y}\frac{dy}{dx}=\frac{\left( 1+{{x}^{2}} \right)\times 2- 2x\cdot 2x}{{{\left( 1+{{x}^{2}} \right)}^{2}}} $
$ \Rightarrow \left[ \sqrt{1-{{\left( \frac{2x}{1+{{x}^{2}}} \right)}^{2}}} \right]\frac{dy}{dx}=-\left[ \frac{2{{(1-{{x}^{2}})}}}{{{\left( 1+{{x}^{2}} \right)}^{2}}} \right] $
$ \Rightarrow \sqrt{\frac{{{\left( 1+{{x}^{2}} \right)}^{2}}-4{{x}^{2}}}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}\frac{dy}{dx}=\frac{-2\left( 1-{{x}^{2}} \right)}{{{\left( 1+{{x}^{2}} \right)}^{2}}} $
$ =\sqrt{\frac{{{\left( 1-{{x}^{2}} \right)}^{2}}}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}\frac{dy}{dx}=\frac{-2\left( 1-{{x}^{2}} \right)}{{{\left( 1+{{x}^{2}} \right)}^{2}}} $
$ \Rightarrow \frac{1-{{x}^{2}}}{1+{{x}^{2}}}\cdot \frac{dy}{dx}=\frac{-2\left( 1-{{x}^{2}} \right)}{{{\left( 1+{{x}^{2}} \right)}^{2}}} $
$ \Rightarrow \frac{dy}{dx}=\frac{-2}{1+{{x}^{2}}} $
14. Find $ \frac{dy}{dx}:y={{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right),-\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}} $
Ans: Relationship is $ y={{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right) $
$ y={{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right) $
$ \Rightarrow \sin y=2x\sqrt{1-{{x}^{2}}} $
Differentiating the above relationship with respect to $ x $ , we get $ \cos y \frac{dy}{dx}=2\left[ x\frac{d}{dx}\left( \sqrt{1-{{x}^{2}}} \right)+\sqrt{1-{{x}^{2}}}\frac{dx}{dx} \right] $
$ =\sqrt{1-{{\sin }^{2}}y}\frac{dy}{dx}=2\left[ \frac{x}{2}\cdot \frac{-2x}{\sqrt{1-{{x}^{2}}}}+\sqrt{1-{{x}^{2}}} \right] $
$ =\sqrt{1-{\left( 2x\sqrt{1-{{x}^{2}}}\right)}^{2}}\frac{dy}{dx}=2\left[ \frac{-{{x}^{2}}+1-{{x}^{2}}}{\sqrt{1-{{x}^{2}}}} \right] $
$ =\sqrt{1-4{{x}^{2}}\left( 1-{{x}^{2}} \right)}\frac{dy}{dx}=2\left[ \frac{1-2{{x}^{2}}}{\sqrt{1-{{x}^{2}}}} \right] $
$ =\sqrt{{{(1-2{x}^{2})}^{2}}}\frac{dy}{dx}=2\left[ \frac{1-2{{x}^{2}}}{\sqrt{1-{{x}^{2}}}} \right] $
$ =\left( 1-2{{x}^{2}} \right)\frac{dy}{dx}=2\left[ \frac{1-2{{x}^{2}}}{\sqrt{1-{{x}^{2}}}} \right] $
$ \Rightarrow \frac{dy}{dx}=\frac{2}{\sqrt{1-{{x}^{2}}}} $
15. Find $ \frac{dy}{dx}:y={{\sec }^{-1}}\left( \frac{1}{2{{x}^{2}}-1} \right),0 < x < \frac{1}{\sqrt{2}} $
Ans: The given relationship is $ y={{\sec }^{-1}}\left( \frac{1}{2{{x}^{2}}-1} \right) $
$ y={{\sec }^{-1}}\left( \frac{1}{2{{x}^{2}}-1} \right) $
$ \Rightarrow \sec y=\frac{1}{2{{x}^{2}}-1} $
$ \Rightarrow \cos y=2{{x}^{2}}-1 $
$ \Rightarrow 2{{x}^{2}}=1+\cos y $
$ \Rightarrow 2{{x}^{2}}=2{{\cos }^{2}}\frac{y}{2} $
$ \Rightarrow x=\cos \frac{y}{2} $
Differentiating the above relationship with respect to $ x $ ,
We get,
$ \Rightarrow \text{ } $ $ \frac{d}{dx}(x)=\frac{d}{dx}\left( \cos \frac{y}{2} \right) $
$ \Rightarrow 1=-\sin \frac{y}{2}\cdot \frac{d}{dx}\left( \frac{y}{2} \right) $
$ \Rightarrow \frac{-1}{\sin \frac{y}{2}}=\frac{1}{2}\frac{dy}{dx} $
$ \Rightarrow \frac{dy}{dx}=\frac{-2}{\sin \frac{y}{2}}=\frac{-2}{\sqrt{1-{{\cos }^{2}}\frac{y}{2}}} $
$ \Rightarrow \frac{dy}{dx}=\frac{-2}{\sqrt{1-{{x}^{2}}}} $
Conclusion
NCERT Solutions for Class 12 Maths Ex 5.3 Continuity and Differentiability by Vedantu are essential for mastering the concepts of differentiability. This exercise emphasizes understanding and applying various differentiation techniques such as the product rule, quotient rule, chain rule, implicit differentiation, and higher-order derivatives. These skills are crucial for solving complex problems in board exams and competitive exams like JEE. In previous year's question papers, there were around 3-4 questions based on these topics, highlighting their importance in exams. Paying close attention to the detailed solutions provided by Vedantu will help you gain confidence and proficiency in handling a wide range of differentiation problems.
Class 12 Maths Chapter 5: Exercises Breakdown
S.No. | Chapter 5 - Continuity and Differentiability Exercises in PDF Format | |
1 | Class 12 Maths Chapter 5 Exercise 5.1 - 34 Questions & Solutions (10 Short Answers, 24 Long Answers) | |
2 | Class 12 Maths Chapter 5 Exercise 5.2 - 10 Questions & Solutions (2 Short Answers, 8 Long Answers) | |
3 | Class 12 Maths Chapter 5 Exercise 5.4 - 10 Questions & Solutions (5 Short Answers, 5 Long Answers) | |
4 | Class 12 Maths Chapter 5 Exercise 5.5 - 18 Questions & Solutions (4 Short Answers, 14 Long Answers) | |
5 | Class 12 Maths Chapter 5 Exercise 5.6 - 11 Questions & Solutions (7 Short Answers, 4 Long Answers) | |
6 | Class 12 Maths Chapter 5 Exercise 5.7 - 17 Questions & Solutions (10 Short Answers, 7 Long Answers) | |
7 | Class 12 Maths Chapter 5 Miscellaneous Exercise - 22 Questions & Solutions |
CBSE Class 12 Maths Chapter 5 Other Study Materials
S.No. | Important Links for Chapter 5 Continuity and Differentiability |
1 | Class 12 Continuity and Differentiability Important Questions |
2 | |
3 | |
4 | Class 12 Continuity and Differentiability NCERT Exemplar Solutions |
5 | Class 12 Continuity and Differentiability RS Aggarwal Solutions |
NCERT Solutions for Class 12 Maths | Chapter-wise List
Given below are the chapter-wise NCERT 12 Maths solutions PDF. Using these chapter-wise class 12th maths ncert solutions, you can get clear understanding of the concepts from all chapters.
S.No. | NCERT Solutions Class 12 Maths Chapter-wise List |
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 | |
11 | |
12 | |
13 |
Related Links for NCERT Class 12 Maths in Hindi
Explore these essential links for NCERT Class 12 Maths in Hindi, providing detailed solutions, explanations, and study resources to help students excel in their mathematics exams.
S.No. | Related NCERT Solutions for Class 12 Maths |
1 | |
2 |
Important Related Links for NCERT Class 12 Maths
S.No | Important Resources Links for Class 12 Maths |
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 |
FAQs on NCERT Solutions for Class 12 Maths Chapter 5 Continuity And Differentiability Ex 5.3
1. What topics are covered in Class 12 Ex 5.3 Maths Chapter 5?
Exercise 5.3 Class 12 Maths covers various differentiation techniques including the product rule, quotient rule, chain rule, implicit differentiation, and higher-order derivatives.
2. How do you apply the quotient rule in differentiation?
The quotient rule is applied to differentiate the ratio of two functions. u(x) and v(x) are two functions, their ratio is $\frac{u\left (x \right )}{v\left ( x \right )}$ is differentiated as
$\frac{{u}'\left ( x \right )v\left ( x \right )-u\left ( x \right ){v}'\left ( x \right )}{\left [ v\left ( x \right ) \right ]^{2}}$