Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 12 Maths Chapter 5 Continuity And Differentiability Ex 5.3

ffImage
banner

NCERT Solutions for Class 12 Maths Chapter 5 Exercise 5.3 - FREE PDF Download

NCERT Solutions for Class 12 Maths Chapter 5 Ex 5.3 by Vedantu, is crucial for understanding how functions behave, how they change, and how they can be manipulated using calculus. Exercise 5.3 focuses on the concepts of differentiability and provides a variety of problems that help reinforce your understanding of this topic. By working through these solutions, you’ll gain confidence in tackling different differentiation problems, which is essential for success in board exams and competitive exams like JEE. Vedantu’s step-by-step solutions are designed to make learning easy and effective.

toc-symbolTable of Content
toggle-arrow


Glance on NCERT Solutions Maths Chapter 5 Exercise 5.3 Class 12 | Vedantu

  • Product and Quotient rules help to differentiate a function that is multiplied or divided by each other.

  • The chain rule is used to break complex functions into simple parts to find their derivatives.

  • Higher order derivatives are the second, third, or further derivatives of a function. In simple words, it is differentiating a function multiple times results in higher order derivatives.  

  • Derivatives of implicit functions is the process of differentiating an implicit equation with respect to the desired variable x while treating the other variables as unspecified functions of x.

  • Derivatives of inverse trigonometric functions are the process of finding angles for the given trigonometric value.

  • Ex 5.3 Class 12 has 15 fully solved questions for Chapter 5 Continuity and Differentiability.


Topics Covered in Class 12 Maths Chapter 5 Exercise 5.3

  1. Derivatives of Implicit functions

  2. Derivatives of Inverse trigonometric functions

Courses
Competitive Exams after 12th Science

Access PDF for Maths NCERT Chapter 5 Continuity and Differentiability Exercise 5.3 Class 12

1. Find  dydx:2x+3y=sinx 

Ans: The given relationship is  2x+3y=sinx  

Differentiating the above relationship with respect to x

We get

     ddy(2x+3y)=ddx(sinx) 

 ddx(2x)+ddx(3y)=cosx 

 2+3dydx=cosx 

 3dydx=cosx2 

 dxdy=cosx23 


2. Find  dydx:2x+3y=siny 

Ans: The given relationship is  2x+3y=siny  

Differentiating the above relationship with respect to x , We obtain

     ddx(2x)+ddx(3y)=ddx(siny) 

 2+3dydx=cosydydx[  By using chain rule]

 2=(cosy  3)dydx 

 dydx=2cosy3 


3. Find  dydx:ax+by2=cosy 

Ans: The given relationship is ax+by2=cosy .

Differentiating the above relationship with respect to x , we obtain

    ddx(αx)+ddx(by2)=ddx(cosy) 

 a+bddx(y2)=ddx(cosy) 

 ddx(y2)=2ydydx  and  ddx(cosy)=sinydydx 

Using the chain rule, 

We get,

     a+b×2ydydx=sinydydx 

 (2by+siny)dydx=a 

 dydx=a2by+siny 


4. Find  dydx:xy+y2=tanx+y 

Ans:  The given relationship is  xy+y2=tanx+y 

 Differentiating the above relationship with respect to x , We obtain

     ddx(xy+y2)=ddx(tanx+y) 

 ddx(xy)+ddx(y2)=ddx(tanx)+dydx 

 [yddx(x)+xdydx]+2ydydx=sec2x+dydx  [Using product rule and chain rule]

 y1+xdydx+2ydydx=sec2x+dydx 

 (x+2y1)dydx=sec2xy 

 dydx=sec2xy(x+2y1) 


5. Find  dydx:x2+xy+y2=100 

Ans:  The given relationship is x2+xy+y2=100 .

Differentiating the above relationship with respect to x , We obtain

     ddx(x2+xy+y2)=ddx(100)                   Derivative of the constant function is  0 

 ddx(x2)+ddx(xy)+ddx(y2)=0 

 2x+[yddx(x)+xdydx]+2ydydx=0   Using product rule and chain rule

 2x+y.1+xdydx+2ydydx=0 

 2x+y+(x+2y)dydx=0 

 dydx=2x+yx+2y 


6. Find  dydx:x3+x2y+xy2+y3=81 

Ans: The given relationship is  x3+x2y+xy2+y3=81  .

Differentiating the above relationship with respect to  x

We get,

     ddx(x3+x2y+xy2+y3)=ddx(81) 

 ddx(x3)+ddx(x2y)+ddxxy2+ddx(y3)=0 

 3x2+[yddx(x2)+x2dydx]+[y2ddx(x)+xddx(y2)]+3y2dydx=0 

 3x2+[y2x+x2dydx]+[y21+x2ydydx]+3y2dydx=0 

 (x2+2xy+3y2)dydx+(3x2+2xy+y2)=0 

 dydx=(3x2+2xy+y2)(x2+2xy+3y2) 


7. Find  dxdy:sin2y+cosxy=k 

Ans:   The given relationship is  sin2y+cosxy=k 

Differentiating the above relationship with respect to x

We get,

     ddx(sin2y+cosxy)=ddx(k) 

 ddx(sin2y)+ddx(cosxy)=0 

Using the chain rule, 

We get  ddx(sin2y)=2sinyddx(siny)=2sinycosydydx 

 ddx(cosxy)=sinxyddx(xy)=sinxy[yddx(x)+xdydx] 

 =sinxy[y1+xdydx]=ysinxyxsinxydydx 

From the above equations we get  2sinycosydydxysinxyxsinxydydx=0 

 (2sinycosyxsinxy)dydx=ysinxy 

 (sin2yxsinxy)dxdy=ysinxy 

 dxdy=ysinxysin2yxsinxy 


8. Find  dydx=sin2x+cos2y=1 

Ans:  The given relationship is  sin2x+cos2y=1 

Differentiating the above relationship with respect to  x ,

 We get  dydx(sin2x+cos2y)=ddx(1) 

 ddx(sin2x)+ddx(cos2y)=0 

 2sinxddx(sinx)+2cosyddx(cosy)=0 

 2sinxcosx+2cosy(siny)dydx=0 

 sin2xsin2ydydx=0 

 dxdy=sin2xsin2y 


9. Find  dydx=y=sin1(2x1+x2) 

Ans:  The given relationship is  y=sin1(2x1+x2) 

 y=sin1(2x1+x2) 

 siny=2x1+x2 

Differentiating the above relationship with respect to  x

We get,

    ddx(siny)=ddx(2x1+x2) 

 cosydydx=ddx(2x1+x2) 

The function 2x1+x2  is of the form of uv . Therefore, by quotient rule, we get  ddx(2x1+x2)=(1+x2)ddx(2x)2xddx(1+x2)(1+x2)2

 =(1+x2)22x[0+2x](1+x2)2=2+2x24x2(1+x2)2=2(1x2)(1+x2)2 

Also,  siny=2x1+x2 

 cosy=1sin2y=1(2x1+x2)2=(1+x2)24x2(1+x2)2 

 =(1x2)2(1x2)2=1x21+x2 

From above equations , we get

     1x21+x2×dydx=2(1x2)(1+x2)2 

 dydx=21+x2 


10. Find dydx in, y=tan1(3xx313x2),13<x<13

Ans: y=tan1(3xx313x2)

Putting x=tanθ

y=tan1(3tanθtan3θ13tan2θ)

y=tan1(tan3θ)(tan3θ=3tanθtan3θ13tan2θ)

y=3θ

Differentiating both sides w.r.t. x.

d(y)dx=d3(tan1x)dx

dydx=3d(tan1x)dx

dydx=3(11+x2)((tan1x)=11+x2)

dydx=31+x2


11. Find  dydx:y=cos1(1x21+x2),0<x<1 

Ans: The given relationship is,

 y=cos1(1x21+x2) 

 cosy=1x21+x2 

 1tan2y21+tan2y2=1x21+x2 

On comparing L.H.S. and R.H.S. of the above relationship, 

We get 

   tany2=x 

\; y=2(tan1x) 

Differentiating the above relationship with respect to

x, 

We get

    dydx=d(2tan1x)dx 

dydx=2d(tan1x)dx 

dydx=2(11+x2) 

dydx=21+x2


12. Find  dydx:y=sin1(1x21+x2),0<x<1 

Ans: The given relationship is  y=sin1(1x21+x2) 

 y=sin1(1x21+x2) 

 siny=1x21+x2 

 (1+x2)siny=1x2 

 (1+siny)x2=1siny 

 x2=1siny1+siny 

 x2=(cosy2siny2)2(cosy2+sinyx)2 

 x=cosy2siny2cosy2+siny2 

 x=1tany21+tany2 

 x=tan(π4π2) 

Differentiating the above relationship with respect to x

We get,

     ddx(x)=ddx[tan(π4y2)] 

 1=sec2(π4y2)ddt(π4y2) 

 1=[1+tan2(π4y2)(12dydx) 

 1=(1+x2)(12dydx) 

 dydx=21+x2 


13. Find  dydx=y=cos1(2x1+x2),1<x<1 

Ans: The given relationship is 

 y=cos1(2x1+x2) 

 y=cos1(2x1+x2) 

 cosy=2x1+x2 

Differentiating the above relationship with respect to x

We get,

     ddx(cosy)=ddx(2x1+x2) 

 sinydydx=(1+x2)ddx(2x)2xddt(1+x2)(1+x2)2 

 1cos2ydydx=(1+x2)×22x2x(1+x2)2 

 [1(2x1+x2)2]dydx=[2(1x2)(1+x2)2] 

 (1+x2)24x2(1+x2)2dydx=2(1x2)(1+x2)2 

 =(1x2)2(1+x2)2dydx=2(1x2)(1+x2)2 

 1x21+x2dydx=2(1x2)(1+x2)2 

 dydx=21+x2 


14. Find  dydx:y=sin1(2x1x2),12<x<12 

Ans:  Relationship is  y=sin1(2x1x2) 

 y=sin1(2x1x2) 

 siny=2x1x2 

Differentiating the above relationship with respect to  x , we get  cosydydx=2[xddx(1x2)+1x2dxdx] 

 =1sin2ydydx=2[x22x1x2+1x2] 

 =1(2x1x2)2dydx=2[x2+1x21x2] 

 =14x2(1x2)dydx=2[12x21x2] 

 =(12x2)2dydx=2[12x21x2] 

 =(12x2)dydx=2[12x21x2] 

 dydx=21x2 


15. Find  dydx:y=sec1(12x21),0<x<12 

Ans:  The given relationship is  y=sec1(12x21) 

 y=sec1(12x21) 

 secy=12x21 

 cosy=2x21 

 2x2=1+cosy 

 2x2=2cos2y2 

 x=cosy2 

Differentiating the above relationship with respect to x

We get,

    ddx(x)=ddx(cosy2) 

 1=siny2ddx(y2) 

 1siny2=12dydx 

 dydx=2siny2=21cos2y2 

 dydx=21x2 


Conclusion

NCERT Solutions for Class 12 Maths Ex 5.3 Continuity and Differentiability by Vedantu are essential for mastering the concepts of differentiability. This exercise emphasizes understanding and applying various differentiation techniques such as the product rule, quotient rule, chain rule, implicit differentiation, and higher-order derivatives. These skills are crucial for solving complex problems in board exams and competitive exams like JEE. In previous year's question papers, there were around 3-4 questions based on these topics, highlighting their importance in exams. Paying close attention to the detailed solutions provided by Vedantu will help you gain confidence and proficiency in handling a wide range of differentiation problems.


Class 12 Maths Chapter 5: Exercises Breakdown

S.No.

Chapter 5 - Continuity and Differentiability Exercises in PDF Format

1

Class 12 Maths Chapter 5 Exercise 5.1 - 34 Questions & Solutions (10 Short Answers, 24 Long Answers)

2

Class 12 Maths Chapter 5 Exercise 5.2 - 10 Questions & Solutions (2 Short Answers, 8 Long Answers)

3

Class 12 Maths Chapter 5 Exercise 5.4 - 10 Questions & Solutions (5 Short Answers, 5 Long Answers)

4

Class 12 Maths Chapter 5 Exercise 5.5 - 18 Questions & Solutions (4 Short Answers, 14 Long Answers)

5

Class 12 Maths Chapter 5 Exercise 5.6 - 11 Questions & Solutions (7 Short Answers, 4 Long Answers)

6

Class 12 Maths Chapter 5 Exercise 5.7 - 17 Questions & Solutions (10 Short Answers, 7 Long Answers)

7

Class 12 Maths Chapter 5 Miscellaneous Exercise - 22 Questions & Solutions



CBSE Class 12 Maths Chapter 5 Other Study Materials



NCERT Solutions for Class 12 Maths | Chapter-wise List

Given below are the chapter-wise NCERT 12 Maths solutions PDF. Using these chapter-wise class 12th maths ncert solutions, you can get clear understanding of the concepts from all chapters.




Explore these essential links for NCERT Class 12 Maths in Hindi, providing detailed solutions, explanations, and study resources to help students excel in their mathematics exams.




WhatsApp Banner

FAQs on NCERT Solutions for Class 12 Maths Chapter 5 Continuity And Differentiability Ex 5.3

1. What topics are covered in Class 12 Ex 5.3 Maths Chapter 5?

Exercise 5.3 Class 12 Maths covers various differentiation techniques including the product rule, quotient rule, chain rule, implicit differentiation, and higher-order derivatives.

2. How do you apply the quotient rule in differentiation?

The quotient rule is applied to differentiate the ratio of two functions. u(x) and v(x) are two functions, their ratio is u(x)v(x) is differentiated as 

u(x)v(x)u(x)v(x)[v(x)]2