Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 12 Maths Chapter 6: Application of Derivatives - Exercise 6.4

ffImage
Last updated date: 23rd Apr 2024
Total views: 576k
Views today: 7.76k
MVSAT offline centres Dec 2023

NCERT Solutions for Class 12 Maths Chapter 6 (Ex 6.4)

NCERT Solution for Class 12 Maths Chapter 6 exercise 6.4 is available on Vedantu in a precise and simple language. Created by experienced subjects experts, this content is strictly followed by NCERT guidelines. The chapter Application of Derivatives is designed in such a way that it would help to reduce your fear about Maths. You can download the PDF files of the chapter Application of Derivatives PDF file from Vedantu’s site, which is available for free. 


Class:

NCERT Solutions for Class 12

Subject:

Class 12 Maths

Chapter Name:

Chapter 6 - Application of Derivatives

Exercise:

Exercise - 6.4

Content-Type:

Text, Videos, Images and PDF Format

Academic Year:

2024-25

Medium:

English and Hindi

Available Materials:

  • Chapter Wise

  • Exercise Wise

Other Materials

  • Important Questions

  • Revision Notes

Competitive Exams after 12th Science

Access NCERT Solutions For Class 12 Chapter 6 – Applications of Derivatives

Exercise 6.4

1. Using differentials, find the approximate value of each of the following upto 3 places of decimal.

(i)\[\mathbf{\sqrt {25.3}} \]

Ans: Let \[y = \sqrt x \]. Let \[x = 25\] and \[\Delta x = 0.3\].

Then,

$  \Delta y = \sqrt {x + \vartriangle x}  - \sqrt x  \\ $

$  \Delta y = \sqrt {25.3}  - \sqrt {25}  \\ $

$  \Delta y = \sqrt {25.3}  - 5 \\ $

$  \sqrt {25.3}  = \Delta y + 5 \\ $ 

Now, finding the value of \[\Delta y\].

As \[y = \sqrt x \]

On differentiating both side w.r.t. \[x\], we get

\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{2\sqrt x }}\]

As \[dy\] and \[dx\] are approximately equal to \[\Delta y\] and \[\Delta x\], it is given as,

$  \Delta y = \left( {\dfrac{{dy}}{{dx}}} \right)\Delta x $

$  \Delta y = \dfrac{1}{{2\sqrt x }}\Delta x $ 

Now, substituting the value of \[x\] and \[\Delta x\].

$  \Delta y = \dfrac{1}{{2\sqrt {25} }}\left( {0.3} \right) \\ $

$  \Delta y = \dfrac{1}{{2 \times 5}} \times \left( {0.3} \right) \\ $

$  \Delta y = \dfrac{{0.3}}{{10}} \\ $

$  \Delta y = 0.03 \\ $

Therefore,

$ \sqrt {25.3}  = \Delta y + 5 \\ $

$  \sqrt {25.3}  = 5 + 0.03 \\ $

$   = 5.03 \\ $

So, the approximate value of \[\sqrt {25.3} \] is $5.03$.

(ii) \[\mathbf{\sqrt {49.5}} \]

Ans: Let \[y = \sqrt x \]. Let \[x = 49\] and \[\Delta x = 0.5\] .

Then,

$  \Delta y = \sqrt {x + \vartriangle x}  - \sqrt x  \\ $

$  \Delta y = \sqrt {49.5}  - \sqrt {49}  \\ $

 $ \Delta y = \sqrt {49.3}  - 7 \\ $

$  \sqrt {49.5}  = \Delta y + 7 \\ $

 Now, finding the value of \[\Delta y\].

As \[y = \sqrt x \], on differentiating both side w.r.t. \[x\] we get

\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{2\sqrt x }}\]

As \[dy\] and \[dx\] are approximately equal to \[\Delta y\] and \[\Delta x\] , it is given as,

$  \Delta y = \left( {\dfrac{{dy}}{{dx}}} \right)\Delta x \\ $

$  \Delta y = \dfrac{1}{{2\sqrt x }}\Delta x \\ $

Now, substituting the value of \[x\] and \[\Delta x\].

$  \Delta y = \dfrac{1}{{2\sqrt {49} }}\left( {0.5} \right) \\ $

$  \Delta y = 0.03571 \\ $

 Therefore,

$  \sqrt {49.5}  = \Delta y + 7 \\ $

$  \sqrt {49.5}  = 7 + 0.03571 \\ $

$   = 7.03571 \\ $

So, the value of \[\sqrt {49.5} \] is \[7.03571\] .

(iii) \[\mathbf{\sqrt {0.6} }\]

Ans: Let \[y = \sqrt x \]. Let \[x = 1\] and \[\Delta x =  - 0.4\].

Therefore,

$  \Delta y = \sqrt {x + \vartriangle x}  - \sqrt x  \\ $

$  \Delta y = \sqrt {0.6}  - \sqrt 1  \\ $

$  \Delta y = \sqrt {0.6}  - 1 \\ $

$  \sqrt {0.6}  = \Delta y + 1 \\ $

Now, finding the value of \[\Delta y\].

As \[y = \sqrt x \], on differentiating both side w.r.t. \[x\] we get

\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{2\sqrt x }}\]

As \[dy\] and \[dx\] are approximately equal to \[\Delta y\] and \[\Delta x\] , it is given as,

$  \Delta y = \left( {\dfrac{{dy}}{{dx}}} \right)\Delta x \\ $

$  \Delta y = \dfrac{1}{{2\sqrt x }}\Delta x \\ $

 Now, substituting the value of \[x\] and \[\Delta x\].

$   \Delta y = \dfrac{1}{{2\sqrt 1 }}\left( { - 0.4} \right) \\ $

$  \Delta y =  - 0.2 \\ $

 Therefore,

$  \sqrt {0.6}  = \Delta y + 1 \\ $

$  \sqrt {0.6}  = 1 - 0.2 \\  $

 $  = 0.8 \\ $

So, the value of \[\sqrt {0.6} \] is \[0.8\].

(iv) \[\mathbf{{\left( {0.009} \right)^{\dfrac{1}{3}}}}\]

Ans: Let \[y = {x^{\dfrac{1}{3}}}\]. Let \[x = 0.008\] and \[\Delta x = 0.001\].

Therefore,

$  \Delta y = {\left( {x + \vartriangle x} \right)^{\dfrac{1}{3}}} - {\left( x \right)^{\dfrac{1}{3}}} $

$  \Delta y = {\left( {0.009} \right)^{\dfrac{1}{3}}} - {\left( {0.008} \right)^{\dfrac{1}{3}}} $

$  \Delta y = {\left( {0.009} \right)^{\dfrac{1}{3}}} - 0.2 $

$ {\left( {0.009} \right)^{\dfrac{1}{3}}} = \Delta y + 0.2 $

 Now, finding the value of \[\Delta y\].

As \[y = {x^{\dfrac{1}{3}}}\], on differentiating both side w.r.t. \[x\] we get

\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{3{{\left( x \right)}^{\dfrac{2}{3}}}}}\]

As \[dy\] and \[dx\] are approximately equal to \[\Delta y\] and \[\Delta x\], it is given as,

$ \Delta y = \left( {\dfrac{{dy}}{{dx}}} \right)\Delta x $

$  \Delta y = \dfrac{1}{{3{{\left( x \right)}^{\dfrac{2}{3}}}}}\Delta x $ 

Now, substituting the value of \[x\] and \[\Delta x\].

$  \Delta y = \dfrac{1}{{3{{\left( {0.008} \right)}^{\dfrac{2}{3}}}}}\left( {0.001} \right) \\ $

$  \Delta y = \dfrac{1}{{3 \times 0.04}} \times \left( {0.001} \right) \\ $

$  \Delta y = \dfrac{{0.001}}{{0.12}} \\ $

$  \Delta y = 0.008 \\ $

 Therefore,

$  {\left( {0.009} \right)^{\dfrac{1}{3}}} = \Delta y + 0.2 \\$ 

$  {\left( {0.009} \right)^{\dfrac{1}{3}}} = 0.2 + 0.008 \\ $

$   = 0.208 \\ $

So, the value of \[{\left( {0.009} \right)^{\dfrac{1}{3}}}\] is \[0.208\].

(v) \[\mathbf{{\left( {0.999} \right)^{\dfrac{1}{{10}}}}}\]

Ans: Let \[y = {x^{\dfrac{1}{{10}}}}\]. Let \[x = 1\] and \[\Delta x =  - 0.001\] .

Therefore,

$  \Delta y = {\left( {x + \vartriangle x} \right)^{\dfrac{1}{{10}}}} - {\left( x \right)^{\dfrac{1}{{10}}}} $

$  \Delta y = {\left( {0.999} \right)^{\dfrac{1}{{10}}}} - {\left( 1 \right)^{\dfrac{1}{{10}}}} $

$  \Delta y = {\left( {0.999} \right)^{\dfrac{1}{{10}}}} - 1$

$  {\left( {0.999} \right)^{\dfrac{1}{{10}}}} = \Delta y + 1 $

 Now, finding the value of \[\Delta y\].

As \[y = {x^{\dfrac{1}{{10}}}}\], on differentiating both side w.r.t. \[x\] we get

\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{10{{\left( x \right)}^{\dfrac{9}{{10}}}}}}\]

As, \[dy\] and \[dx\]are approximately equal to \[\Delta y\]and \[\Delta x\] , it is given as,

$  \Delta y = \left( {\dfrac{{dy}}{{dx}}} \right)\Delta x $

$  \Delta y = \dfrac{1}{{10{{\left( x \right)}^{\dfrac{9}{{10}}}}}}\Delta x $

Now, substituting the value of \[x\]and\[\Delta x\].

$  \Delta y = \dfrac{1}{{10{{\left( 1 \right)}^{\dfrac{9}{{10}}}}}}\left( { - 0.001} \right) \\ $

$  \Delta y = \dfrac{1}{{10 \times 1}} \times \left( { - 0.001} \right) \\ $

$  \Delta y =  - \dfrac{{0.001}}{{10}} \\ $

$   =  - 0.0001 \\ $

 Therefore,

$  {\left( {0.999} \right)^{\dfrac{1}{{10}}}} = \Delta y + 1 \\ $

$  {\left( {0.999} \right)^{\dfrac{1}{{10}}}} = 1 + \left( { - 0.0001} \right) \\ $

$   = 0.9999 \\ $

So, the value of \[{\left( {0.999} \right)^{\dfrac{1}{{10}}}}\]is \[0.9999\].

(vi) \[\mathbf{{\left( {15} \right)^{\dfrac{1}{4}}}}\]

Ans: Let \[y = {x^{\dfrac{1}{4}}}\]. Let \[x = 16\] and \[\Delta x =  - 1\] .

Therefore,

$ \Delta y = {\left( {x + \vartriangle x} \right)^{\dfrac{1}{4}}} - {\left( x \right)^{\dfrac{1}{4}}} \\$

$  \Delta y = {\left( {15} \right)^{\dfrac{1}{4}}} - {\left( {16} \right)^{\dfrac{1}{4}}} \\ $

$  \Delta y = {\left( {15} \right)^{\dfrac{1}{4}}} - 2\\ $

$  {\left( {15} \right)^{\dfrac{1}{4}}} = \Delta y + 2 \\ $

Now, finding the value of \[\Delta y\].

As \[y = {x^{\dfrac{1}{4}}}\], on differentiating both side w.r.t. \[x\] .

\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{4{{\left( x \right)}^{\dfrac{3}{4}}}}}\]

As \[dy\] and \[dx\] are approximately equal to \[\Delta y\] and \[\Delta x\], it is given as,

$ \Delta y = \left( {\dfrac{{dy}}{{dx}}} \right)\Delta x  \\ $

$  \Delta y = \dfrac{1}{{4{{\left( x \right)}^{\dfrac{3}{4}}}}}\Delta x  \\ $

Now, substituting the value of \[x\]and\[\Delta x\].

$  \Delta y = \dfrac{1}{{4{{\left( {16} \right)}^{\dfrac{3}{4}}}}}\left( { - 1} \right) \\  $

$  \Delta y = \dfrac{1}{{4 \times 8}} \times \left( { - 1} \right) \\ $

$  \Delta y =  - \dfrac{1}{{32}} \\ $

$  \Delta y =  - 0.003125 \\ $

Therefore,

$  {\left( {15} \right)^{\dfrac{1}{4}}} = \Delta y + 2 \\ $

$  {\left( {15} \right)^{\dfrac{1}{4}}} = 2 + \left( { - 0.03125} \right) \\ $

$   = 1.96875 \\  $

So, the value of \[{\left( {15} \right)^{\dfrac{1}{4}}}\] is \[1.96875\].

(vii) \[{\mathbf{\left( {26} \right)^{\dfrac{1}{3}}}}\]

Ans: Let \[y = {x^{\dfrac{1}{3}}}\]. Let \[x = 27\] and \[\Delta x =  - 1\] .

Therefore,

$  \Delta y = {\left( {x + \vartriangle x} \right)^{\dfrac{1}{3}}} - {\left( x \right)^{\dfrac{1}{3}}} \\ $

$  \Delta y = {\left( {26} \right)^{\dfrac{1}{3}}} - {\left( {27} \right)^{\dfrac{1}{3}}} \\ $

$  \Delta y = {\left( {26} \right)^{\dfrac{1}{3}}} - 3 \\ $

$  {\left( {26} \right)^{\dfrac{1}{3}}} = \Delta y + 3 \\ $

Now, finding the value of \[\Delta y\].

As \[y = {x^{\dfrac{1}{3}}}\], on differentiating both side w.r.t. \[x\] .

\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{3{{\left( x \right)}^{\dfrac{2}{3}}}}}\]

As \[dy\] and \[dx\] are approximately equal to \[\Delta y\] and \[\Delta x\] , it is given as,

$  \Delta y = \left( {\dfrac{{dy}}{{dx}}} \right)\Delta x \\ $

$  \Delta y = \dfrac{1}{{3{{\left( x \right)}^{\dfrac{2}{3}}}}}\Delta x \\ $

Now, substituting the value of \[x\]and\[\Delta x\].

$  \Delta y = \dfrac{1}{{3{{\left( {27} \right)}^{\dfrac{2}{3}}}}}\left( { - 1} \right) \\ $

$  \Delta y = \dfrac{1}{{3{{\left( {27} \right)}^{\dfrac{2}{3}}}}}\left( { - 1} \right) \\  $

$  \Delta y = \dfrac{1}{{3 \times 9}} \times \left( { - 1} \right) \\ $

$  \Delta y =  - \dfrac{1}{{27}} \\ $

$  \Delta y =  - 0.0370 \\ $

Therefore,

$  {\left( {26} \right)^{\dfrac{1}{3}}} = \Delta y + 3 \\ $

$  {\left( {26} \right)^{\dfrac{1}{3}}} = 3 + \left( { - 0.0370} \right) \\ $

$   = 2.9629 \\ $

So, the value of \[{\left( {26} \right)^{\dfrac{1}{3}}}\] is \[2.9629\] .


(viii) \[\mathbf{{\left( {255} \right)^{\dfrac{1}{4}}}}\]

Ans: Let \[y = {x^{\dfrac{1}{4}}}\] . Let \[x = 265\] and \[\Delta x =  - 1\] .

Therefore,

$  \Delta y = {\left( {x + \vartriangle x} \right)^{\dfrac{1}{4}}} - {\left( x \right)^{\dfrac{1}{4}}} \\ $

$  \Delta y = {\left( {255} \right)^{\dfrac{1}{4}}} - {\left( {256} \right)^{\dfrac{1}{4}}} \\ $

$  \Delta y = {\left( {255} \right)^{\dfrac{1}{4}}} - 4 \\ $

$  {\left( {255} \right)^{\dfrac{1}{4}}} = \Delta y + 4 \\ $

Now, finding the value of \[\Delta y\].

As, \[y = {x^{\dfrac{1}{4}}}\]

On differentiating both side w.r.t. \[x\] .

\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{4{{\left( x \right)}^{\dfrac{3}{4}}}}}\]

As \[dy\] and \[dx\]are approximately equal to \[\Delta y\]and \[\Delta x\] , it is given as,

$   \Delta y = \left( {\dfrac{{dy}}{{dx}}} \right)\Delta x \\ $

$  \Delta y = \dfrac{1}{{4{{\left( x \right)}^{\dfrac{3}{4}}}}}\Delta x \\ $

Now, substituting the value of \[x\] and \[\Delta x\].

$  \Delta y = \dfrac{1}{{4{{\left( {256} \right)}^{\dfrac{3}{4}}}}}\left( { - 1} \right) \\ $

$  \Delta y = \dfrac{1}{{4 \times 64}} \times \left( { - 1} \right) \\ $

$  \Delta y =  - \dfrac{1}{{256}} \\ $

$  \Delta y =  - 0.0039 \\ $

Therefore,

$  {\left( {255} \right)^{\dfrac{1}{4}}} = \Delta y + 4 \\ $

$  {\left( {255} \right)^{\dfrac{1}{4}}} = 4 + \left( { - 0.0039} \right) \\ $

  $ = 3.9961 \\ $

So, the value of \[{\left( {255} \right)^{\dfrac{1}{4}}}\]is \[3.9961\] .

(ix) \[\mathbf{{\left( {82} \right)^{\dfrac{1}{4}}}}\]

Ans: Let \[y = {x^{\dfrac{1}{4}}}\]. Let \[x = 81\] and \[\Delta x = 1\].

Therefore,

$  \Delta y = {\left( {x + \vartriangle x} \right)^{\dfrac{1}{4}}} - {\left( x \right)^{\dfrac{1}{4}}} \\ $

$  \Delta y = {\left( {82} \right)^{\dfrac{1}{4}}} - {\left( {81} \right)^{\dfrac{1}{4}}} \\  $

$  \Delta y = {\left( {82} \right)^{\dfrac{1}{4}}} - 3 \\  $

$  {\left( {82} \right)^{\dfrac{1}{4}}} = \Delta y + 3 \\  $

Now, finding the value of \[\Delta y\].

As \[y = {x^{\dfrac{1}{4}}}\], on differentiating both side w.r.t. \[x\] we get

\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{4{{\left( x \right)}^{\dfrac{3}{4}}}}}\]

As \[dy\] and \[dx\] are approximately equal to \[\Delta y\] and \[\Delta x\], it is given as,

$  \Delta y = \left( {\dfrac{{dy}}{{dx}}} \right)\Delta x \\ $

$  \Delta y = \dfrac{1}{{4{{\left( x \right)}^{\dfrac{3}{4}}}}}\Delta x \\ $

Now, substituting the value of \[x\]and \[\Delta x\].

$  \Delta y = \dfrac{1}{{4{{\left( {81} \right)}^{\dfrac{3}{4}}}}}\left( 1 \right) \\ $

$  \Delta y = \dfrac{1}{{4 \times 27}} \times \left( 1 \right) \\ $

$  \Delta y = \dfrac{1}{{108}} \\ $

$  \Delta y = 0.009 \\ $

 Therefore,

$  {\left( {82} \right)^{\dfrac{1}{4}}} = \Delta y + 3 \\ $

$  {\left( {82} \right)^{\dfrac{1}{4}}} = 3 + \left( {0.009} \right) \\ $

$   = 3.009 \\ $

 So, the value of \[{\left( {82} \right)^{\dfrac{1}{4}}}\] is \[3.009\].

(x)\[\mathbf{{\left( {401} \right)^{\dfrac{1}{2}}}}\]

Ans: Let \[y = {x^{\dfrac{1}{2}}}\]. Let \[x = 400\] and \[\Delta x = 1\].

Therefore,

$  \Delta y = {\left( {x + \vartriangle x} \right)^{\dfrac{1}{2}}} - {\left( x \right)^{\dfrac{1}{2}}} \\ $

$  \Delta y = {\left( {401} \right)^{\dfrac{1}{2}}} - {\left( {400} \right)^{\dfrac{1}{2}}} \\ $

$  \Delta y = {\left( {401} \right)^{\dfrac{1}{2}}} - 20 \\ $

$  {\left( {401} \right)^{\dfrac{1}{2}}} = \Delta y + 20 \\ $

Now, finding the value of \[\Delta y\].

As \[y = {x^{\dfrac{1}{2}}}\], on differentiating both side w.r.t. \[x\] we get

\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{2\sqrt x }}\]

As \[dy\] and \[dx\] are approximately equal to \[\Delta y\] and \[\Delta x\], it is given as,

$  \Delta y = \left( {\dfrac{{dy}}{{dx}}} \right)\Delta x \\ $

$  \Delta y = \dfrac{1}{{2{{\left( x \right)}^{\dfrac{1}{2}}}}}\Delta x \\ $

Now, substituting the value of \[x\] and \[\Delta x\].

$  \Delta y = \dfrac{1}{{2{{\left( {400} \right)}^{\dfrac{1}{2}}}}}\left( 1 \right) \\ $

$  \Delta y = \dfrac{1}{{2 \times 20}} \times \left( 1 \right) \\ $

$  \Delta y = \dfrac{1}{{40}} \\ $

$  \Delta y = 0.025 \\ $

 Therefore,

$  {\left( {401} \right)^{\dfrac{1}{2}}} = \Delta y + 20 \\ $

$  {\left( {401} \right)^{\dfrac{1}{2}}} = 20 + \left( {0.025} \right) \\ $

 $  = 20.025 \\ $

So, the value of \[{\left( {401} \right)^{\dfrac{1}{2}}}\] is \[20.025\].

(xi) \[\mathbf{{\left( {0.0037} \right)^{\dfrac{1}{2}}}}\]

Ans: Let \[y = {x^{\dfrac{1}{2}}}\] . Let \[x = 0.0036\] and \[\Delta x = 0.0001\] .

Therefore,

$  \Delta y = {\left( {x + \vartriangle x} \right)^{\dfrac{1}{2}}} - {\left( x \right)^{\dfrac{1}{2}}} \\ $

$  \Delta y = {\left( {0.0037} \right)^{\dfrac{1}{2}}} - {\left( {0.0036} \right)^{\dfrac{1}{2}}} \\ $

$  \Delta y = {\left( {0.0037} \right)^{\dfrac{1}{2}}} - 0.06 \\ $

 $ {\left( {0.0037} \right)^{\dfrac{1}{2}}} = \Delta y + 0.06 \\ $

Now, finding the value of \[\Delta y\].

As \[y = {x^{\dfrac{1}{2}}}\], on differentiating both sides w.r.t. \[x\] .

\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{2\sqrt x }}\]

As \[dy\] and \[dx\] are approximately equal to \[\Delta y\] and \[\Delta x\], it is given as,

$ \Delta y = \left( {\dfrac{{dy}}{{dx}}} \right)\Delta x \\ $

$  \Delta y = \dfrac{1}{{2{{\left( x \right)}^{\dfrac{1}{2}}}}}\Delta x \\  $

Now, substituting the value of \[x\] and \[\Delta x\].

$  \Delta y = \dfrac{1}{{2{{\left( {0.0036} \right)}^{\dfrac{1}{2}}}}}\left( {0.0001} \right) \\ $

$  \Delta y = \dfrac{1}{{2 \times 0.06}} \times \left( {0.0001} \right) \\ $

$  \Delta y = \dfrac{{0.0001}}{{0.12}} \\ $

$  \Delta y = 0.00083 \\ $

Therefore,

$  {\left( {0.0037} \right)^{\dfrac{1}{2}}} = \Delta y + 0.06 \\ $

$  {\left( {0.0037} \right)^{\dfrac{1}{2}}} = 0.06 + \left( {0.00083} \right) \\ $

$   = 0.06083 \\ $

So, the value of \[{\left( {0.0037} \right)^{\dfrac{1}{2}}}\] is \[0.06083\].

(xii) \[\mathbf{{\left( {26.57} \right)^{\dfrac{1}{3}}}}\]

Ans: Let \[y = {x^{\dfrac{1}{3}}}\]. Let \[x = 27\] and \[\Delta x =  - 0.43\].

Therefore,

$ \Delta y = {\left( {x + \vartriangle x} \right)^{\dfrac{1}{3}}} - {\left( x \right)^{\dfrac{1}{3}}} \\ $

 $ \Delta y = {\left( {26.57} \right)^{\dfrac{1}{3}}} - {\left( {27} \right)^{\dfrac{1}{3}}} \\ $

$  \Delta y = {\left( {26.57} \right)^{\dfrac{1}{3}}} - 3 \\ $

$  {\left( {26.57} \right)^{\dfrac{1}{3}}} = \Delta y + 3 \\ $

Now, finding the value of \[\Delta y\].

As \[y = {x^{\dfrac{1}{3}}}\], on differentiating both side w.r.t. \[x\].

\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{3{{\left( x \right)}^{\dfrac{2}{3}}}}}\]

As \[dy\] and \[dx\] are approximately equal to \[\Delta y\] and \[\Delta x\], it is given as,

$ \Delta y = \left( {\dfrac{{dy}}{{dx}}} \right)\Delta x \\ $

$ \Delta y = \dfrac{1}{{3{{\left( x \right)}^{\dfrac{2}{3}}}}}\Delta x \\ $

 Now, substituting the value of \[x\] and \[\Delta x\].

$  \Delta y = \dfrac{1}{{3{{\left( {27} \right)}^{\dfrac{2}{3}}}}}\left( { - 0.43} \right) \\ $

$  \Delta y = \dfrac{1}{{3 \times 9}} \times \left( { - 0.43} \right) \\ $

$  \Delta y =  - \dfrac{{0.43}}{{27}} \\ $

$  \Delta y =  - 0.015 \\ $

Therefore,

$ {\left( {26.57} \right)^{\dfrac{1}{3}}} = \Delta y + 3 \\ $

$  {\left( {26.57} \right)^{\dfrac{1}{3}}} = 3 + \left( { - 0.015} \right) \\ $

$ = 2.984 \\ $

So, the value of \[{\left( {26.57} \right)^{\dfrac{1}{3}}}\] is \[2.984\].

(xiii) \[\mathbf{{\left( {81.5} \right)^{\dfrac{1}{4}}}}\]

Ans: Let \[y = {x^{\dfrac{1}{4}}}\]. Let \[x = 81\] and \[\Delta x = 0.5\].

Therefore,

$  \Delta y = {\left( {x + \Delta x} \right)^{\dfrac{1}{4}}} - {\left( x \right)^{\dfrac{1}{4}}} \\ $

$  \Delta y = {\left( {81.5} \right)^{\dfrac{1}{4}}} - {\left( {81} \right)^{\dfrac{1}{4}}} \\ $

$  \Delta y = {\left( {81.5} \right)^{\dfrac{1}{4}}} - 3 \\ $

$  {\left( {81.5} \right)^{\dfrac{1}{4}}} = \Delta y + 3 \\ $

Now, finding the value of \[\Delta y\].

As \[y = {x^{\dfrac{1}{4}}}\], on differentiating both side w.r.t. \[x\] .

\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{4{{\left( x \right)}^{\dfrac{3}{4}}}}}\]

As \[dy\] and \[dx\] are approximately equal to \[\Delta y\] and \[\Delta x\], it is given as,

$ \Delta y = \left( {\dfrac{{dy}}{{dx}}} \right)\Delta x \\ $

$  \Delta y = \dfrac{1}{{4{{\left( x \right)}^{\dfrac{3}{4}}}}}\Delta x \\ $

Now, substituting the value of \[x\] and \[\Delta x\].

$  \Delta y = \dfrac{1}{{4{{\left( {81} \right)}^{\dfrac{3}{4}}}}}\left( {0.5} \right) \\ $

$ \Delta y = \dfrac{1}{{4 \times 27}} \times \left( {0.5} \right) \\ $

$ \Delta y = \dfrac{{0.5}}{{108}} \\ $

$  \Delta y = 0.0046 \\ $

Therefore,

$ {\left( {81.5} \right)^{\dfrac{1}{4}}} = \Delta y + 3 \\ $ 

$  {\left( {82} \right)^{\dfrac{1}{4}}} = 3 + \left( {0.0046} \right) \\  $

$ = 3.0046 \\ $

So, the value of \[{\left( {81.5} \right)^{\dfrac{1}{4}}}\] is \[3.0046\].

(xiv)  \[\mathbf{{\left( {3.968} \right)^{\dfrac{3}{2}}}}\]

Ans: Let \[y = {x^{\dfrac{3}{2}}}\]. Let \[x = 4\] and \[\Delta x =  - 0.032\] .

Therefore,

$  \Delta y = {\left( {x + \Delta x} \right)^{\dfrac{3}{2}}} - {\left( x \right)^{\dfrac{3}{2}}} \\ $

$  \Delta y = {\left( {3.968} \right)^{\dfrac{3}{2}}} - {\left( 4 \right)^{\dfrac{3}{2}}} \\ $

$  \Delta y = {\left( {3.968} \right)^{\dfrac{3}{2}}} - 8 \\ $

$  {\left( {3.968} \right)^{\dfrac{3}{2}}} = \Delta y + 8 \\  $

Now, finding the value of \[\Delta y\].

As \[y = {x^{\dfrac{3}{2}}}\] , on differentiating both side w.r.t. \[x\] .

\[\dfrac{{dy}}{{dx}} = \dfrac{3}{2}{\left( x \right)^{\dfrac{1}{2}}}\]

As \[dy\] and \[dx\] are approximately equal to \[\Delta y\] and \[\Delta x\], it is given as,

$  \Delta y = \left( {\dfrac{{dy}}{{dx}}} \right)\Delta x \\ $

$ \Delta y = \dfrac{3}{2}{\left( x \right)^{\dfrac{1}{2}}}\Delta x \\ $

 Now, substituting the values of \[x\]and\[\Delta x\].

$ \Delta y = \dfrac{3}{2}{\left( 4 \right)^{\dfrac{1}{2}}}\left( { - 0.032} \right) \\ $

 $ \Delta y = \dfrac{3}{2} \times 2 \times \left( { - 0.032} \right) \\ $

$  \Delta y =  - 0.096 \\ $

Therefore,

$  {\left( {3.968} \right)^{\dfrac{3}{2}}} = \Delta y + 8 \\ $

$  {\left( {3.968} \right)^{\dfrac{3}{2}}} = 8 + \left( { - 0.096} \right) \\ $

 $  = 7.904 \\ $

So, the value of \[{\left( {3.968} \right)^{\dfrac{3}{2}}}\] is \[7.904\] .

(xv) \[\mathbf{{\left( {32.15} \right)^{\dfrac{1}{5}}}}\]

Ans: Let \[y = {x^{\dfrac{1}{5}}}\]. Let \[x = 32\] and \[\Delta x = 0.15\] .

Therefore,

$  \Delta y = {\left( {x + \Delta x} \right)^{\dfrac{1}{5}}} - {\left( x \right)^{\dfrac{1}{5}}} \\ $

$  \Delta y = {\left( {32.15} \right)^{\dfrac{1}{5}}} - {\left( {32} \right)^{\dfrac{1}{5}}} \\ $

$  \Delta y = {\left( {32.15} \right)^{\dfrac{1}{5}}} - 2 \\ $

$  {\left( {32.15} \right)^{\dfrac{1}{5}}} = \Delta y + 2 \\ $

Now, finding the value of \[\Delta y\].

As, \[y = {x^{\dfrac{1}{5}}}\]

On differentiating both side w.r.t. \[x\] ,

\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{5{{\left( x \right)}^{\dfrac{4}{5}}}}}\]

As \[dy\] and \[dx\] are approximately equal to \[\Delta y\] and \[\Delta x\] , it is given as,

$ \Delta y = \left( {\dfrac{{dy}}{{dx}}} \right)\Delta x \\ $

$  \Delta y = \dfrac{1}{{5{{\left( x \right)}^{\dfrac{4}{5}}}}}\Delta x \\ $ 

Now, substituting the value of \[x\] and \[\Delta x\].

$  \Delta y = \dfrac{1}{{5{{\left( {32} \right)}^{\dfrac{4}{5}}}}}\left( {0.15} \right) \\ $

$  \Delta y = \dfrac{1}{{5 \times 16}} \times \left( {0.15} \right) \\ $

$  \Delta y = \dfrac{{0.15}}{{80}} \\ $

$  \Delta y = 0.00187 \\ $

Therefore,

$  {\left( {32.15} \right)^{\dfrac{1}{5}}} = \Delta y + 2 \\ $

$  {\left( {32.15} \right)^{\dfrac{1}{5}}} = 2 + \left( {0.00187} \right) \\ $

$  = 2.00187 \\ $

So, the value of \[{\left( {32.15} \right)^{\dfrac{1}{5}}}\] is \[2.00187\].


2. Find the approximate value of \[\mathbf{f(2.01)}\], where \[\mathbf{f(x) = 4{x^2} + 5x + 2}\].

Ans: Consider \[x = 2\] and \[\Delta x = 0.01\] .

Therefore,

$  f(2.01) = f(x + \Delta x) \\ $

$ = 4{(x + \Delta x)^2} + 5(x + \Delta x) + 2 \\ $

Therefore,

$  \vartriangle y = f(x + \Delta x) - f(x) \\ $

$  f(x + \Delta x) = \Delta y + f(x)......(1) \\ $

Since \[f(x) = 4{x^2} + 5x + 2\]

Differentiating both side w.r.t \[x\] .

\[\dfrac{{dy}}{{dx}} = 8x + 5\]

As \[dy\] and \[dx\] are approximately equal to \[\Delta y\] and \[\Delta x\], it is given as,

\[\Delta y = \left( {8x + 5} \right)\Delta x\]

Therefore equation 1 can be written as

$  f(2.01) = 4{x^2} + 5x + 2 + \left( {8x + 5} \right)\Delta x \\ $

$ = \left[ {4{{\left( 2 \right)}^2} + 5\left( 2 \right) + 2} \right] + \left[ {8\left( 2 \right) + 5} \right]\left( {0.01} \right) \\ $

$ = 28 + 0.21 \\ $

$ = 28.21 \\  $

So, the approximate value of \[f(2.01)\] is \[28.21\] .


3. Find the approximate value of \[\mathbf{f(5.001)}\], where \[\mathbf{f(x) = {x^3} - 7{x^2} + 15}\] .

Ans: Consider \[x = 5\] and \[\Delta x = 0.001\].

Therefore,

$  f(2.01) = f(x + \Delta x) \\ $

$ = {(x + \Delta x)^3} + 7{(x + \Delta x)^2} + 15 \\ $ 

Therefore,

$  \Delta y = f(x + \Delta x) - f(x) \\ $

$  f(x + \Delta x) = \Delta y + f(x)......(1) \\ $

Since \[f(x) = {x^3} + 7{x^2} + 15\]

Differentiating both side w.r.t \[x\] ,

\[\dfrac{{dy}}{{dx}} = 3{x^2} + 14x\]

As, \[dy\] and \[dx\] are approximately equal to \[\Delta y\] and \[\Delta x\], it is given as,

\[\Delta y = \left( {3{x^2} - 14x} \right)\Delta x\]

Therefore equation 1 can be written as

$  f(5.001) = {x^3} - 7{x^2} + 15 + \left( {3{x^2} - 14x} \right)\Delta x \\ $

 $  = \left[ {{{\left( 5 \right)}^3} - 7{{\left( 5 \right)}^2} + 15} \right] + \left[ {3{{\left( 5 \right)}^2} - 14\left( 5 \right)} \right] \times \left( {0.001} \right) \\ $

$  =  - 35 + 0.005 \\ $

$   =  - 35.001 \\ $

$   =  - 34.995 \\ $

So, the value of \[f(5.001)\] is \[ - 34.995\] .


4. Find the approximate change in volume \[V\]of a cube side \[x{\text{ meter}}\]caused by increasing side by \[1\% \] .

Ans: The volume of a cube of side \[x{\text{ meter}}\] is given as,

\[V = {x^3}\]

Differentiating both side w.r.t \[x\],

\[\dfrac{{dV}}{{dx}} = 3{x^2}\]

As \[dx\] is approximately equal to \[\Delta x\], it is given as,

$ dV = \left( {3{x^2}} \right)\left( {\Delta x} \right) \\ $

$ = \left( {3{x^2}} \right)\left( {0.01x} \right) \\ $

$ = 0.03{x^3}{{\text{m}}^3} \\ $

Therefore, the approximate change in the volume of cube is \[0.03{x^2}{m^3}\] .


5. Find the approximate change in the surface area of a cube of side \[x{\text{ meter}}\] caused by decreasing the side by \[1\% \].

Ans:  Suface area of square of side \[x{\text{ meter}}\] is given as,

\[S = 6{x^2}\]

Differentiating both side w.r.t. \[x\],

\[\dfrac{{dS}}{{dx}} = 12x\]

As \[dx\] is approximately equal to \[\Delta x\], it is given as,

\[dS = \left( {12x} \right)\left( {\Delta x} \right)\]

As \[1\% \] of  is \[0.01x\].

$ dS = \left( {12x} \right)\left( {0.01x} \right) \\ $

$ = 0.12{x^2}{m^2} \\ $

Therefore, the approximate change in surface area of cube is \[0.12{x^2}{m^2}\] .


6. If the radius of a sphere is measured as \[7m\] with an error of \[0.02m\], then find the approximate error in calculating its volume.

Ans: In this question it is given that ,

radius\[\left( r \right) = 7m\]

\[\Delta r = 0.02m\]

So, the volume of sphere is given as,

\[V = \dfrac{4}{3}\pi {r^3}\]

Differentiating both side w.r.t. \[r\],

\[\dfrac{{dV}}{{dr}} = 4\pi {r^2}\]

As \[dr\] is approximately equal to \[\Delta r\], it is given as,

$ dV = \left( {4\pi {r^2}} \right)\left( {\Delta r} \right) \\ $

$ = 4\pi {\left( 7 \right)^2}\left( {0.02} \right) \\ $

$ = 3.92\pi {m^2} \\ $

Therefore, the approximate error in calculated volume of sphere is \[3.92\pi {m^2}\].


7. If the radius of a sphere is measured as \[9m\] with an error of \[0.03m\], then find the approximate error in calculating surface area.

Ans: In this question, it is given that,

radius\[\left( r \right) = 9m\]

\[\Delta r = 0.03m\]

So, surface area of sphere is given as,

\[S = 4\pi {r^2}\]

Differentiating both side w.r.t. \[r\],

\[\dfrac{{dS}}{{dr}} = 8\pi r\]

As \[dr\] is approximately equal to \[\Delta r\], it is given as,

$ dS = \left( {8\pi r} \right)\left( {\Delta r} \right) \\ $

$ = 8\pi \left( 9 \right)\left( {0.03} \right) \\ $

$ = 2.16\pi {m^2} \\ $

Therefore, the approximate error in calculated surface area of sphere is \[2.16\pi {m^2}\].


8. If \[\mathbf{f(x) = 3{x^2} + 15x + 5}\], then the approximate value of \[f\left( {3.02} \right)\] is \[\mathbf{{\text{(A) 47}}{\text{.66      (B) 57}}{\text{.66       (C) 67}}{\text{.66        (D) 77}}{\text{.66}}}\]

Ans: Consider \[x = 3\] and \[\Delta x = 0.02\].

Therefore,

$ f(3.02) = f(x + \Delta x) \\ $

$ = 3{(x + \Delta x)^2} + 15(x + \Delta x) + 5 \\ $

 Therefore,

$  \Delta y = f(x + \Delta x) - f(x) \\ $

$  f(x + \Delta x) = \Delta y + f(x)......(1) \\ $

Since \[f(x) = 3{x^2} + 15x + 5\], differentiating both side w.r.t \[x\] .

\[\dfrac{{dy}}{{dx}} = 6x + 15\]

As \[dy\] and \[dx\] are approximately equal to \[\Delta y\] and \[\Delta x\] , it is given as,

\[\Delta y = \left( {6x + 15} \right)\Delta x\]

Therefore, equation 1 can be written as

$  f(3.02) = 3{x^2} + 15x + 5 + \left( {6x + 15} \right)\vartriangle x \\ $

$   = \left[ {3{{\left( 3 \right)}^2} + 15\left( 3 \right) + 5} \right] + \left[ {6\left( 3 \right) + 15} \right]\left( {0.02} \right) \\ $

$   = 77 +  + 0.66 \\ $

$   = 77.66 \\ $

So, the approximate value of \[f(3.02)\] is \[77.66\].

Therefore, the correct option is \[{\text{(D)}}\] .


9. Find theapproximate change in volume \[V\]of a cube side \[x{\text{ meter}}\]caused by increasing side by \[3\% \] is

\[\mathbf{{\text{(A) 0}}{\text{.06}}{x^3}{{\text{m}}^3}{\text{      (B) 0}}{\text{.6}}{x^3}{{\text{m}}^3}{\text{       (C) 0}}{\text{.09}}{x^3}{{\text{m}}^3}{\text{        (D) 0}}{\text{.9}}{x^3}{{\text{m}}^3}}\]

Ans: The volume of a cube of side \[x{\text{ meter}}\] is given as,

\[V = {x^3}\]

Differentiating both side w.r.t \[x\],

\[\dfrac{{dV}}{{dx}} = 3{x^2}\]

As \[dx\]is approximately equal to \[\Delta x\] , it is given as,

\[dV = \left( {3{x^2}} \right)\left( {\Delta x} \right)\]

\[3\% \]of\[x\] is \[0.03x\]

$ dV = \left( {3{x^2}} \right)\left( {0.03x} \right) \\ $

 $ = 0.09{x^3}{{\text{m}}^3} \\ $

Therefore, the approximate change in the volume of cube is \[0.09{x^3}{{\text{m}}^3}\] .

Therefore, the correct option is \[(C)\] .


Benefits of NCERT Solutions for Class 12 Maths Chapter 6

At Vedantu, you find plenty of material that helps you get good grades not by crook but with full honesty. We have covered all the course and converted it into simple language. We have induced a lot of examples, samples, and formulas that becomes very easy to understand and remember. Good examples help a lot in learning a problem easily, and the brain captures them quickly. You can get the formulated content for Chapter 6, exercise 6.4 Class 12 Maths. If you need the material for other chapters, they are also available on the website. Vedantu has authentic content for the Application of Derivatives NCERT Solutions. All the readable courses follow the guidelines made by CBSE NCERT Solutions. Let's figure out some of the benefits of having simplified content from NCERT Solutions. 


Our students should know the importance of NCERT Solutions and the services we are providing. Our primary purpose is to provide authentic and shallow content that helps them clear the CBSE exam with good grades. To make sure we succeed, we create depthless content in which a lot of sample questions help understand the nature and answer of a specific problem. Chapter 6 Maths Application of Derivatives Class 12 has plenty of complex material that becomes hard to memorize. You can always download your free copy of the exercise and prepare it. Only one round of practice from our notes can get you to succeed in the exams. 


Our content has high-quality language insertion, and the data has confirmation from plenty of professional Mathematicians. Vedantu doesn't compromise on the quality as we know that it can cost the future of a student. All the Application of Derivatives Class 12 solutions are present in the latest notes available on our website. We have maintained the quality by making most of the experienced teachers joined together and write with their skills. 


We bet that our material is easy to memorize, and the concepts are simple to learn. Our used language in the notes helps you to keep every information in your mind. Vedantu holds all the meaningful information that attracts through its natural and delicate style of writing. If you memorize the answer and formula, you score better than before ultimately. The other benefit of retaining is that you don't have to read or remember it again. By learning chapter 6 Application of Derivatives Class 12 NCERT Solutions, you secure yourself from being dumped by the friend who will not share the details of the question you ask. 


You can get the notes in a PDF file from Vedantu's website for free. 


The best thing is that you can get available data for every chapter other than this. To download the NCERT Solution for Class 12 Maths Chapter 6 material, you can directly search the website, or you can look for the file in the menu lists. If you still don't understand the navigations, then there is an instruction present on the site to assist you. 


You are free to explore the website of Vedantu and look for subjects and chapters for various classes. You can find the data for every other section after Class 12 Maths Chapter 6. Also, you can keep your hopes high once you encounter Vedantu. We have helped hundreds of students clear their exams with the highest grades and positions. You save your time, money, and lose the fear of failure by joining our platform and looking for the PDF that you need today.


If you get stuck at any point, then don't get worried as there is always a solution to any problem. Instructions attached to every chapter make you pass your hurdle. The instructions consist of samples, examples, and tricks to remember formulas. 

 

How can Vedantu help students by employing the solutions of NCERT class 12 chapter 6

By grasping the little instructional tutorial, you can absorb and surmise the answers faster and easier. We have a user-friendly online interface from where you can gain the wanted files in PDF for free. Once you choose up the progression of the education with us, your subsequent step is to download the PDF file of the chapter about the Application of Derivatives Class 12 for free. The interface supervises every user for the quest and receives the exact data. If you don't surmise the answers, you can download the directions file from the website, as well. Our coaches work hard on reproducing the answers in a way that students seize the concept in an only read. You can acquire new and novel techniques while equipping for the CBSE exam. We have arranged all the focus points about the chapter that you may have missed in the class. 


Why choose Vedantu?

We answer all the difficulties of the students of Maths and all other subjects. Vedantu is a wholesome package that a student can afford easily by spending their time. Time is money and so that we cost them. Otherwise, everything available on Vedantu is free of cost. We gather up skilled coaches from all over the world who make their efforts and simplify the data that we provide them. We show the data to the students so they can learn better and earn better in their exams. Our applications are producing new techniques on how to make the web a learning hub for the next generation. We provide new concepts, free seminars, free online live classes, free course material, and many more. Our online communications forums help many students make friends for further group study sessions. Moreover, you can ask for a solution on these forums, as well. Obtain easy concepts about Maths chapter 6 exercise 6.4 Class 12 and perform best in the exam.