Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 9 Maths Chapter 4 Linear Equations In Two Variables

ffImage
banner
widget title icon
Latest Updates

Score Higher With Class 9 Linear Equations In Two Variables Exercise 4.2 Solutions

Class 9 Maths Chapter 4 exercise 4.2 Solutions focuses on solving linear equations in two variables. This essential part of algebra helps students understand how to handle equations with two unknowns. The important aspect here is to learn how to graph these equations and find solutions that satisfy both equations simultaneously.

toc-symbolTable of Content
toggle-arrow


The key focus should be understanding the graphical method of solving equations, which involves plotting lines on a graph. The NCERT of Ex 4.2 class 9 also helps in visualising the solutions, making it easier to comprehend how equations interact. By mastering these concepts, students can tackle more complex problems with confidence.


You can download the FREE PDF for NCERT Solutions for Class 9 Maths from Vedantu and boost your preparations for Exams. 

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Score Higher With Class 9 Linear Equations In Two Variables Exercise 4.2 Solutions

Exercise 4.2

1. Which one of the Following Options is True, and Why? \[\text{y=3x+5}\] has  

(i) A unique solution, 

(ii) only two solutions, 

(iii) infinitely many solutions

Ans. We are given that \[y=3x+5\] is a linear equation. 

  • For \[x=0\] , \[y=5\] . Therefore, \[(0,5)\] is a solution of the equation. 

  • For \[x=1\] , \[y=8\] . Therefore \[(1,8)\] is another solution of the equation. 

  • For \[x=2\] , \[y=11\] . Therefore \[(2,11)\] is another solution of the equation. 

Clearly, for different values of \[x\] , we get another distinct value of \[y\] .  

So, there is no end to different solutions of a linear equation in two variables. Therefore, a linear equation in two variables has infinitely many solutions.

Hence (iii) is the correct answer.  

2. Write Four Solutions for Each of the Following Equations:

(i) \[\text{2x+y=7}\]

Ans. Given equation \[2x+y=7\] , can be written as,

\[y=7-2x\]

Let us now take different values of \[x\] and substitute in the above equation-

  • For \[x=0\] ,

\[y=7\]

So, \[(0,7)\] is a solution.

  • For \[x=1\] ,

\[y=5\]

So, \[(1,5)\] is a solution.

  • For \[x=2\] ,

\[y=3\]

So, \[(2,3)\] is a solution.

  • For \[x=3\] ,

\[y=1\]

So, \[(3,1)\] is a solution.

Therefore, the four solutions of \[2x+y=7\] are \[(0,7)\] , \[(1,5)\] , \[(2,3)\] , \[(3,1)\] .

(ii) \[\pi \text{x+y=9}\]

Ans. Given equation \[\pi x+y=9\] , can be written as,

\[y=9-\pi x\]

Let us now take different values of \[x\] and substitute in the above equation-

  • For \[x=0\] ,

\[y=9\]

So, \[(0,9)\] is a solution.

  • For \[x=1\] ,

\[y=9-\pi \]

So, \[(1,9-\pi )\] is a solution.

  • For \[x=2\] ,

\[y=9-2\pi \]

So, \[(2,9-2\pi )\] is a solution.

  • For \[x=3\] ,

\[y=9-3\pi \]

So, \[(3,9-3\pi )\] is a solution.

Therefore, the four solutions of \[\pi x+y=9\] are \[(0,9)\] , \[(1,9-\pi )\] , \[(2,9-2\pi )\] , \[(3,9-3\pi )\] .

(iii) \[\text{x=4y}\]

Ans. Given equation \[x=4y\] .

Let us now take different values of \[y\] and substitute in the above equation-

  • For \[y=0\] ,

\[x=0\]

So, \[(0,0)\] is a solution.

  • For \[y=1\] ,

\[x=4\]

So, \[(4,1)\] is a solution.

  • For \[y=2\] ,

\[x=8\]

So, \[(8,2)\] is a solution.

  • For \[y=3\] ,

\[x=12\]

So, \[(12,3)\] is a solution.

Therefore, the four solutions of \[x=4y\] are \[(0,0)\] , \[(4,1)\] , \[(8,2)\] , \[(12,3)\].

3. Check Which of the Following are Solutions of the Equation \[x-2y=4\] and Which are not:

(i) \[(0,2)\]

Ans. Substituting \[x=0\] and \[y=2\] in the L.H.S. of the given equation \[x-2y=4\] :

\[\Rightarrow 0-2(2)\]

\[\Rightarrow -4\]

Since \[L.H.S.\ne R.H.S.\] , therefore \[(0,2)\] is not a solution of the equation.

(ii) \[(2,0)\]

Ans. Substituting \[x=2\] and \[y=0\] in the L.H.S. of the given equation \[x-2y=4\] :

\[\Rightarrow 2-2(0)\]

\[\Rightarrow 2\]

Since \[L.H.S.\ne R.H.S.\] , therefore \[(2,0)\] is not a solution of the equation.

(iii) \[(4,0)\]

Ans. Substituting \[x=4\] and \[y=0\] in the L.H.S. of the given equation \[x-2y=4\] :

\[\Rightarrow 4-2(0)\]

\[\Rightarrow 4\]

Since \[L.H.S.=R.H.S.\] , therefore \[(4,0)\] is a solution of the equation.

(iv) \[(\sqrt{2},4\sqrt{2})\]

Ans. Substituting \[x=\sqrt{2}\] and \[y=4\sqrt{2}\] in the L.H.S. of the given equation \[x-2y=4\] :

\[\Rightarrow \sqrt{2}-2(4\sqrt{2})\]

\[\Rightarrow -7\sqrt{2}\]

Since \[L.H.S.\ne R.H.S.\] , therefore \[(\sqrt{2},4\sqrt{2})\] is not a solution of the equation.

(v) \[(1,1)\]

Ans. Substituting \[x=1\] and \[y=1\] in the L.H.S. of the given equation \[x-2y=4\] :

\[\Rightarrow 1-2(1)\]

\[\Rightarrow -1\]

Since \[L.H.S.\ne R.H.S.\] , therefore \[(1,1)\] is not a solution of the equation.

4. Find the value of \[k\] , if \[x=2\] , \[y=1\] is a solution of the equation \[2x+3y=k\] .

Ans. We are given the equation \[2x+3y=k\] along with the values \[x=2\] and \[y=1\] .

Substituting the given values in the L.H.S. of the equation:

\[\Rightarrow 2(2)+3(1)=k\]

\[\Rightarrow 4+3=k\]

\[\Rightarrow k=7\]

Therefore, we get \[k=7\] on solving the equation.


Conclusion

NCERT of Class 9 maths exercise 4.2 focuses on Linear Equations in Two Variables, primarily dealing with understanding and solving linear equations by finding pairs of values that satisfy the given equations. It emphasizes graphing solutions and interpreting the relationships between variables. By practicing these problems, students learn to visualize equations and improve their problem-solving skills, preparing them for more complex algebraic concepts in Class 9th maths chapter 4 exercise 4.2. The solutions provided by Vedantu offer step-by-step explanations and can be a valuable resource for students aiming to clear their doubts and perform well in exams.


NCERT Solution Class 9 Maths of Chapter 4 all Exercises

Exercise

Number of Questions

Exercise 4.1

2 Questions & Solutions


CBSE Class 9 Maths Chapter 4 Other Study Materials


Chapter-Specific NCERT Solutions for Class 9 Maths

Given below are the chapter-wise NCERT Solutions for Class 9 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.



Important Study Materials for CBSE Class 9 Maths

WhatsApp Banner
Best Seller - Grade 11 - JEE
View More>
Previous
Next

FAQs on NCERT Solutions for Class 9 Maths Chapter 4 Linear Equations In Two Variables

1. How can you check if a point (x, y) is a solution to a linear equation?

Substitute the x and y values from the point into the equation. If the Left Hand Side (LHS) equals the Right Hand Side (RHS), the point is a solution. For 2x + y = 7, check (3,1): 2(3)+1 = 7. Since 7 = 7, it is a correct solution.


2. What is the method for downloading the Exercise 4.2 Class 9 PDF Solutions?

Navigate to the Vedantu NCERT Solutions page for Class 9 Maths Chapter 4. Find the link labelled "Download Free PDF" for Exercise 4.2. Click the link to save the solutions file to your device for offline access, making it easy to practise anytime.


3. How do you write a linear equation from a word problem?

Identify the two unknown quantities and assign them variables, like x and y. Translate the relationship described in the problem into a mathematical equation in the standard form Ax + By + C = 0. Always define what your variables represent before finalising the equation.


4. How can you find the value of a constant like 'k' in an equation if a solution is given?

Substitute the given x and y values of the solution directly into the equation. This creates a simple equation with 'k' as the only unknown. Solve this new equation to find the value of k. For example, if x=2, y=1 is a solution for 2x+3y=k, then k=2(2)+3(1)=7.


5. What is an effective way to use NCERT Solutions for revision before a test?

Use the solutions to quickly review the correct steps for important questions from Class 9 Maths Chapter 4 Exercise 4.2. Focus on problems you found difficult. Cover the solution, try solving it yourself first, and then verify your method and final answer.


6. How do you find four different solutions for a linear equation in two variables?

Find multiple solutions for a linear equation like 2x + y = 7 by choosing simple integer values for one variable and then solving for the other.


A linear equation in two variables has infinitely many solutions. This method helps you find specific coordinate points, which is essential for plotting the equation's graph.




7. How can you use the step-by-step Class 9 Maths Chapter 4 Exercise 4.2 solutions to self-correct homework?

Use the detailed solutions to check your work by comparing your entire method, not just the final answer.


This approach helps you find the exact point where you made a mistake, whether in calculation, formula application, or understanding. Simply checking the final answer doesn't reveal the source of an error.



8. How can you tell if a linear equation in two variables has one, many, or no solutions?

Recognise that any single linear equation in two variables of the form Ax + By + C = 0 (where A and B are not both zero) has infinitely many solutions.


This is a fundamental concept in Class 9 Maths Chapter 4. Unlike a linear equation in one variable, which has a unique solution, an equation with two variables represents a straight line on a graph. Every point on that line is a valid solution.




9. How do you represent a linear equation graphically?

Represent a linear equation in two variables on a graph by finding at least two solution points and then drawing a straight line that passes through them.


A graph provides a clear visual representation of all the infinite solutions for the equation. Every single point on the line is a solution, making it a powerful tool for understanding the variable relationship.




10. What is the best way to practise using the NCERT Solutions for Class 9 Maths Chapter 4 Exercise 4.2?

The NCERT Solutions are best used as a verification and learning tool after you have sincerely attempted the problems yourself.


This active learning method strengthens your problem-solving skills. Passively reading solutions can create a false sense of confidence without building the ability to solve questions independently during an exam.