Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions For Class 12 Maths Chapter 10 Vector Algebra Exercise 10.2 - 2025-26

ffImage
banner
widget title icon
Latest Updates

Vector Algebra Questions and Answers - Free PDF Download

In NCERT Solutions Class 12 Maths Chapter 10 Exercise 10 2, you’ll explore the world of vector algebra through simple questions and clear solutions. This exercise focuses on how to add vectors and multiply them by numbers—a skill you’ll keep using in both maths and physics! If you ever get confused about vectors, direction, or unit vectors, this chapter makes those concepts much easier to understand with step-by-step explanations.

toc-symbolTable of Content
toggle-arrow

Vedantu’s solutions come with free PDFs you can download and revise anytime, which really helps during exam time or while practicing at home. Don't forget to check the CBSE Class 12 Maths Syllabus for the full chapter list, and you can always find these Class 12 Maths NCERT Solutions in one place for quicker revision!


By practicing problems from this chapter, you’ll build confidence in vector addition, direction, and all those tricky components—the kind of foundation that helps you score well in your CBSE board exams. This chapter carries 7 marks in your CBSE exam.


Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access NCERT Solutions for Class 12 Maths Chapter 10 - Vector Algebra Exercise 10.2

1. Compute the magnitude of the following vectors: 

\[\overrightarrow {\text{a}} {\text{ = }}\widehat {\text{i}}\,{\text{ + }}\widehat {\text{j}}\,{\text{ + }}\widehat {\text{k}}{\text{;}}\,\overrightarrow {\text{b}} {\text{ = 2}}\widehat {\text{i}}\,{\text{ - 7}}\widehat {\text{j}}\,{\text{ - 3}}\widehat {\text{k}}{\text{;}}\,\overrightarrow {\text{c}} {\text{ = }}\frac{{\text{1}}}{{\sqrt {\text{3}} }}\widehat {\text{i}}\,{\text{ + }}\frac{{\text{1}}}{{\sqrt {\text{3}} }}\widehat {\text{j}}\,{\text{ - }}\frac{{\text{1}}}{{\sqrt {\text{3}} }}\widehat {\text{k}}\,\]

Ans: The given vectors are,

\[\overrightarrow {\text{a}} {\text{ = }}\widehat {\text{i}}\,{\text{ + }}\widehat {\text{j}}\,{\text{ + }}\widehat {\text{k}}{\text{;}}\,\overrightarrow {\text{b}} {\text{ = 2}}\widehat {\text{i}}\,{\text{ - 7}}\widehat {\text{j}}\,{\text{ - 3}}\widehat {\text{k}}{\text{;}}\,\overrightarrow {\text{c}} {\text{ = }}\frac{{\text{1}}}{{\sqrt {\text{3}} }}\widehat {\text{i}}\,{\text{ + }}\frac{{\text{1}}}{{\sqrt {\text{3}} }}\widehat {\text{j}}\,{\text{ - }}\frac{{\text{1}}}{{\sqrt {\text{3}} }}\widehat {\text{k}}\,\]

Magnitude of a vector say,\[\overrightarrow {{{\text{a}}_{\text{1}}}} {\text{ = }}\widehat {{{\text{i}}_{\text{1}}}}{\text{ + }}\widehat {{{\text{j}}_{\text{1}}}}{\text{ + }}\widehat {{{\text{k}}_{\text{1}}}}\] is,

$\left| {\overrightarrow {{{\text{a}}_{\text{1}}}} } \right|{\text{ = }}\sqrt {{{\left( {{{\text{i}}_{\text{1}}}} \right)}^{\text{2}}}{\text{ + }}{{\left( {{{\text{j}}_{\text{1}}}} \right)}^{\text{2}}}{\text{ + }}{{\left( {{{\text{k}}_{\text{1}}}} \right)}^{\text{2}}}} $

Therefore, the magnitude of the following vectors are,

$\left| {\overrightarrow {\text{a}} } \right|{\text{ = }}\sqrt {{{\left( {\text{1}} \right)}^{\text{2}}}{\text{ + }}{{\left( {\text{1}} \right)}^{\text{2}}}{\text{ + }}{{\left( {\text{1}} \right)}^{\text{2}}}} {\text{ = }}\sqrt {\text{3}} $

Now, for $\overrightarrow b $, 

\[\left| {\overrightarrow {\text{b}} } \right|{\text{ = }}\sqrt {{{\left( {\text{2}} \right)}^{\text{2}}}{\text{ + }}{{\left( {{\text{ - 7}}} \right)}^{\text{2}}}{\text{ + }}{{\left( {{\text{ - 3}}} \right)}^{\text{2}}}} {\text{ = }}\sqrt {{\text{4 + 49 + 9}}} {\text{ = }}\sqrt {{\text{62}}} \]

Again, for $\overrightarrow c $,

$\left| {\overrightarrow {\text{c}} } \right|{\text{ = }}\sqrt {{{\left( {\frac{{\text{1}}}{{\sqrt {\text{3}} }}} \right)}^{\text{2}}}{\text{ + }}{{\left( {\frac{{\text{1}}}{{\sqrt {\text{3}} }}} \right)}^{\text{2}}}{\text{ + }}{{\left( {\frac{{{\text{ - 1}}}}{{\sqrt {\text{3}} }}} \right)}^{\text{2}}}} {\text{ = 1}}$


2. Write two different vectors having the same magnitude. 

Ans: Let us assume the two vectors to be,

and \[\overrightarrow {\text{b}} {\text{ = 2}}\widehat {\text{i}}\,{\text{ - }}\widehat {\text{j}}\,{\text{ - 3}}\widehat {\text{k}}\,\]

Magnitude of a vector say, \[\overrightarrow {{{\text{a}}_{\text{1}}}} {\text{ = }}\widehat {{{\text{i}}_{\text{1}}}}{\text{ + }}\widehat {{{\text{j}}_{\text{1}}}}{\text{ + }}\widehat {{{\text{k}}_{\text{1}}}}\] is,

$\left| {\overrightarrow {{{\text{a}}_{\text{1}}}} } \right|{\text{ = }}\sqrt {{{\left( {{{\text{i}}_{\text{1}}}} \right)}^{\text{2}}}{\text{ + }}{{\left( {{{\text{j}}_{\text{1}}}} \right)}^{\text{2}}}{\text{ + }}{{\left( {{{\text{k}}_{\text{1}}}} \right)}^{\text{2}}}} \overrightarrow {\text{a}} {\text{ = }}\widehat {\text{i}}\,{\text{ + 2}}\widehat {\text{j}}\,{\text{ + 3}}\widehat {\text{k}}\,$\[\]

Therefore, the magnitude of the following vectors are,

$\left| {\overrightarrow {\text{a}} } \right|{\text{ = }}\sqrt {{{\left( {\text{1}} \right)}^{\text{2}}}{\text{ + }}{{\left( {\text{2}} \right)}^{\text{2}}}{\text{ + }}{{\left( {\text{3}} \right)}^{\text{2}}}} {\text{ = }}\,\sqrt {{\text{1 + 4 + 9}}} {\text{ = }}\sqrt {{\text{14}}} $

Now, for $\overrightarrow b $, 

\[\left| {\overrightarrow {\text{b}} } \right|{\text{ = }}\sqrt {{{\left( {\text{2}} \right)}^{\text{2}}}{\text{ + }}{{\left( {{\text{ - 1}}} \right)}^{\text{2}}}{\text{ + }}{{\left( {{\text{ - 3}}} \right)}^{\text{2}}}} \,{\text{ = }}\sqrt {{\text{4 + 1 + 9}}} {\text{ = }}\sqrt {{\text{14}}} \]

Both, vectors have got an equal magnitude that is $\sqrt {14} $ units but are completely different and not equal vectors since they are going in different directions.


3. Write two different vectors having the same direction. 

Ans: Let us assume the two vectors as,

\[\overrightarrow p {\text{ = }}\widehat {\text{i}}\,{\text{ + }}\widehat {\text{j}}\,{\text{ + }}\widehat {\text{k}}\,\]and \[\overrightarrow q  = 2\widehat i\, + 2\widehat j\, + 2\widehat k\,\]

The direction cosines of the two vectors can be calculated as,

In case of $\overrightarrow {\text{p}} $,

$l = \frac{1}{{\sqrt {{{\left( 1 \right)}^2} + {{\left( 1 \right)}^2} + {{\left( 1 \right)}^2}} }} = \frac{1}{{\sqrt 3 }}$

$m = \frac{1}{{\sqrt {{{\left( 1 \right)}^2} + {{\left( 1 \right)}^2} + {{\left( 1 \right)}^2}} }} = \frac{1}{{\sqrt 3 }}$

$n = \frac{1}{{\sqrt {{{\left( 1 \right)}^2} + {{\left( 1 \right)}^2} + {{\left( 1 \right)}^2}} }} = \frac{1}{{\sqrt 3 }}$

Now, for \[\overrightarrow {\text{q}} \], 

$l = \frac{2}{{\sqrt {{{\left( 2 \right)}^2} + {{\left( 2 \right)}^2} + {{\left( 2 \right)}^2}} }} = \frac{2}{{2\sqrt 3 }} = \frac{1}{{\sqrt 3 }}$

$m = \frac{2}{{\sqrt {{{\left( 2 \right)}^2} + {{\left( 2 \right)}^2} + {{\left( 2 \right)}^2}} }} = \frac{2}{{2\sqrt 3 }} = \frac{1}{{\sqrt 3 }}$

$n = \frac{2}{{\sqrt {{{\left( 2 \right)}^2} + {{\left( 2 \right)}^2} + {{\left( 2 \right)}^2}} }} = \frac{2}{{2\sqrt 3 }} = \frac{1}{{\sqrt 3 }}$

It can be clearly observed that the direction cosines obtained in case of both the vectors that is, $\overrightarrow p $ and $\overrightarrow {\text{q}} $ are same and therefore they have got the same direction but different vectors.


4. Find the values of x and y so that the vectors \[{\text{2}}\widehat {\text{i}}\,{\text{ + 3}}\widehat {\text{j}}\,\]and \[{\text{x}}\widehat {\text{i}}\,{\text{ + y}}\widehat {\text{j}}\]are equal.

Ans: Observe that it is required for the corresponding coefficients of $\widehat i$ and $\widehat j$to be equal in order to have two equal vectors.

Therefore, 

\[{\text{x = 2,}}\,{\text{y = 3}}\]


5. Find the scalar and vector components of the vector with initial point $\left( {{\text{2,}}\,{\text{1}}} \right)$ and terminal point \[\left( {{\text{ - 5,}}\,{\text{7}}} \right)\]. 

Ans: The given initial and terminal point are respectively, $\left( {{\text{2,}}\,{\text{1}}} \right)$ and \[\left( {{\text{ - 5,}}\,{\text{7}}} \right)\]. 

Therefore, the vector is,

$\overrightarrow {PQ}  = \left( {{\text{ - }}5{\text{ - }}2} \right)\widehat i{\text{ + }}\left( {{\text{7 - 1}}} \right)\widehat j{\text{  =  - 7}}\widehat i + 6\widehat {\text{j}}$


6. Find the sum of the vectors with initial point $\overrightarrow {\text{a}} {\text{ = }}\widehat {\text{i}}{\text{ - 2}}\widehat {\text{j}}{\text{ + }}\widehat {\text{k}}{\text{,}}\,\overrightarrow {\text{b}} {\text{ =  - 2}}\widehat {\text{i}}{\text{ + 4}}\widehat {\text{j}}{\text{ + 5}}\widehat {\text{k}}\,$ and $\overrightarrow {\text{c}} {\text{ = }}\widehat {\text{i}}{\text{ - 6}}\widehat {\text{j}}{\text{ - 7}}\widehat {\text{k}}$. 

Ans: The given vectors are respectively, $\overrightarrow a  = \widehat i - 2\widehat j + \widehat k,\,\overrightarrow b  =  - 2\widehat i + 4\widehat j + 5\widehat k\,$ and $\overrightarrow c  = \widehat i - 6\widehat j - 7\widehat k$. 

Therefore, the sum of the following vectors can be calculated as,  \[\,\,\,\,\,\,\,\overrightarrow a  + \overrightarrow b  + \overrightarrow c  = \widehat i - 2\widehat j + \widehat k + ( - 2\widehat i) + 4\widehat j + 5\widehat k\, + \widehat i - 6\widehat j - 7\widehat k\]

\[ \Rightarrow \overrightarrow a  + \overrightarrow b  + \overrightarrow c  = \left( {1 - 2 + 1} \right)\widehat i + \left( { - 2 + 4 - 6} \right)\widehat j + \left( {1 + 5 - 7} \right)\widehat k\]

\[ \Rightarrow \overrightarrow a  + \overrightarrow b  + \overrightarrow c  =  - 4\widehat j - \widehat k\]


7. Find the unit vector in the direction of the vector $\overrightarrow {\text{a}} {\text{ = }}\widehat {\text{i}}{\text{ + }}\widehat {\text{j}}{\text{ + 2}}\widehat {\text{k}}$. 

Ans: The given vectors is, $\overrightarrow a  = \widehat i + \widehat j + 2\widehat k$. 

Therefore, the unit vector in the direction of the vector, that is, $\overrightarrow a  = \widehat i + \widehat j + 2\widehat k$ is represented as $\widehat a$ and can be calculated as,

\[\left| {\overrightarrow a } \right| = \sqrt {{{\left( 1 \right)}^2} + {{\left( 1 \right)}^2} + {{\left( 2 \right)}^2}}  = \sqrt 6 \,\,\,\,\,\]

\[\therefore \,\widehat a = \frac{{\overrightarrow a }}{{\left| {\overrightarrow a } \right|}} = \frac{{\widehat i + \widehat j + 2\widehat k}}{{\sqrt 6 }} = \frac{1}{{\sqrt 6 }}\widehat i + \frac{1}{{\sqrt 6 }}\widehat j + \frac{2}{{\sqrt 6 }}\widehat k\]


8. Find the unit vector in the direction of the vector, $\overrightarrow {{\text{PQ}}} $, where ${\text{P }}$and ${\text{Q}}$ are the points $\left( {{\text{1,}}\,{\text{2,}}\,{\text{3}}} \right)$and $\left( {{\text{4,}}\,{\text{5,}}\,{\text{6}}} \right)$respectively.

Ans: The given points are$P{\text{ }}$and $Q$ which are $\left( {1,\,2,\,3} \right)$and $\left( {4,\,5,\,6} \right)$ respectively.

Now, the vector $\overrightarrow {PQ} $ can be calculated as,  

\[\overrightarrow {PQ}  = \left( {4 - 1} \right)\widehat i + \left( {5 - 2} \right)\widehat j + \left( {6 - 3} \right)\widehat k = 3\widehat i + 3\widehat j + 3\widehat k\]

Therefore, the unit vector in the direction of the vector, that is, $\overrightarrow {PQ}  = 3\widehat i + 3\widehat j + 3\widehat k$ is represented as $\widehat {PQ}$ and can be calculated as,

\[\left| {\overrightarrow {PQ} } \right| = \sqrt {{{\left( 3 \right)}^2} + {{\left( 3 \right)}^2} + {{\left( 3 \right)}^2}}  = \sqrt {27} \, = 3\sqrt 3 \,\,\,\,\]

\[\therefore \,\widehat {PQ} = \frac{{\overrightarrow {PQ} }}{{\left| {\overrightarrow {PQ} } \right|}} = \frac{{3\widehat i + 3\widehat j + 3\widehat k}}{{3\sqrt 3 }} = \frac{1}{{\sqrt 3 }}\widehat i + \frac{1}{{\sqrt 3 }}\widehat j + \frac{1}{{\sqrt 3 }}\widehat k\]


9. For the given vectors $\overrightarrow {\text{a}} {\text{ = 2}}\widehat {\text{i}}{\text{ - }}\widehat {\text{j}}{\text{ + 2}}\widehat {\text{k}}$and $\overrightarrow {\text{b}} {\text{ =  - }}\widehat {\text{i}}{\text{ + }}\widehat {\text{j}}{\text{ + }}\widehat {\text{k}}$, find the unit vector in the direction of the vector, $\overrightarrow {{\text{a + b}}} $.

Ans: It is given that the vectors are $\overrightarrow a  = 2\widehat i - \widehat j + 2\widehat k$and $\overrightarrow b  =  - \widehat i + \widehat j + \widehat k$respectively.

Now, the vector $\overrightarrow {a + b} $ can be calculated as,  

\[\therefore \overrightarrow {a + b}  = \left( {2 - 1} \right)\widehat i + \left( { - 1 + 1} \right)\widehat j + \left( {2 - 1} \right)\widehat k = \widehat i + \widehat k\]

Therefore, the unit vector in the direction of the vector, that is, $\overrightarrow {a + b}  = \widehat i + \widehat k$ is represented as $\widehat {a + b}$ and can be calculated as,

\[\left| {\overrightarrow {a + b} } \right| = \sqrt {{{\left( 1 \right)}^2} + {{\left( 0 \right)}^2} + {{\left( 1 \right)}^2}}  = \sqrt 2 \, = \sqrt 2 \,\,\,\,\]

\[\therefore \,\widehat {a + b} = \frac{{\overrightarrow {a + b} }}{{\left| {\overrightarrow {a + b} } \right|}} = \frac{{\widehat i + \widehat k}}{{\sqrt 2 }} = \frac{1}{{\sqrt 2 }}\widehat i + \frac{1}{{\sqrt 2 }}\widehat k\]


10. Find a vector in the direction of the vector ${\text{5}}\widehat {\text{i}}{\text{ - }}\widehat {\text{j}}{\text{ + 2}}\widehat {\text{k}}$which has magnitude ${\text{8}}$ units.

Ans: Assume the given vector as, $\overrightarrow a  = 5\widehat i - \widehat j + 2\widehat k$. 

Therefore, the unit vector in the direction of the vector, that is, $\overrightarrow a  = 5\widehat i - \widehat j + 2\widehat k$ is represented as $\widehat a$ and can be calculated as,

\[\left| {\overrightarrow a } \right| = \sqrt {{{\left( 5 \right)}^2} + {{\left( { - 1} \right)}^2} + {{\left( 2 \right)}^2}}  = \sqrt {30} \,\,\,\,\,\]

\[\therefore \,\widehat a = \frac{{\overrightarrow a }}{{\left| {\overrightarrow a } \right|}} = \frac{{5\widehat i - \widehat j + 2\widehat k}}{{\sqrt {10} }} = \frac{5}{{\sqrt {10} }}\widehat i - \frac{1}{{\sqrt {10} }}\widehat j + \frac{2}{{\sqrt {10} }}\widehat k\]

Now, a vector in the direction of the vector $5\widehat i - \widehat j + 2\widehat k$which has magnitude $8$ units can be calculated as,

\[\therefore \,8\widehat a = 8\left( {\frac{5}{{\sqrt {10} }}\widehat i - \frac{1}{{\sqrt {10} }}\widehat j + \frac{2}{{\sqrt {10} }}\widehat k} \right) = \frac{{40}}{{\sqrt {10} }}\widehat i - \frac{8}{{\sqrt {10} }}\widehat j + \dfrac{{16}}{{\sqrt {10} }}\widehat k\]


11. Show that the vectors \[{\text{2}}\widehat {\text{i}}{\text{ - 3}}\widehat {\text{j}}{\text{ + 4}}\widehat {\text{k}}\]and \[{\text{ - 4}}\widehat {\text{i}}{\text{ + 6}}\widehat {\text{j}}{\text{ - 8}}\widehat {\text{k}}\]are collinear.

Ans: Assume the given vector as, $\overrightarrow a  = 2\widehat i - 3\widehat j + 4\widehat k$ and \[\overrightarrow b  =  - 4\widehat i + 6\widehat j - 8\widehat k\]respectively.

Therefore, it can be observed that $\overrightarrow b $ can be deduced in terms of$\overrightarrow a $as,

\[\overrightarrow b  =  - 4\widehat i + 6\widehat j - 8\widehat k =  - 2\left( {2\widehat i - 3\widehat j + 4\widehat k} \right) =  - 2\overrightarrow a \]

\[\therefore \overrightarrow b  = \lambda \overrightarrow a \]

The value of $\lambda  =  - 2$ in this case and therefore the given two vectors collinear.


12. Find the direction cosines of the vector \[\widehat {\text{i}}{\text{ + 2}}\widehat {\text{j}}{\text{ + 3}}\widehat {\text{k}}\].

Ans: Assume the given vector as, $\overrightarrow a  = \widehat i + 2\widehat j + 3\widehat k$.

Therefore, the magnitude of the vector, that is, $\overrightarrow a  = \widehat i + 2\widehat j + 3\widehat k$ can be calculated as,

$\left| {\overrightarrow a } \right| = \sqrt {{{\left( 1 \right)}^2} + {{\left( 2 \right)}^2} + {{\left( 3 \right)}^2}}  = \sqrt {14} $

Therefore, the direction cosines of the vector, that is, $\overrightarrow a  = \widehat i + 2\widehat j + 3\widehat k$ can be calculated as, $\left( {\dfrac{1}{{\sqrt {14} }},\,\frac{2}{{\sqrt {14} }},\,\frac{3}{{\sqrt {14} }}} \right)$ .


13. Find the direction cosines of the vector joining the points ${\text{A}}\left( {{\text{1,}}\,{\text{2,}}\,{\text{ - 3}}} \right)$and ${\text{B}}\left( {{\text{ - 1,}}\,{\text{ - 2,}}\,{\text{1}}} \right)$directed from A to B.

Ans: Observe that the given points are,$A\left( {1,\,2,\, - 3} \right)$and $B\left( { - 1,\, - 2,\,1} \right)$.

Hence, the vector $\overrightarrow {AB} $ can be calculated as,  

\[\therefore \overrightarrow {AB}  = \left( { - 1 - 1} \right)\widehat i + \left( { - 2 - 2} \right)\widehat j + \left( {1 - \left( { - 3} \right)} \right)\widehat k =  - 2\widehat i - 4\widehat j + 4\widehat k\]

Therefore, the magnitude of the vector, that is, $\overrightarrow {AB}  =  - 2\widehat i - 4\widehat j + 4\widehat k$ can be calculated as,

$\left| {\overrightarrow {AB} } \right| = \sqrt {{{\left( { - 2} \right)}^2} + {{\left( { - 4} \right)}^2} + {{\left( 4 \right)}^2}}  = 6$

Therefore, the direction cosines of the vector, that is, $\overrightarrow {AB}  =  - 2\widehat i - 4\widehat j + 4\widehat k$ can be calculated as, $\left( {\frac{-1}{3},\,\frac{-2}{3},\,\frac{2}{3}} \right)$.


14. Show that the vector $\widehat {\text{i}}{\text{ + }}\widehat {\text{j}}{\text{ + }}\widehat {\text{k}}$ is equally inclined to the axes ${\text{OX,}}\,{\text{OY}}$and ${\text{OZ}}$.

Ans: Consider the given vector as,\[\overrightarrow a  = \widehat i + \widehat j + \widehat k\].

Therefore, the magnitude and the direction cosines of the vector, that is, \[\overrightarrow a  = \widehat i + \widehat j + \widehat k\] can be calculated as,

$\left| {\overrightarrow a } \right| = \sqrt {{{\left( 1 \right)}^2} + {{\left( 1 \right)}^2} + {{\left( 1 \right)}^2}}  = \sqrt 3 $

$\therefore \left( {\frac{1}{{\sqrt 3 }},\,\frac{1}{{\sqrt 3 }},\,\frac{1}{{\sqrt 3 }}} \right)$.

Assume, $\alpha ,\,\beta $ and $\gamma $ to be the angles formed by $\overrightarrow a $ with the axes $OX,\,OY$ and$OZ$.$\therefore \cos \alpha  = \frac{1}{{\sqrt 3 }},\,\cos \beta  = \frac{1}{{\sqrt 3 }},\,\cos \gamma  = \frac{1}{{\sqrt 3 }}$

This shows that the given vector is equally inclined to the  the positive direction of all the three axes.


15. Find the position vector of a point ${\text{R}}$which divides the line segment joining two points ${\text{P}}$ and ${\text{Q}}$ whose position vectors are $\widehat {\text{i}}{\text{ + 2}}\widehat {\text{j}}{\text{ - }}\widehat {\text{k}}$ and ${\text{ - }}\widehat {\text{i}}{\text{ + }}\widehat {\text{j}}{\text{ + }}\widehat {\text{k}}$ respectively in the ratio ${\text{2:1}}$

(i) internally

Ans: Observe that the given position vectors of the two points, $P$ and $Q$are,\[\overrightarrow {OP}  = \widehat i + 2\widehat j - \widehat k\]and \[\overrightarrow {OQ}  =  - \widehat i + \widehat j + \widehat k\].

Therefore, the position vector of $R$ dividing the line joining the two given points through an internal division in the ratio of $2:1$ can be calculated using the formula, $\frac{{m\overrightarrow b  + n\overrightarrow a }}{{m + n}}$ (where the ratio is represented by $m:n$), as shown below, 

\[\overrightarrow {OR}  = \frac{{2\left( { - \widehat i + \widehat j + \widehat k} \right) + 1\left( {\widehat i + 2\widehat j - \widehat k} \right)}}{{2 + 1}} = \frac{{ - \widehat i + 4\widehat j + \widehat k}}{3} = \frac{{ - 1}}{3}\widehat i + \frac{4}{3}\widehat j + \frac{1}{3}\widehat k\]


(ii) externally

Ans: Observe that the given position vectors of the two points, $P$ and $Q$are,\[\overrightarrow {OP}  = \widehat i + 2\widehat j - \widehat k\]and \[\overrightarrow {OQ}  =  - \widehat i + \widehat j + \widehat k\].

Therefore, the position vector of $R$ dividing the line joining the two given points through an external division in the ratio of $2:1$ can be calculated using the formula, $\frac{{m\overrightarrow b  - n\overrightarrow a }}{{m - n}}$ (where the ratio is represented by $m:n$), as shown below,  

\[\overrightarrow {OR}  = \frac{{2\left( { - \widehat i + \widehat j + \widehat k} \right) - 1\left( {\widehat i + 2\widehat j - \widehat k} \right)}}{{2 - 1}} = \frac{{ - 3\widehat i - \widehat k}}{1} =  - 3\widehat i + 3\widehat k\].


16. Find the position vector of the midpoint of the vector joining the points ${\text{P}}\left( {{\text{2,}}\,{\text{3,}}\,{\text{4}}} \right)$ and ${\text{Q}}\left( {{\text{4,}}\,{\text{1,}}\,{\text{ - 2}}} \right)$. 

Ans: Consider the midpoint of the vector joining the position vectors of the two points,\[\overrightarrow {OP}  = 2\widehat i + 3\widehat j + 4\widehat k\]and \[\overrightarrow {OQ}  = 4\widehat i + \widehat j - 2\widehat k\] to be $R$. 

Therefore, the position vector of $R$ dividing the line joining the two given points through an internal division in the ratio of $1:1$ can be calculated as,  

\[\overrightarrow {OR}  = \frac{{\left( {2\widehat i + 3\widehat j + 4\widehat k} \right) + \left( {4\widehat i + \widehat j - 2\widehat k} \right)}}{{1 + 1}} = \frac{{6\widehat i + 4\widehat j + 2\widehat k}}{2} = 3\widehat i + 2\widehat j + \widehat k\]


17. Show that the positions \[{\text{A,}}\,{\text{B}}\] and \[{\text{C}}\] with position vectors $\overrightarrow {\text{a}} {\text{ = 3}}\widehat {\text{i}}{\text{ - 4}}\widehat {\text{j}}{\text{ - 4}}\widehat {\text{k}}{\text{,}}\,\overrightarrow {\text{b}} {\text{ = 2}}\widehat {\text{i}}{\text{ - }}\widehat {\text{j}}{\text{ + }}\widehat {\text{k}}$ and $\overrightarrow {\text{c}} {\text{ = }}\widehat {\text{i}}{\text{ - 3}}\widehat {\text{j}}{\text{ - 5}}\widehat {\text{k}}$ respectively form the vertices of a right-angled triangle. 

Ans: Observe that the position vectors of the points\[A,\,B\] and\[C\]are,$\overrightarrow a  =3 \widehat i - 4\widehat j - 4\widehat k,\,\overrightarrow b  = 2\widehat i - \widehat j + \widehat k$ and$\overrightarrow c  = \widehat i - 3\widehat j - 5\widehat k$. 

Now, \[\overrightarrow {AB} ,\,\overrightarrow {BC} \]and \[\overrightarrow {CA} \]can be calculated as,  

\[\therefore \overrightarrow {AB}  = \overrightarrow b  - \overrightarrow a  = \left( {2 - 3} \right)\widehat i + \left( { - 1 + 4} \right)\widehat j + \left( {1 + 4} \right)\widehat k =  - \widehat i + 3\widehat j + 5\widehat k\]

\[\overrightarrow {BC}  = \overrightarrow c  - \overrightarrow b  = \left( {1 - 2} \right)\widehat i + \left( { - 3 + 1} \right)\widehat j + \left( { - 5 - 1} \right)\widehat k =  - \widehat i - 2\widehat j - 6\widehat k\]

\[\overrightarrow {CA}  = \overrightarrow a  - \overrightarrow c  = \left( {3 - 1} \right)\widehat i + \left( { - 4 + 3} \right)\widehat j + \left( { - 4 + 5} \right)\widehat k = 2\widehat i - \widehat j + \widehat k\]

Again, calculate the squares of magnitudesas shown below,

\[\therefore {\left| {AB} \right|^2} = {\left( { - 1} \right)^2} + {\left( 3 \right)^2} + {\left( 5 \right)^2} = 35\]

\[\,\,\therefore \,{\left| {BC} \right|^2} = {\left( { - 1} \right)^2} + {\left( { - 2} \right)^2} + {\left( { - 6} \right)^2} = 41\]

\[\therefore \,\,{\left| {CA} \right|^2} = {\left( 2 \right)^2} + {\left( { - 1} \right)^2} + {\left( 1 \right)^2} = 6\]

Now, use Pythagoras theorem it can be shown that this triangle is right-angled triangle as shown below,

${\left| {AB} \right|^2} + {\left| {CA} \right|^2} = 35 + 6 = 41 = {\left| {BC} \right|^2}$


18. In triangle ${\text{ABC}}$ which of the following is not true:


the triangle law of addition question


A. \[\overrightarrow {{\text{AB}}} {\text{ + }}\overrightarrow {{\text{BC}}} {\text{ + }}\overrightarrow {{\text{CA}}} {\text{ = }}\overrightarrow {\text{0}} \]

B. \[\overrightarrow {{\text{AB}}} {\text{ + }}\overrightarrow {{\text{BC}}} {\text{ - }}\overrightarrow {{\text{AC}}} {\text{ = }}\overrightarrow {\text{0}} \]

C. \[\overrightarrow {{\text{AB}}} {\text{ + }}\overrightarrow {{\text{BC}}} {\text{ - }}\overrightarrow {{\text{CA}}} {\text{ = }}\overrightarrow {\text{0}} \]

D. \[\overrightarrow {{\text{AB}}} {\text{ - }}\overrightarrow {{\text{CB}}} {\text{ + }}\overrightarrow {{\text{CA}}} {\text{ = }}\overrightarrow {\text{0}} \]

Ans:


the triangle law of addition answer


On considering the triangle law of addition for this triangle it can be observed that,

\[\,\,\,\,\,\,\,\,\therefore \overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \]

\[ \Rightarrow \overrightarrow {AB}  + \overrightarrow {BC}  =  - \overrightarrow {CA} \]

\[ \Rightarrow \overrightarrow {AB}  + \overrightarrow {BC}  + \overrightarrow {CA}  = \overrightarrow 0 \]

Therefore, the equation in (A) is true.

Again,

\[\,\,\,\,\,\,\,\,\therefore \overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \]

\[ \Rightarrow \overrightarrow {AB}  + \overrightarrow {BC}  - \overrightarrow {AC}  = \overrightarrow 0 \]

Therefore, the equation in (B) is true.

Again,

\[\,\,\,\,\,\,\,\,\therefore \overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \]

\[ \Rightarrow \overrightarrow {AB}  - \overrightarrow {CB}  + \overrightarrow {CA}  = \overrightarrow 0 \]

Therefore, the equation in (D) is true.

Now, for the equation in (C) also,

\[\,\,\,\,\,\,\,\,\therefore \overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \]

\[ \Rightarrow \overrightarrow {AB}  + \overrightarrow {BC}  =  - \overrightarrow {CA} \]

\[ \Rightarrow \overrightarrow {AB}  + \overrightarrow {BC}  + \overrightarrow {CA}  = \overrightarrow 0 \]

\[ \Rightarrow \overrightarrow {AB}  + \overrightarrow {BC}  - \overrightarrow {CA}  \ne \overrightarrow 0 \]

Therefore, the equation in (C) is incorrect and henceforth, it is the correct answer.


19. If $\overrightarrow {\text{a}} $ and $\overrightarrow {\text{b}} $ are two collinear vectors, then which of the following are incorrect. A.A.  

A. \[\overrightarrow b  = \lambda \overrightarrow a \], for some scalar \[\lambda \].

B. $\overrightarrow a  =  \pm \overrightarrow b $

C. the respective components of \[\overrightarrow {\text{a}} \] and\[\overrightarrow {\text{b}} \]are not proportional.

D. both the vectors \[\overrightarrow {\text{a}} \] and\[\overrightarrow {\text{b}} \]have same direction, but different magnitudes.

Ans: It can be observed that if \[\overrightarrow a \]and\[\overrightarrow b \] are collinear vectors then, they are parallel.

\[\overrightarrow b  = \lambda \overrightarrow a \], for some scalar \[\lambda \].

Again, if \[\lambda  =  \pm 1\], then $\overrightarrow a  =  \pm \overrightarrow b $.

Again if is considered that, $\overrightarrow a  = {a_1}\widehat i + {a_2}\widehat j + {a_3}\widehat k$ and $\,\overrightarrow b  = {b_1}\widehat i + {b_2}\widehat j + {b_3}\widehat k$, then \[\overrightarrow b  = \lambda \overrightarrow a \].

\[\,\,\,\,\,\,\,{b_1}\widehat i + {b_2}\widehat j + {b_3}\widehat k = \lambda \left( {{a_1}\widehat i + {a_2}\widehat j + {a_3}\widehat k} \right)\]

\[ \Rightarrow {b_1}\widehat i + {b_2}\widehat j + {b_3}\widehat k = \lambda {a_1}\widehat i + \lambda {a_2}\widehat j + \lambda {a_3}\widehat k\]

\[ \Rightarrow {b_1} = \lambda {a_1},\,{b_2} = \lambda {a_2},\,{b_3} = \lambda {a_3}\]

\[ \Rightarrow \lambda  = \frac{{{b_1}}}{{{a_1}}} = \frac{{{b_2}}}{{{a_2}}} = \frac{{{b_3}}}{{{a_3}}}\]

This shows that the respective components of $\overrightarrow a $ and $\overrightarrow b $, are proportional but the vectors can have different directions. 

Therefore, the statement in (D) is incorrect and henceforth, it is the correct answer.


Conclusion

NCERT Solutions for Class 12 Maths Chapter 10 Exercise 10.2  - Vector Algebra is essential for understanding basic vector operations. This exercise covers the addition of vectors and the multiplication of vectors by a scalar, which are foundational concepts. Focus on mastering vector addition and scalar multiplication, as these skills are vital for solving more complex problems. Pay attention to the components of vectors and their manipulation. Vedantu’s detailed, step-by-step solutions in ex 10.2 class 12 help ensure a strong grasp of these concepts, aiding in effective exam preparation and boosting your confidence in handling vector algebra.


Class 12 Maths Chapter 10: Exercises Breakdown

S.No

Chapter 10 - Vector Algebra Exercises in PDF Format

1

Class 12 Maths Chapter 10 Exercise 10.1 - 5 Questions & Solutions (5 Short Answers)

2

Class 12 Maths Chapter 10 Exercise 10.3 - 18 Questions & Solutions (5 Short Answers, 13 Long Answers)

3

Class 12 Maths Chapter 10 Exercise 10.4 - 12 Questions & Solutions (4 Short Answers, 8 Long Answers)

4

Class 12 Maths Chapter 10 Miscellaneous Exercise - 19 Questions & Solutions



CBSE Class 12 Maths Chapter 10 Other Study Materials



NCERT Solutions for Class 12 Maths | Chapter-wise List

Given below are the chapter-wise NCERT 12 Maths solutions PDF. Using these chapter-wise class 12th maths ncert solutions, you can get clear understanding of the concepts from all chapters.


WhatsApp Banner

FAQs on NCERT Solutions For Class 12 Maths Chapter 10 Vector Algebra Exercise 10.2 - 2025-26

1. What is the correct stepwise method to solve vector addition and scalar multiplication problems in NCERT Class 12 Maths Chapter 10 Exercise 10.2?

To accurately solve vector addition and scalar multiplication problems in Exercise 10.2, follow these steps:

  • Express each vector in component form using i, j, k notation.
  • Apply the vector addition formula: (a1i + b1j + c1k) + (a2i + b2j + c2k) = (a1+a2)i + (b1+b2)j + (c1+c2)k.
  • For scalar multiplication, multiply each component by the scalar: k(a i + b j + c k) = (ka) i + (kb) j + (kc) k.
  • Box the final answer and ensure correct units and notation as per CBSE/NCERT guidelines.

2. How does following the NCERT stepwise approach help avoid mistakes in vector algebra solutions?

Using the stepwise approach for NCERT vector algebra solutions ensures you:

  • Minimize calculation errors by breaking problems into clear steps.
  • Maintain correct vector notation, preventing confusion between scalar and vector quantities.
  • Meet CBSE marking scheme expectations, including boxed answers and systematic presentation.
  • Avoid skipping steps, resulting in accurate and complete answers as required in board exams.

3. What are the most important vector algebra formulas to remember for Exercise 10.2 in CBSE Class 12 Maths?

The key formulas for Exercise 10.2 include:

  • Vector Addition: a + b = (a1 + b1)i + (a2 + b2)j + (a3 + b3)k
  • Scalar Multiplication: k(a i + b j + c k) = (ka) i + (kb) j + (kc) k
  • Magnitude: |a| = √(a2 + b2 + c2)
  • Unit Vector: â = a / |a|
  • Section Formula: (m*b + n*a)/(m+n) for internal division

4. What are the most frequent calculation mistakes students make when working on Class 12 NCERT Vector Algebra solutions?

Common mistakes include:

  • Confusing scalar and vector quantities (e.g., omitting direction in answers).
  • Incorrectly adding or subtracting vector components.
  • Mismatching direction cosines or failing to normalize unit vectors.
  • Forgetting units or mislabeling the result.
  • Incomplete or missing boxed answers as per CBSE norms.

5. How can understanding vector algebra in Exercise 10.2 improve performance in CBSE board and competitive exams?

Mastering vector algebra in Exercise 10.2 strengthens your foundation in:

  • Solving geometry and physics problems involving direction and magnitude.
  • Answering direct and application-based board exam questions, especially those for 7 marks.
  • Building skills that are essential for competitive exams like JEE and NEET, where vector concepts frequently appear.

6. What is the importance of using the correct notation (i, j, k) in vector algebra solutions for CBSE exams?

Using proper i, j, k notation is crucial because:

  • It clearly distinguishes between vector and scalar components, ensuring mathematical accuracy.
  • It aligns your answer with CBSE marking schemes and avoids loss of marks due to incomplete representation.
  • It helps examiners quickly verify the direction and correctness of your solution.

7. How do you determine if two vectors are collinear or have the same direction in NCERT solutions?

To test if two vectors are collinear:

  • Check if one vector is a scalar multiple of the other: b = λa.
  • If all component ratios are equal (a1/b1 = a2/b2 = a3/b3), they are collinear.

If direction cosines match for both vectors, they have the same direction even if magnitudes differ.

8. What is the significance of the section formula in vector algebra applications?

The section formula enables calculation of a point dividing a line segment joining two points in a given ratio. Applications include:

  • Finding the midpoint or other key ratios within geometry problems.
  • Solving coordinate geometry questions involving internal and external division, crucial for both maths and physics contexts.
  • Interpreting relative positions and distances in 3D space.

9. In what real-life situations does vector algebra, as taught in CBSE Class 12 Chapter 10, find direct application?

Vector algebra is used in:

  • Physics to analyze forces, velocity, and acceleration involving direction and magnitude.
  • Navigation and engineering for determining displacement and resultant forces.
  • Computer graphics and robotics for modeling motion and spatial relationships.

10. How should students present their answers for full marks in NCERT vector algebra questions as per CBSE 2025–26?

For maximum marks, present answers by:

  • Writing each step clearly using vector notation.
  • Boxing the final result as per CBSE requirements.
  • Double-checking component addition/subtraction and units.
  • Justifying each step, especially if the question requires proof (collinearity, direction cosines, etc.).