Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 11 Maths Chapter 12: Introduction to Three Dimensional Geometry - Exercise 12.2

ffImage
Last updated date: 23rd Apr 2024
Total views: 573.9k
Views today: 14.73k
MVSAT offline centres Dec 2023

NCERT Solutions for Class 11 Maths Chapter 12 Introduction to Three Dimensional Geometry

Free PDF download of NCERT Solutions for Class 11 Maths Chapter 12 Exercise 12.2 (Ex 12.2) and all chapter exercises at one place prepared by expert teacher as per NCERT (CBSE) books guidelines. Class 11 Maths Chapter 12 Introduction to Three Dimensional Geometry Exercise 12.2 Questions with Solutions to help you to revise complete Syllabus and Score More marks. Register and get all exercise solutions in your emails.


Class:

NCERT Solutions for Class 11

Subject:

Class 11 Maths

Chapter Name:

Chapter 12 - Introduction to Three Dimensional Geometry

Exercise:

Exercise - 12.2

Content-Type:

Text, Videos, Images and PDF Format

Academic Year:

2024-25

Medium:

English and Hindi

Available Materials:

  • Chapter Wise

  • Exercise Wise

Other Materials

  • Important Questions

  • Revision Notes

Competitive Exams after 12th Science

Access NCERT Solutions for Class 11 Chapter 12- Introduction to Three Dimensional Geometry

Exercise 12.2

1. Find the distance between the following pairs of points:

(i). \[\left( {2,3,5} \right)\] and $\left( {4,3,1} \right)$

Ans: We have, distance between two points ${\text{P}}\left( {{x_1},{y_1},{z_1}} \right)$ and ${\text{Q}}\left( {{x_2},{y_2},{z_2}} \right)$ is

${\text{PQ}} = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2} + {{\left( {{z_2} - {z_1}} \right)}^2}} $ .

So, the distance between the point \[{\text{P}}\left( {2,3,5} \right)\] and ${\text{Q}}\left( {4,3,1} \right)$ is

${\text{PQ}} = \sqrt {{{\left( {4 - 2} \right)}^2} + {{\left( {3 - 3} \right)}^2} + {{\left( {1 - 5} \right)}^2}} $

${\text{PQ}} = \sqrt {{2^2} + {0^2} + {{\left( { - 4} \right)}^2}} $

${\text{PQ}} = \sqrt {4 + 0 + 16} $

${\text{PQ}} = \sqrt {20} $

By square root,

${\text{PQ}} = 2\sqrt 5 $units

Hence, the distance between the pairs of points \[\left( {2,3,5} \right)\] and $\left( {4,3,1} \right)$ is $2\sqrt 5 $ units.


(ii). \[\left( { - 3,7,2} \right)\] and $\left( {2,4, - 1} \right)$

Ans: We have, distance between two points ${\text{P}}\left( {{x_1},{y_1},{z_1}} \right)$ and ${\text{Q}}\left( {{x_2},{y_2},{z_2}} \right)$ is

${\text{PQ}} = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2} + {{\left( {{z_2} - {z_1}} \right)}^2}} $ .

So, the distance between the point \[{\text{P}}\left( { - 3,7,2} \right)\] and ${\text{Q}}\left( {2,4, - 1} \right)$ is

${\text{PQ}} = \sqrt {{{\left( {2 - \left( { - 3} \right)} \right)}^2} + {{\left( {4 - 7} \right)}^2} + {{\left( { - 1 - 2} \right)}^2}} $

${\text{PQ}} = \sqrt {{{\left( {2 + 3} \right)}^2} + {{\left( {4 - 7} \right)}^2} + {{\left( { - 1 - 2} \right)}^2}} $

${\text{PQ}} = \sqrt {{5^2} + {{\left( { - 3} \right)}^2} + {{\left( { - 3} \right)}^2}} $

${\text{PQ}} = \sqrt {43} $units

Hence, the distance between the pairs of points \[\left( { - 3,7,2} \right)\] and $\left( {2,4, - 1} \right)$is$\sqrt {43} $ units.


(iii). \[\left( { - 1,3, - 4} \right)\] and $\left( {1, - 3,4} \right)$

Ans: We have, distance between two points ${\text{P}}\left( {{x_1},{y_1},{z_1}} \right)$ and ${\text{Q}}\left( {{x_2},{y_2},{z_2}} \right)$ is

${\text{PQ}} = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2} + {{\left( {{z_2} - {z_1}} \right)}^2}} $ .

So, the distance between the point \[{\text{P}}\left( { - 1,3, - 4} \right)\] and ${\text{Q}}\left( {1, - 3,4} \right)$ is

${\text{PQ}} = \sqrt {{{\left( {1 - \left( { - 1} \right)} \right)}^2} + {{\left( { - 3 - 3} \right)}^2} + {{\left( {4 - \left( { - 4} \right)} \right)}^2}} $

${\text{PQ}} = \sqrt {{{\left( {1 + 1} \right)}^2} + {{\left( { - 3 - 3} \right)}^2} + {{\left( {4 + 4} \right)}^2}} $

${\text{PQ}} = \sqrt {{2^2} + {{\left( { - 6} \right)}^2} + {{\left( 8 \right)}^2}} $

${\text{PQ}} = \sqrt {4 + 36 + 64} $

${\text{PQ}} = \sqrt {104} $

By square root,

${\text{PQ}} = 2\sqrt {26} $units

Hence, the distance between the pairs of points \[\left( { - 1,3, - 4} \right)\] and $\left( {1, - 3,4} \right)$is$2\sqrt {26} $ units.


(iv). \[\left( {2, - 1,3} \right)\] and $\left( { - 2,1,3} \right)$

Ans: We have, distance between two points ${\text{P}}\left( {{x_1},{y_1},{z_1}} \right)$ and ${\text{Q}}\left( {{x_2},{y_2},{z_2}} \right)$ is

${\text{PQ}} = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2} + {{\left( {{z_2} - {z_1}} \right)}^2}} $ .

So, the distance between the point \[{\text{P}}\left( {2, - 1,3} \right)\] and ${\text{Q}}\left( { - 2,1,3} \right)$ is

${\text{PQ}} = \sqrt {{{\left( { - 2 - 2} \right)}^2} + {{\left( {1 - \left( { - 1} \right)} \right)}^2} + {{\left( {3 - 3} \right)}^2}} $

${\text{PQ}} = \sqrt {{{\left( { - 2 - 2} \right)}^2} + {{\left( {1 + 1} \right)}^2} + {{\left( {3 - 3} \right)}^2}} $

${\text{PQ}} = \sqrt {{{\left( { - 4} \right)}^2} + {2^2} + {0^2}} $

${\text{PQ}} = \sqrt {16 + 4 + 0} $

${\text{PQ}} = \sqrt {20} $

By square root,

${\text{PQ}} = 2\sqrt 5 $units

Hence, the distance between the pairs of points \[\left( {2, - 1,3} \right)\] and $\left( { - 2,1,3} \right)$is$2\sqrt 5 $ units.


2. Show that the points $\left( { - 2,3,5} \right),\left( {1,2,3} \right)$ and $\left( {7,0, - 1} \right)$ are collinear.

Ans: Let the points are ${\text{P}}\left( { - 2,3,5} \right),{\text{Q}}\left( {1,2,3} \right)$and ${\text{R}}\left( {7,0, - 1} \right)$.

We have, the points are said to be collinear if they lie on a line.

So, we have to show that ${\text{PQ}} + {\text{QR}} = {\text{PR}}$.

Now, ${\text{PQ}} = \sqrt {{{\left( {1 - \left( { - 2} \right)} \right)}^2} + {{\left( {2 - 3} \right)}^2} + {{\left( {3 - 5} \right)}^2}} $

${\text{PQ}} = \sqrt {{{\left( {1 + 2} \right)}^2} + {{\left( {2 - 3} \right)}^2} + {{\left( {3 - 5} \right)}^2}} $

${\text{PQ}} = \sqrt {{3^2} + {{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2}} $

${\text{PQ}} = \sqrt {9 + 1 + 4} $

${\text{PQ}} = \sqrt {14} $

Now,${\text{QR}} = \sqrt {{{\left( {7 - 1} \right)}^2} + {{\left( {0 - 2} \right)}^2} + {{\left( { - 1 - 3} \right)}^2}} $

${\text{QR}} = \sqrt {{{\left( { - 6} \right)}^2} + {{\left( { - 2} \right)}^2} + {{\left( { - 4} \right)}^2}} $

${\text{QR}} = \sqrt {36 + 4 + 16} $

${\text{QR}} = \sqrt {56} $

By square root,

${\text{QR}} = 2\sqrt {14} $

Now, ${\text{PR}} = \sqrt {{{\left( {7 - \left( { - 2} \right)} \right)}^2} + {{\left( {0 - 3} \right)}^2} + {{\left( { - 1 - 5} \right)}^2}} $

${\text{PR}} = \sqrt {{{\left( {7 + 2} \right)}^2} + {{\left( {0 - 3} \right)}^2} + {{\left( { - 1 - 5} \right)}^2}} $

${\text{PR}} = \sqrt {{9^2} + {{\left( { - 3} \right)}^2} + {{\left( { - 6} \right)}^2}} $

${\text{PR}} = \sqrt {81 + 9 + 36} $

${\text{QR}} = \sqrt {126} $

By square root,

${\text{QR}} = 3\sqrt {14} $

So, ${\text{PQ}} + {\text{QR}} = {\text{PR}}$

Thus, the points ${\text{P,Q}}$and ${\text{R}}$ are collinear.

Hence, the points $\left( { - 2,3,5} \right),\left( {1,2,3} \right)$ and $\left( {7,0, - 1} \right)$ are collinear.


3. Verify the following:

(i). $\left( {0,7, - 10} \right),\left( {1,6, - 6} \right)$and$\left( {4,9, - 6} \right)$ are the vertices of an isosceles triangle.

Ans: Let the given points are ${\text{P}}\left( {0,7, - 10} \right),{\text{Q}}\left( {1,6, - 6} \right)$and ${\text{R}}\left( {4,9, - 6} \right)$.

We know that, Aa triangle is called isosceles triangle if two sides of the triangle are equal.

Now, ${\text{PQ}} = \sqrt {{{\left( {1 - 0} \right)}^2} + {{\left( {6 - 7} \right)}^2} + {{\left( { - 6 - \left( { - 10} \right)} \right)}^2}} $

${\text{PQ}} = \sqrt {{{\left( {1 - 0} \right)}^2} + {{\left( {6 - 7} \right)}^2} + {{\left( { - 6 + 10} \right)}^2}} $

${\text{PQ}} = \sqrt {{1^2} + {{\left( { - 1} \right)}^2} + {{\left( 4 \right)}^2}} $

${\text{PQ}} = \sqrt {1 + 1 + 16} $

${\text{PQ}} = \sqrt {18} $

By square root,

${\text{PQ}} = 3\sqrt 2 $

Now,${\text{QR}} = \sqrt {{{\left( {4 - 1} \right)}^2} + {{\left( {9 - 6} \right)}^2} + {{\left( { - 6 - \left( { - 6} \right)} \right)}^2}} $

${\text{QR}} = \sqrt {{{\left( {4 - 1} \right)}^2} + {{\left( {9 - 6} \right)}^2} + {{\left( { - 6 + 6} \right)}^2}} $

${\text{QR}} = \sqrt {{3^2} + {3^2} + {0^2}} $

${\text{QR}} = \sqrt {9 + 9 + 0} $

${\text{QR}} = \sqrt {18} $

By square root,

${\text{QR}} = 3\sqrt 2 $

Now, ${\text{PR}} = \sqrt {{{\left( {4 - 0} \right)}^2} + {{\left( {9 - 7} \right)}^2} + {{\left( { - 6 - \left( { - 10} \right)} \right)}^2}} $

${\text{PR}} = \sqrt {{{\left( {4 - 0} \right)}^2} + {{\left( {9 - 7} \right)}^2} + {{\left( { - 6 + 10} \right)}^2}} $

${\text{PR}} = \sqrt {{4^2} + {2^2} + {4^2}} $

${\text{PR}} = \sqrt {16 + 4 + 16} $

${\text{PR}} = \sqrt {36} $

By square root,

${\text{PR}} = 6$

Thus, ${\text{PQ}} = {\text{QR}}$

Hence, $\left( {0,7, - 10} \right),\left( {1,6, - 6} \right)$ and $\left( {4,9, - 6} \right)$ are the vertices of an isosceles triangle.


(ii). $\left( {0,7,10} \right),\left( { - 1,6,6} \right)$ and $\left( { - 4,9,6} \right)$ are the vertices of a right angled triangle.

Ans: Let the given points are${\text{P}}\left( {0,7,10} \right),{\text{Q}}\left( { - 1,6,6} \right)$and ${\text{R}}\left( { - 4,9,6} \right)$ .

We know that, in a right angled triangle 

${\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {{\text{Base}}} \right)^2} + {\left( {{\text{Altitude}}} \right)^2}$

Now, ${\text{PQ}} = \sqrt {{{\left( { - 1 - 0} \right)}^2} + {{\left( {6 - 7} \right)}^2} + {{\left( {6 - 10} \right)}^2}} $

${\text{PQ}} = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 1} \right)}^2} + {{\left( { - 4} \right)}^2}} $

${\text{PQ}} = \sqrt {1 + 1 + 16} $

${\text{PQ}} = \sqrt {18} $

By square root,

${\text{PQ}} = 3\sqrt 2 $

Now,${\text{QR}} = \sqrt {{{\left( { - 4 - \left( { - 1} \right)} \right)}^2} + {{\left( {9 - 6} \right)}^2} + {{\left( {6 - 6} \right)}^2}} $

${\text{QR}} = \sqrt {{{\left( { - 4 + 1} \right)}^2} + {{\left( {9 - 6} \right)}^2} + {{\left( {6 - 6} \right)}^2}} $

${\text{QR}} = \sqrt {{{\left( { - 3} \right)}^2} + {3^2} + {0^2}} $

${\text{QR}} = \sqrt {9 + 9 + 0} $

${\text{QR}} = \sqrt {18} $

By square root,

${\text{QR}} = 3\sqrt 2 $

Now, ${\text{PR}} = \sqrt {{{\left( { - 4 - 0} \right)}^2} + {{\left( {9 - 7} \right)}^2} + {{\left( {6 - 10} \right)}^2}} $

${\text{PR}} = \sqrt {{{\left( { - 4} \right)}^2} + {2^2} + {{\left( { - 4} \right)}^2}} $

${\text{PR}} = \sqrt {16 + 4 + 16} $

${\text{PR}} = \sqrt {36} $

By square root,

${\text{PR}} = 6$

Now, ${\text{P}}{{\text{Q}}^2} + {\text{Q}}{{\text{R}}^2} = {\left( {3\sqrt 2 } \right)^2} + {\left( {3\sqrt 2 } \right)^2}$

${\text{P}}{{\text{Q}}^2} + {\text{Q}}{{\text{R}}^2} = 18 + 18$

${\text{P}}{{\text{Q}}^2} + {\text{Q}}{{\text{R}}^2} = 36$

Again, ${\text{P}}{{\text{R}}^2} = 36$

Thus, ${\text{P}}{{\text{Q}}^2} + {\text{Q}}{{\text{R}}^2} = {\text{P}}{{\text{R}}^2}$

Hence, $\left( {0,7,10} \right),\left( { - 1,6,6} \right)$ and $\left( { - 4,9,6} \right)$are the vertices of a right angled triangle.


(iii). $\left( { - 1,2,1} \right),\left( {1, - 2,5} \right),\left( {4, - 7,8} \right)$and$\left( {2, - 3,4} \right)$ are the vertices of a parallelogram.

Ans: Let the given points are${\text{P}}\left( { - 1,2,1} \right),{\text{Q}}\left( {1, - 2,5} \right),{\text{R}}\left( {4, - 7,8} \right)$and ${\text{S}}\left( {2, - 3,4} \right)$ .

We know that, when the opposite sides of the quadrilateral are equal, is called parallelogram.

Now, ${\text{PQ}} = \sqrt {{{\left( {1 - \left( { - 1} \right)} \right)}^2} + {{\left( { - 2 - 2} \right)}^2} + {{\left( {5 - 1} \right)}^2}} $

${\text{PQ}} = \sqrt {{{\left( {1 + 1} \right)}^2} + {{\left( { - 2 - 2} \right)}^2} + {{\left( {5 - 1} \right)}^2}} $

${\text{PQ}} = \sqrt {{2^2} + {{\left( { - 4} \right)}^2} + {{\left( { - 4} \right)}^2}} $

${\text{PQ}} = \sqrt {4 + 16 + 16} $

${\text{PQ}} = \sqrt {36} $

By square root,

${\text{PQ}} = 6$

Now,${\text{QR}} = \sqrt {{{\left( {4 - 1} \right)}^2} + {{\left( { - 7 - \left( { - 2} \right)} \right)}^2} + {{\left( {8 - 5} \right)}^2}} $

${\text{QR}} = \sqrt {{{\left( {4 - 1} \right)}^2} + {{\left( { - 7 + 2} \right)}^2} + {{\left( {8 - 5} \right)}^2}} $

${\text{QR}} = \sqrt {{{\left( { - 3} \right)}^2} + {{\left( { - 5} \right)}^2} + {3^2}} $

${\text{QR}} = \sqrt {9 + 25 + 9} $

${\text{QR}} = \sqrt {53} $

Now, ${\text{RS}} = \sqrt {{{\left( {2 - 4} \right)}^2} + {{\left( { - 3 - \left( { - 7} \right)} \right)}^2} + {{\left( {4 - 8} \right)}^2}} $

${\text{RS}} = \sqrt {{{\left( {2 - 4} \right)}^2} + {{\left( { - 3 + 7} \right)}^2} + {{\left( {4 - 8} \right)}^2}} $

${\text{RS}} = \sqrt {{{\left( { - 2} \right)}^2} + {4^2} + {{\left( { - 4} \right)}^2}} $

${\text{RS}} = \sqrt {4 + 16 + 16} $

${\text{RS}} = \sqrt {36} $

By square root,

${\text{RS}} = 6$

Now, ${\text{SP}} = \sqrt {{{\left( { - 1 - 2} \right)}^2} + {{\left( {2 - \left( { - 3} \right)} \right)}^2} + {{\left( {1 - 4} \right)}^2}} $

${\text{SP}} = \sqrt {{{\left( { - 1 - 2} \right)}^2} + {{\left( {2 + 3} \right)}^2} + {{\left( {1 - 4} \right)}^2}} $

${\text{SP}} = \sqrt {{{\left( { - 3} \right)}^2} + {5^2} + {{\left( { - 3} \right)}^2}} $

${\text{SP}} = \sqrt {9 + 25 + 9} $

${\text{SP}} = \sqrt {53} $

Thus, ${\text{PQ = RS}}$

${\text{QR = SP}}$

Hence, $\left( { - 1,2,1} \right),\left( {1, - 2,5} \right),\left( {4, - 7,8} \right)$ and $\left( {2, - 3,4} \right)$ are the vertices of a parallelogram.


4. Find the equation of the set of points which are equidistant from the points$\left( {1,2,3} \right)$and $\left( {3,2, - 1} \right)$.

Ans: Let the point is ${\text{P}}$ and coordinate of the point${\text{P}}$ be $\left( {x,y,z} \right)$

Also let the given points are $A\left( {1,2,3} \right)$and $B\left( {3,2, - 1} \right)$.

Now, ${\text{PA}} = \sqrt {{{\left( {x - 1} \right)}^2} + {{\left( {y - 2} \right)}^2} + {{\left( {z - 3} \right)}^2}} $

Also, ${\text{PB}} = \sqrt {{{\left( {x - 3} \right)}^2} + {{\left( {y - 2} \right)}^2} + {{\left( {z - \left( { - 1} \right)} \right)}^2}} $

${\text{PB}} = \sqrt {{{\left( {x - 3} \right)}^2} + {{\left( {y - 2} \right)}^2} + {{\left( {z + 1} \right)}^2}} $

Given that, ${\text{PA = PB}}$

So, $\sqrt {{{\left( {x - 1} \right)}^2} + {{\left( {y - 2} \right)}^2} + {{\left( {z - 3} \right)}^2}}  = \sqrt {{{\left( {x - 3} \right)}^2} + {{\left( {y - 2} \right)}^2} + {{\left( {z + 1} \right)}^2}} $

By squaring,

${\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = {\left( {x - 3} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2}$

Subtracting  ${\left( {y - 2} \right)^2}$ from both sides,

${\left( {x - 1} \right)^2} + {\left( {z - 3} \right)^2} = {\left( {x - 3} \right)^2} + {\left( {z + 1} \right)^2}$

${\left( {x - 1} \right)^2} + {\left( {z - 3} \right)^2} - {\left( {x - 3} \right)^2} - {\left( {z + 1} \right)^2} = 0$

${x^2} - 2x + 1 + {z^2} - 6z + 9 - {x^2} + 6x - 9 - {z^2} - 2z - 1 = 0$

By simplifying,

$4x - 8z = 0$

Hence, the required equation is $4x - 8z = 0$ .


5. Find the equation of the set of points P, the sum of whose distances from${\text{A}}\left( {4,0,0} \right)$and${\text{B}}\left( { - 4,0,0} \right)$ is equal to $10$ .

Ans: Let thecoordinate of the point${\text{P}}$ be $\left( {x,y,z} \right)$

The given points are ${\text{A}}\left( {4,0,0} \right)$and ${\text{B}}\left( { - 4,0,0} \right)$.

Now, ${\text{PA}} = \sqrt {{{\left( {x - 4} \right)}^2} + {{\left( {y - 0} \right)}^2} + {{\left( {z - 0} \right)}^2}} $

${\text{PA}} = \sqrt {{{\left( {x - 4} \right)}^2} + {y^2} + {z^2}} $

Also, ${\text{PB}} = \sqrt {{{\left( {x - \left( { - 4} \right)} \right)}^2} + {{\left( {y - 0} \right)}^2} + {{\left( {z - 0} \right)}^2}} $

${\text{PB}} = \sqrt {{{\left( {x + 4} \right)}^2} + {y^2} + {z^2}} $

According the information,

${\text{PA + PB = }}10$

$\sqrt {{{\left( {x - 4} \right)}^2} + {y^2} + {z^2}}  + \sqrt {{{\left( {x + 4} \right)}^2} + {y^2} + {z^2}}  = 10$

$\sqrt {{{\left( {x - 4} \right)}^2} + {y^2} + {z^2}}  = 10 - \sqrt {{{\left( {x + 4} \right)}^2} + {y^2} + {z^2}} $

By squaring both sides,

${\left[ {\sqrt {{{\left( {x - 4} \right)}^2} + {y^2} + {z^2}} } \right]^2} = {\left[ {10 - \sqrt {{{\left( {x + 4} \right)}^2} + {y^2} + {z^2}} } \right]^2}$

${\left( {x - 4} \right)^2} + {y^2} + {z^2} = {10^2} - 2 \times 10 \times \sqrt {{{\left( {x + 4} \right)}^2} + {y^2} + {z^2}}  + {\left[ {\sqrt {{{\left( {x + 4} \right)}^2} + {y^2} + {z^2}} } \right]^2}$

${\left( {x - 4} \right)^2} + {y^2} + {z^2} = 100 - 20\sqrt {{{\left( {x + 4} \right)}^2} + {y^2} + {z^2}}  + {\left( {x + 4} \right)^2} + {y^2} + {z^2}$

${x^2} - 8x + 16 + {y^2} + {z^2} = 100 - 20\sqrt {{{\left( {x + 4} \right)}^2} + {y^2} + {z^2}}  + {x^2} + 8x + 16 + {y^2} + {z^2}$

Simplify,

$ - 8x = 100 - 20\sqrt {{{\left( {x + 4} \right)}^2} + {y^2} + {z^2}}  + 8x$

$20\sqrt {{{\left( {x + 4} \right)}^2} + {y^2} + {z^2}}  = 100 + 8x + 8x$

$20\sqrt {{{\left( {x + 4} \right)}^2} + {y^2} + {z^2}}  = 100 + 16x$

Dividing by $4$ ,

$5\sqrt {{{\left( {x + 4} \right)}^2} + {y^2} + {z^2}}  = 25 + 4x$

By squaring both sides,

${\left[ {5\sqrt {{{\left( {x + 4} \right)}^2} + {y^2} + {z^2}} } \right]^2} = {\left( {25 + 4x} \right)^2}$

Since, ${\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$

$25\left( {{{\left( {x + 4} \right)}^2} + {y^2} + {z^2}} \right) = 625 + 200x + 16{x^2}$

$25\left( {{x^2} + 8x + 16 + {y^2} + {z^2}} \right) = 625 + 200x + 16{x^2}$

$25{x^2} + 200x + 400 + 25{y^2} + 25{z^2} = 625 + 200x + 16{x^2}$

By simplifying,

$25{x^2} + 200x + 400 + 25{y^2} + 25{z^2} - 625 - 200x - 16{x^2} = 0$

$9{x^2} + 25{y^2} + 25{z^2} - 225 = 0$

Hence, the required equation is $9{x^2} + 25{y^2} + 25{z^2} - 225 = 0$ .


NCERT Solutions for Class 11 Maths Chapter 12 Introduction to Three Dimensional Geometry Exercise 12.2

Opting for the NCERT solutions for Ex 12.2 Class 11 Maths is considered as the best option for the CBSE students when it comes to exam preparation. This chapter consists of many exercises. Out of which we have provided the Exercise 12.2 Class 11 Maths NCERT solutions on this page in PDF format. You can download this solution as per your convenience or you can study it directly from our website/ app online.

Vedantu in-house subject matter experts have solved the problems/ questions from the exercise with the utmost care and by following all the guidelines by CBSE. Class 11 students who are thorough with all the concepts from the Maths textbook and quite well-versed with all the problems from the exercises given in it, then any student can easily score the highest possible marks in the final exam. With the help of this Class 11 Maths Chapter 12 Exercise 12.2 solutions, students can easily understand the pattern of questions that can be asked in the exam from this chapter and also learn the marks weightage of the chapter. So that they can prepare themselves accordingly for the final exam.

Besides these NCERT solutions for Class 11 Maths Chapter 12 Exercise 12.2, there are plenty of exercises in this chapter which contain innumerable questions as well. All these questions are solved/answered by our in-house subject experts as mentioned earlier. Hence all of these are bound to be of superior quality and anyone can refer to these during the time of exam preparation. In order to score the best possible marks in the class, it is really important to understand all the concepts of the textbooks and solve the problems from the exercises given next to it. 

Do not delay any more. Download the NCERT solutions for Class 11 Maths Chapter 12 Exercise 12.2 from Vedantu website now for better exam preparation. If you have the Vedantu app in your phone, you can download the same through the app as well. The best part of these solutions is these can be accessed both online and offline as well. 

FAQs on NCERT Solutions for Class 11 Maths Chapter 12: Introduction to Three Dimensional Geometry - Exercise 12.2

1. How can you determine an equation for a group of points?

How to determine a line's equation from two points:

  1. Using the slope formula, determine the slope.

$\text{slope}=m=\dfrac{\text{rise}}{\text{run}}=\dfrac{y_2-y_1}{x_2-x_1}$


  1. To find the y-intercept, use the slope and one of the points (b).

The x and y of your equation y = mx+b can be replaced by one of your points, and the m can be replaced by the slope you just calculated. The only variable left is b in that case. To solve for b, use the same methods you would solve for a variable.

2. What is a section, and what is the formula for a section when a point internally divides a line connecting two points?

The coordinates of a point that divides a line segment externally or internally in some ratio can be found using the section formula. The midpoint of a line segment can be determined using this formula as well. For instance, if point P internally divides a line segment AB, then the section formula for internal division applies.


The location coordinates of a point P that internally divides the line connecting two points A(x1,y1,z1) and B(x2,y2,z2) in the m:n ratio are:


$\lgroup\dfrac{m{x}_{2}+n{x}_{1}}{m+n},\dfrac{m{y}_{2}+n{y}_{1}}{m+n},\dfrac{m{z}_{2}+n{z}_{1}}{m+n}\rgroup$

3. How to find unknown coordinates under various circumstances?

Consider unknown coordinates to be X, Y, and Z, and then substitute them for the given conditions—for example, that the given points are in an equilateral triangle or that they are equally spaced apart from one another—to find the unknown. When different conditions involving the distance formula are given, form a system of equations or a single equation using the conditions that are given, then solve this so-formed equation to find the unknown questions.

4. How can a line segment's trisection point be located?

The formula where a line is internally divided into three segments in a ratio of 1:2 or 2:1. To solve any problem, use the section formula.

Where m and n are the two numbers that make up the m:n ratio.

Use the section formula twice for the trisection formula.

First, use the m:n = 1:2 ratio to solve the line segment's points.

Step 2: Apply the m:n = 2:1 ratio to the line segment's points.

5. How can a point's locus be determined?

The locus that lies exactly midway between the two points, let's say A and B, is regarded as a perpendicular bisector of the line segment that connects the two points.


This theorem aids in determining the region that is made up of all points that are situated equally from points A and B. The perpendicular bisector of the line segment AB should be the region that is created.


Only for curved shapes is the locus defined. These forms can be regular or asymmetrical.