Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions For Class 11 Maths Miscellaneous Exercise Chapter 12 Limits and Derivatives - 2025-26

ffImage
banner
widget title icon
Latest Updates

Class 11 Maths Miscellaneous Exercise Chapter 12 Questions and Answers - Free PDF Download

In NCERT Solutions Class 11 Maths Chapter 12 Miscellaneous Exercise, you’ll dive deep into the world of Limits and Derivatives—key ideas that start your journey into calculus. This chapter shows you how functions behave as values get closer to a point (limits) and how quickly those values change (derivatives).

toc-symbolTable of Content
toggle-arrow

Feeling stuck with tricky questions? Don’t worry! Vedantu’s step-by-step NCERT Solutions will help you understand these concepts clearly and boost your confidence, whether you find limits confusing or want to master derivatives for your exams. Download free PDF solutions to practice even if you’re offline. If you want to see the full Class 11 Maths Syllabus, check it out anytime on our syllabus page.


Working through these exercises will prepare you for more advanced maths ahead. With regular practice using the NCERT Solutions for Class 11 Maths, you can overcome doubts and get exam-ready, one problem at a time.


Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access NCERT Class 11 Maths Chapter 12 Limits and Derivatives Miscellaneous Exercise

1. Find the derivative of the following functions from first principle:

(i) -x

(ii) $\mathbf{(-x)^{-1}}$

(iii) $\mathbf{\sin (x+1)}$

(iv) $\mathbf{\cos \left(x-\dfrac{\pi}{8}\right)}$

Ans: (i) Let $f(x)=-x$. Accordingly, $f(x+h)=-(x+h)$

By first principle, $f^{\prime}(x)=\lim _{n \rightarrow 0} \dfrac{f(x+h)-f(x)}{h}$

$=\lim _{h \rightarrow 0} \dfrac{-(x+h)-(-x)}{h}$

$=\lim _{n \rightarrow 0} \dfrac{-x-h+x}{h}$

$=\lim _{n \rightarrow 0} \dfrac{-h}{h}$

$=\lim _{h \rightarrow 0}(-1)=-1$


(ii) Let $f(x)=(-x)^{-1}=\dfrac{1}{-x}=\dfrac{-1}{x} .$ Accordingly, $f(x+h)=\dfrac{-1}{(x+h)}$

By first principle,

$f^{\prime}(x)=\lim _{n \rightarrow 0} \dfrac{f(x+h)-f(x)}{h}$

$=\lim _{h \rightarrow 0} \dfrac{1}{h}\left[\dfrac{-1}{(x+h)}-\left(\dfrac{-1}{x}\right)\right]$

$=\lim _{n \rightarrow 0} \dfrac{1}{h}\left[\dfrac{-x+(x+h)}{x(x+h)}\right]$

$=\lim _{h \rightarrow 0} \dfrac{1}{h}\left[\dfrac{h}{x(x+h)}\right]$

$=\lim _{n \rightarrow 0} \dfrac{1}{x(x+h)}$

$=\dfrac{1}{x \cdot X}=\dfrac{1}{x^{2}}$


(iii) Let $f(x)=\sin (x+1)$. Accordingly, $f(x+h)=\sin (x+h+1)$

By first principle,

$f^{\prime}(x)=\lim _{n \rightarrow 0} \dfrac{f(x+h)-f(x)}{h}$

$=\lim _{n \rightarrow 0} \dfrac{1}{h}[\sin (x+h+1)-\sin (x+1)]$

$=\lim _{n \rightarrow 0} \dfrac{1}{h}\left[2 \cos \left(\dfrac{x+h+1+x+1}{2}\right) \sin \left(\dfrac{x+h+1-x-1}{2}\right)\right]$

$=\lim _{n \rightarrow 0} \dfrac{1}{h}\left[2 \cos \left(\dfrac{2 x+h+2}{2}\right) \sin \left(\dfrac{h}{2}\right)\right]$

$=\lim _{n \rightarrow 0}\left[\cos \left(\dfrac{2 x+h+2}{2}\right) \cdot \dfrac{\sin \left(\dfrac{h}{2}\right)}{\left(\dfrac{h}{2}\right)}\right]$

$\begin{array}{l}=\lim _{n \rightarrow 0} \dfrac{1}{h} \cos \left(\dfrac{2 x+h+2}{2}\right) \cdot \lim _{\dfrac{b}{2} \rightarrow} \dfrac{\sin \left(\dfrac{h}{2}\right)}{h} \dfrac{h}{\left.\dfrac{h}{2}\right)} \quad\left[\text { As } h \rightarrow 0 \Rightarrow \dfrac{h}{2} \rightarrow 0\right]\\=\cos \left(\dfrac{2 x+0+2}{2}\right) \cdot 1 \quad\left[\lim _{h \rightarrow 0} \dfrac{\sin x}{x}=1\right]\\=\cos (x+1)\\\text (iv) Let f(x)=\cos \left(x-\dfrac{\pi}{8}\right) Accordingly, f(x+h)-\cos \left(x+h-\dfrac{\pi}{8}\right)\\\text { By first principle, }\\f^{\prime}(x)=\lim _{n \rightarrow 0} \dfrac{f(x+f)-f(x)}{h}\\=\lim _{h \rightarrow 0} \dfrac{1}{h}\left[\cos \left(x+h-\dfrac{\pi}{8}\right)-\cos \left(x-\dfrac{\pi}{8}\right)\right]\\=\lim _{n \rightarrow 0} \dfrac{1}{h}\left[-2 \sin \dfrac{\left(x+h-\dfrac{\pi}{8}+x-\dfrac{\pi}{8}\right)}{2} \sin \left(\dfrac{x+h-\dfrac{\pi}{8}-x+\dfrac{\pi}{8}}{2}\right)\right]\\=\lim _{n \rightarrow 0} \dfrac{1}{h}\left[-2 \sin \left(\dfrac{2 x+h-\dfrac{\pi}{4}}{2}\right) \sin \left(\dfrac{h}{2}\right)\right]\\=\lim _{n \rightarrow 0}\left[-\sin \left(\dfrac{2 x+h-\dfrac{\pi}{4}}{2}\right) \dfrac{\sin \left(\dfrac{h}{2}\right)}{\left(\dfrac{h}{2}\right)}\right]\\\left.=\lim _{n \rightarrow 0}\left[-\sin \left(\dfrac{2 x+h-\dfrac{\pi}{4}}{2}\right)\right] \cdot \lim _{\dfrac{\pi}{2} \rightarrow 0} \dfrac{\sin \left(\dfrac{h}{2}\right)}{\left(\dfrac{h}{2}\right)} \quad \text { [As } h \rightarrow 0 \Rightarrow \dfrac{h}{2} \rightarrow 0\right]\\=-\sin \left(\dfrac{2 x+0-\dfrac{\pi}{4}}{2}\right) \cdot 1\end{array}$

$=-\sin \left(x-\dfrac{\pi}{8}\right)$


2. Find the derivative of the following functions (it is to be understood that a, b, c, d. p, q, r and s are fixed non-zero constants and $m$ and $n$ are integers): $(x+a)$

Ans: Let $f(x)=x+a$. Accordingly. $f(x+h)-x+h+a$ By first principle,

$f^{\prime}(x)=\lim _{n \rightarrow 0} \dfrac{f(x+h)-f(x)}{h}$

$\lim _{n \rightarrow 0} \dfrac{x+h+a-x-a}{h}$

$\lim _{n \rightarrow 0}\left(\dfrac{h}{h}\right)$

$-\lim _{n \rightarrow 0}(1)$

$=1$


3. Find the derivative of the following functions (it is to be understood that $a, b, c$. d, $p, q, r$ and s are fixed non- zero constants and $m$ and $n$ are integers): $\mathbf{(p x+q)\left(\dfrac{r}{x}+s\right)}$

Ans: Let $f(x)=(p x+q)\left(\dfrac{r}{x}+s\right)$

By Leibnitz product rule.

$f^{\prime}(x)=(p x+q)\left(\dfrac{r}{x}+s\right)^{\prime}+\left(\dfrac{r}{x}+s\right)(p x+q)^{\prime}$

$-(p x+q)\left(r x^{-1}+s\right)^{\prime}+\left(\dfrac{r}{x}+s\right)(p)$

$-(p x+q)\left(-n x^{2}\right)+\left(\dfrac{r}{x}+s\right) p$

$=(p x+q)\left(\dfrac{-r}{x^{2}}\right)+\left(\dfrac{r}{x}+s\right) p$

$=\dfrac{-p x}{x}-\dfrac{q r}{x^{2}}+\dfrac{p r}{x}+p s$

$p s-\dfrac{q r}{x^{2}}$


4. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p, q, r$ and $s$ are fixed non-zero constants and $m$ and $n$ are integers): $\mathbf{(ax+b)(c x+d)^{2}}$

Ans: Let $f^{\prime}(x)=(a x+b)(c x+d)^{2}$

By Leibnitz product rule,

$f^{\prime}(x)=(a x+b) \dfrac{d}{d x}(c x+d)^{2} \dfrac{d}{d x}(a x+b)$

$(a x+b) \dfrac{d}{d x}\left(c^{2} x^{2}+2 c d x^{2}\right)+(c x+d)^{2} \dfrac{d}{d x}(a x+b)$

$(a x+b)\left[\dfrac{d}{d x}\left(c^{2} x^{2}\right)+\dfrac{d}{d x}(2 c d x)+\dfrac{d}{d x} d^{2}\right]+(c x+d)^{2}\left[\dfrac{d}{d x} a x+\dfrac{d}{d x} b\right]$

$=(a x+b)\left(2 c^{2} x+2 c d\right)+(c x+d)^{2} a$

$-2 c(a x+b)(c x+d)+a(c x+d)^{2}$


5. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p, q, r$ and $s$ are fixed non zero constants and $m$ and $n$ are integers): $\mathbf{\dfrac{a x+b}{c x+d}}$

Ans: Let $f(x)=\dfrac{a x+b}{c x+d}$

By quotient rule,

$f(x)=\dfrac{(c x+d) \dfrac{d}{d x}(a x+b)-(a x+b) \dfrac{d}{d x}(c x+d)}{(c x+d)^{2}}$

$=\dfrac{(c x+d)(a)-(a x+d)(c)}{(c x+d)^{2}}$

$\dfrac{a c x+a d-a c x-b c}{(c x+d)^{2}}$

$\dfrac{a d-b c}{(c x+d)^{2}}$


6. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p, q, r$ and $s$ are fixed non-zero constants and $m$ and $n$ are integers): $\mathbf{\dfrac{1+\dfrac{1}{x}}{1-\dfrac{1}{x}}}$

Ans: Let$f(x)=\dfrac{1+\dfrac{1}{x}}{1-\dfrac{1}{x}}=\dfrac{\dfrac{x+1}{x}}{\dfrac{x-1}{x}}=\dfrac{x+1}{x-1}$, where $x \neq 0$

By quotient rule, $f^{\prime}(x)=\dfrac{(x-1) \dfrac{d}{d x}(x-1)-(x+1) \dfrac{d}{d x}(x-1)}{(x-1)^{2}}, x \neq 0,1$

$=\dfrac{(x-1)(1)-(x+1)(1)}{(x-1)^{2}}, x \neq 0,1$

$\dfrac{x-1-x-1}{(x-1)^{2}}, x \neq 0,1$

$\dfrac{-2}{(x-1)^{2}}, x \neq 0,1$


7. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p, q, r$ and s are fixed non-zero constants and $m$ and $n$ are integers) $\mathbf{: \dfrac{1}{a x^{2}+b x+c}}$

Ans: Let $f(x)=\dfrac{1}{a x^{2}+b x+c}$

By quotient rule,

$f^{\prime}(x)=\dfrac{\left(a x^{2}+b x+c\right) \dfrac{d}{d x}(1)-\dfrac{d}{d x}\left(a x^{2}+b x+c\right)}{\left(a x^{2}+b x+c\right)^{2}}$

$\dfrac{\left(a x^{2}+b x+c\right)(0)-(2 a x+b)}{\left(a x^{2}+b x+c\right)^{2}}$

$\dfrac{-(2 a x+b)}{\left(a x^{2}+b x+c\right)^{2}}$


8. Find the derivative of the following functions (it is to be understood that $a, b, c$ d, p, q, r and s are fixed non-zero constants and m and $n$ are integers): $\mathbf{\dfrac{ax+b}{p x^{2}+q x+r}}$

Ans: Let $f(x)=\dfrac{a x+b}{p x^{2}+q x+r}$

By quotient rule,

$f^{\prime}(x)=\dfrac{\left(p x^{2}+q x+r\right) \dfrac{d}{d x}(a x+b)-(a x+b) \dfrac{d}{d x}\left(p x^{2}+q x+r\right)}{\left(p x^{2}+q x+r\right)^{2}}$

$=\dfrac{\left(p x^{2}+q x+r\right)(a)-(a x+b)(2 p x+q)}{\left(p x^{2}+q x+r\right)^{2}}$

$=\dfrac{a p x^{2}+a q x+a r-a q x+2 n p x+b q}{\left(p x^{2}+q x+r\right)^{2}}$

$\dfrac{-a p x^{2}+2 b p x+a r-b q}{\left(p x^{2}+q x+r\right)^{2}}$


9. Find the derivative of the following functions (it is to be understood that $a, b, c$. d, $p$, q, $r$ and s are fixed non-zero constants and $m$ and $n$ are integers): $\mathbf{\dfrac{p x^{2}+q x+r}{ax+b}}$

Ans: Let $f(x)=\dfrac{p x^{2}+q x+r}{a x+b}$

By the quotient rule,

$\dot{f}(x)=\dfrac{(a x+b) \dfrac{d}{d x}\left(p x^{2}+q x+\eta\right)-\left(p x^{2}+q x+r\right) \dfrac{d}{d x}(a x+b)}{(a x+b)^{2}}$

$\dfrac{(a x+b)(2 p x+q)-\left(p x^{2}+q x+r\right)(a)}{(a x+b)^{2}}$

$=\dfrac{2 a p x^{2}+a q x+2 b p x+b q-a q x^{2}-a q x-a r}{(a x+b)^{2}}$

$\dfrac{a p x^{2}+2 b p x+b q-a r}{(a x+b)^{2}}$


10. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p$, q, $r$ and $s$ are fixed non-zero constants and $m$ and $n$ are integers): $\mathbf{\dfrac{a}{x^{4}}-\dfrac{b}{x^{2}}+\cos x}$

Ans: Let $f(x)=\dfrac{a}{x^{4}}-\dfrac{b}{x^{2}}+\cos x$

$f^{\prime}(x)=\dfrac{d}{d x}\left(\dfrac{a}{x^{4}}\right)-\dfrac{d}{d x}\left(\dfrac{a}{x^{2}}\right)+\dfrac{d}{d x}(\cos x)$

$a \dfrac{d}{d x}\left(x^{-4}\right)-b \dfrac{d}{d x}\left(x^{2}\right)+\dfrac{d}{d x}(\cos x)$

$-a\left(-4 x^{-5}\right)-b\left(-2 x^{3}\right)+(-\sin x) \quad\left[\dfrac{d}{d x}\left(x^{n}\right)=n x^{n-1}\right.$ and $\left.\dfrac{d}{d x}(\cos x)=-\sin x\right]$

$\dfrac{-4 a}{x^{5}}+\dfrac{2 b}{x^{3}}-\sin x$


11. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p, q, r$ and $s$ are fixed nonzero constants and $m$ and $n$ are integers): $\mathbf{4 \sqrt{x}-2}$

Ans: Let $f(x)=4 \sqrt{x}-2$

$f^{\prime}(x)=\dfrac{d}{d x}(4 \sqrt{x}-2)=\dfrac{d}{d x}(4 \sqrt{x})-\dfrac{d}{d x}(2)$

$=4 \dfrac{d}{d x}\left(x^{\dfrac{1}{2}}\right)-0=4\left(\dfrac{1}{2} x^{\dfrac{1}{2}}\right)$

$=\left(2 x^{-\dfrac{1}{2}}\right)=\dfrac{2}{\sqrt{x}}$


12. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p, q, r$ and $s$ are fixed non-zero constants and $m$ and $n$ are integers): $\mathbf{(ax+b)^{n}}$

Ans: Let $f(x)=(a x+b)^{n} .$ Accordingly, $f(x+h)-\{a(x+h)+b\}^{n}-(a x+a h+b)^{n}$

By first principle,

$f^{\prime}(x)=\lim _{n \rightarrow 0} \dfrac{f(x+h)-f(x)}{h}$

$=\lim _{h \rightarrow 0} \dfrac{(a x+a h+b)-(a x+b)^{n}}{h}$

$=\lim _{h \rightarrow 0} \dfrac{(a x+b)^{n}\left(1+\dfrac{a h}{a x+b}\right)^{n}-(a x+b)^{n}}{h}$

$=(a x+b)^{n} \lim _{n \rightarrow 0} \dfrac{1}{h}\left[\left\{1+n\left(\dfrac{a h}{a x+b}\right)+\dfrac{n(n-1)}{2}\left(\dfrac{a h}{a x+b}\right)^{2}+\cdots\right\}-1\right] \quad$ (using binomial theorem)

$=(a x+b)^{n} \lim _{n \rightarrow 0} \dfrac{1}{h}\left[\left(\dfrac{a h}{a x+b}\right)+\dfrac{n(n-1) a^{2} h^{2}}{2(a x+b)^{2}}+\cdots\right.$ (Terms containing higher degrees of $\left.\left.h\right)\right]$

$=(a x+b)^{n} \lim _{n \rightarrow 0}\left[\dfrac{n a}{(a x+b)}+\dfrac{n(n-1) \nexists^{7} h^{2}}{2(a x+b)^{2}}+\cdots\right]$

$=(a x+b)^{n}\left[\dfrac{n a}{(a x+b)}+0\right]$

$=n a \dfrac{(a x+b)^{n}}{a x+b}$

$-n a(a x+b)^{n-1}$


13. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p, q, r$ and $s$ are fixed non-zero constants and $m$ and $n$ are integers): $\mathbf{(a x+b)^{n}(c x+d)^{m}}$

Ans: Let $f(x)=(a x+b)^{n}(c x+d)^{m}$

By Leibnitz product rule,

$f^{\prime}(x)=(a x+b)^{n} \dfrac{d}{d x}(c x+d)^{m}+(c x+d)^{m} \dfrac{d}{d x}(a x+b)^{n}$

Now let $f_{1}(x)=(c x+d)^{m}$

$f_{1}(x+h)=(c x+c h+d)^{m}$

$f_{1}^{\prime}(x)=\lim _{n \rightarrow 0} \dfrac{f_{1}(x+h)-f_{1}(x)}{h}$

$=\lim _{n \rightarrow 0} \dfrac{(c x+c h+d)^{m}-(c x+d)^{m}}{h}$

$=(c x+d)^{m} \lim _{n \rightarrow 0} \dfrac{1}{h}\left[\left(1+\dfrac{c h}{c x+d}\right)^{m}-1\right]$

$=(c x+d)^{m} \lim _{h \rightarrow 0} \dfrac{1}{h}\left[\left(1+\dfrac{m c h}{(c x+d)}+\dfrac{m(m-1)}{2} \dfrac{c^{2} h^{2}}{(c x+d)^{2}}+\cdots\right)^{m}-1\right]$

$=(c x+d)^{m} \lim _{n \rightarrow 0} \dfrac{1}{h}\left[\dfrac{m c h}{(c x+d)}+\dfrac{m(m-1) c^{2} h^{2}}{2(c x+d)^{2}}+\cdots\right.$ (Terms containing higher degree oh $\left.\left.h\right)\right]$

$=(c x+d)^{m} \lim _{h \rightarrow 0}\left[\dfrac{m c}{(c x+d)}+\dfrac{m(m-1) c^{2} h^{2}}{2(c x+d)^{2}}+\cdots\right]$

$=(C x+a)^{m}\left[\dfrac{m c h}{(c x+d)}+0\right]$

$=\dfrac{m c(c x+d)^{m}}{(c x+d)}$

$=m c(c x+d)^{m-1}$

$\dfrac{d}{d x}(c x+d)^{m}=m d(x+d)^{m-1}$

Similarly, $\dfrac{d}{d x}(a x+b)^{n}=n a(a x+b)^{n-1}$... (3)

Therefore, from (1), (2), and (3), we obtain

$f^{\prime}(x)=(a x+b)^{n}\left\{m c(c x+d)^{m-1}\right\}+(c+d)^{m}\left\{n a(a x+b)^{n-1}\right\}$

$=(a x+b)^{n-1}(c x+d)^{m-1}[m c(a x+b)+n a(c x+d)]$


14. Find the derivative of the following functions (it is to be understood that $a, b, c$. d, $p, q, r$ and s are fixed non-zero constants and $m$ and $n$ are integers): $\mathbf{\sin (x+a)}$

Ans: Let, $f(x)=\sin (x+a)$

$f(x+h)=\sin (x+h+a)$

By first principle, $f^{\prime}(x)=\lim _{n \rightarrow 0} \dfrac{f(x+h)-f(x)}{h}$

$=\lim _{n \rightarrow 0} \dfrac{\sin (x+h+a)-\sin (x+a)}{h}$

$=\lim _{n \rightarrow 0} \dfrac{1}{h}\left[2 \cos \left(\dfrac{x+h+a+x+a}{2}\right) \sin \left(\dfrac{x+h+a-x-a}{2}\right)\right]$

$=\lim _{n \rightarrow 0} \dfrac{1}{h}\left[2 \cos \left(\dfrac{2 x+2 a+h}{2}\right) \sin \left(\dfrac{h}{2}\right)\right]$

$=\lim _{h \rightarrow 0}\left[\cos \left(\dfrac{2 x+2 a+h}{2}\right)\left[\dfrac{\sin \left(\dfrac{h}{2}\right)}{\left(\dfrac{h}{2}\right)}\right]\right]$

$=\lim _{h \rightarrow 0} \cos \left(\dfrac{2 x+2 a+h}{2}\right) \cdot \lim _{\dfrac{h}{2} \rightarrow 0}\left[\dfrac{\sin \left(\dfrac{h}{2}\right)}{\left(\dfrac{h}{2}\right)}\right] \quad\left[\right.$ As $\left.h \rightarrow 0 \Rightarrow \dfrac{h}{2} \rightarrow 0\right]$

$=\cos \left(\dfrac{2 x+2 a}{2}\right) \times 1 \quad\left[\lim _{n \rightarrow 0} \dfrac{\sin x}{x}=1\right]$

$=\cos (x+a)$


15. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p, q, r$ and $s$ are fixed non-zero constants and $m$ and $n$ are integers): $\mathbf{\operatorname{cosec} x \cot x}$

Ans: Let $f(x)=\operatorname{cosec} x \cot x$

By Leibnitz product rule,

$f^{\prime}(x)=\operatorname{cosec} x(\cot x)^{\prime}+\cot x(\operatorname{cosec} x)^{\prime} \ldots .(1)$

Let $f_{1}(x)=\cot x .$ Accordingly, $f_{1}(x+h)=\cot (x+h)$

By first principle,

$f^{\prime \prime}(x)=\lim _{n \rightarrow 0} \dfrac{f(x+h)-f(x)}{h}$

$=\lim _{h \rightarrow 0} \dfrac{\cot (x+h)-\cot (x)}{h}$

$=\lim _{h \rightarrow 0} \dfrac{1}{h}\left(\dfrac{\cos (x+h)}{\sin (x+h)}-\dfrac{\cos (x)}{\sin x}\right)$

$=\lim _{n \rightarrow 0} \dfrac{1}{h}\left(\dfrac{\sin x \cos (x+h)-\cos x \sin (x+h)}{\sin x \sin (x+h)}\right)$

$=\lim _{h \rightarrow 0} \dfrac{1}{h}\left(\dfrac{\sin (x-x+h)}{\sin x \sin (x+h)}\right)$

$=\dfrac{1}{\sin x^{n \rightarrow 0}} \lim _{h} \dfrac{1}{h}\left[\dfrac{\sin (-h)}{\sin (x+h)}\right]$

$=\dfrac{-1}{\sin x}\left(\lim _{n \rightarrow 0} \dfrac{\sin h}{h}\right)\left(\lim _{n \rightarrow 0} \dfrac{1}{\sin (x+h)}\right)$

$=\dfrac{-1}{\sin x} \cdot 1 \cdot\left(\lim _{n \rightarrow 0} \dfrac{1}{\sin (x+0)}\right)$

$=\dfrac{-1}{\sin ^{2} x}$

$=-\operatorname{cosec}^{2} x$

$\therefore(\cot x)^{\prime}=-\operatorname{cosec}^{2} x \quad \ldots$ (2)

Now, let $f_{2}(x)=\operatorname{cosec} x .$ Accordingly, $f_{2}(x+h)=\operatorname{cosec}(x+h)$

By first principle, $f_{2}(x)=\lim _{n \rightarrow 0} \dfrac{f_{2}(x+h)-f_{2}(x)}{h}$

$=\lim _{h \rightarrow 0} \dfrac{1}{h}[\operatorname{cosec}(x+h)-\operatorname{cosec}(x)]$

$=\lim _{n \rightarrow 0} \dfrac{1}{h}\left(\dfrac{1}{\sin (x+h)}-\dfrac{1}{\sin x}\right)$

$=\lim _{n \rightarrow 0} \dfrac{1}{h}\left(\dfrac{\sin x-\sin (x+h)}{\sin x \sin (x+h)}\right)$

$=\dfrac{1}{\sin x} \cdot \lim _{h \rightarrow 0} \dfrac{1}{h}\left[\dfrac{2 \cos \left(\dfrac{x+x+h}{2}\right) \sin \left(\dfrac{x-x-h}{2}\right)}{\sin (x+h)}\right]$

$=\dfrac{1}{\sin x} \cdot \lim _{n \rightarrow 0} \dfrac{1}{h}\left[\dfrac{2 \cos \left(\dfrac{2 x+h}{2}\right) \sin \left(\dfrac{-h}{2}\right)}{\sin (x+h)}\right]$

$=\dfrac{1}{\sin x} \cdot \lim _{h \rightarrow 0}\left[\dfrac{-\sin \left(\dfrac{h}{2}\right)}{\left(\dfrac{h}{2}\right)} \cdot \dfrac{\cos \left(\dfrac{2 x+h}{2}\right)}{\sin (x+h)}\right]$

$=\dfrac{-1}{\sin x} \cdot \lim _{h \rightarrow 0} \dfrac{\sin \left(\dfrac{h}{2}\right)}{\left(\dfrac{h}{2}\right)} \cdot \lim _{n \rightarrow 0} \dfrac{\cos \left(\dfrac{2 x+h}{2}\right)}{\sin (x+h)}$

$=\dfrac{-1}{\sin x} \cdot 1 \cdot \dfrac{\cos \left(\dfrac{2 x+h}{2}\right)}{\sin (x+0)}$

$=\dfrac{-1}{\sin x} \cdot \dfrac{\cos x}{\sin x}$

$=-\operatorname{cosec} x \cdot \cot x$

$\therefore(\operatorname{cosec} x)^{\prime}=-\operatorname{cosec} x \cdot \cot x$

From (1), (2), and (3), we obtain

$f^{\prime}(x)=\operatorname{cosec} x\left(-\operatorname{cosec}^{2} x\right)+\cot x(-\operatorname{cosec} x \cot x)$

$=-\operatorname{cosec}^{3} x-\cot ^{2} x \operatorname{cosec} x$


16. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p, q, r$ and $s$ are fixed non-zero constants and $m$ and $n$ are integers): $\mathbf{\dfrac{\cos x}{1+\sin x}}$

Ans: Let $f(x)=\dfrac{\cos x}{1+\sin x}$

By the quotient rule,

$f^{\prime}(x)=\dfrac{(1+\sin x) \dfrac{d}{d x}(\cos x)-(\cos x) \dfrac{d}{d x}(1+\sin x)}{(1+\sin x)^{2}}$

$=\dfrac{(1+\sin x)(-\sin x)-(\cos x)(\cos x)}{(1+\sin x)^{2}}$

$=\dfrac{-\sin x-\sin ^{2} x-\cos ^{2} x}{(1+\sin x)^{2}}$

$=\dfrac{-\sin x-\left(\sin ^{2} x+\cos ^{2} x\right)}{(1+\sin x)^{2}}$

$=\dfrac{-\sin x-1}{(1+\sin x)^{2}}$

$=\dfrac{-(1-\sin x)}{(1+\sin x)^{2}}$

$=\dfrac{-1}{(1+\sin x)^{2}}$


17. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p, q, r$ and $s$ are fixed non-zero constants and m and n are integers): $\mathbf{\dfrac{\sin x+\cos x}{\sin x-\cos x}}$

Ans:17: Let $f(x)=\dfrac{\sin x+\cos x}{\sin x-\cos x}$

By the quotient rule,

$f^{\prime \prime}(x)=\dfrac{(\sin x-\cos x) \dfrac{d}{d x}(\sin x+\cos x)-(\sin x+\cos x) \dfrac{d}{d x}(\sin x-\cos x)}{(\sin x+\cos x)^{2}}$

$=\dfrac{(\sin x-\cos x)(\cos x-\sin x)-(\sin x+\cos x)(\cos x+\sin x)}{(\sin x+\cos x)^{2}}$

$=\dfrac{-(\sin x-\cos x)^{2}-(\sin x+\cos x)^{2}}{(\sin x+\cos x)^{2}}$

$=\dfrac{-\left[\sin ^{2} x+\cos ^{2} x-2 \sin x \cos x+\sin ^{2} x+\cos ^{2} x+2 \sin x \cos x\right]}{(\sin x+\cos x)^{2}}$

$=\dfrac{-[1+1]}{(\sin x-\cos x)^{2}}$

$=\dfrac{-2}{(\sin x-\cos x)^{2}}$


18. Find the derivative of the following functions (it is to be understood that $a, b, c$, d. $p, q, r$ and $s$ are fixed non-zero constants and $m$ and $n$ are integers): $\mathbf{\dfrac{\sec x-1}{\sec x+1}}$

Ans: Let $f(x)=\dfrac{\sec x-1}{\sec x+1}$

$f(x)=\dfrac{\dfrac{1}{\cos x}-1}{\dfrac{1}{\cos x}+1}=\dfrac{1-\cos x}{1+\cos x}$

By the quotient rule,

$f^{\prime}(x)=\dfrac{(1+\cos x) \dfrac{d}{d x}(1-\cos x)-(1-\cos x) \dfrac{d}{d x}(1+\cos x)}{(1+\cos x)^{2}}$

$=\dfrac{(1+\cos x)(\sin x)-(1-\cos x)(-\sin x)}{(1+\cos x)^{2}}$

$=\dfrac{\sin x+\cos x \sin x+\sin x-\sin x \cos x}{(1+\cos x)^{2}}$

$=\dfrac{2 \sin x}{(1+\cos x)^{2}}$

$=\dfrac{2 \sin x}{\left(1+\dfrac{1}{\sec x}\right)^{2}}=\dfrac{2 \sin x}{\dfrac{(\sec x+1)^{2}}{\sec ^{2} x}}$

$=\dfrac{2 \sin x \sec ^{2} x}{(\sec x+1)^{2}}$

$=\dfrac{\dfrac{2 \sin x}{\cos x} \sec x}{(\sec x+1)^{2}}$

$=\dfrac{2 \sec x \tan x}{(\sec x+1)^{2}}$


19. Find the derivative of the following functions (it is to be understood that $a, b, c$, d. $p, q, r$ and s are fixed non-zero constants and $m$ and $n$ are integers): $\mathbf{\sin ^{n} x}$

Ans: Let $y=\sin ^{n} x$

Accordingly, for $n=1, y=\sin x$

$\therefore \dfrac{d y}{d x}=\cos x$, i.e., $\dfrac{d}{d x} \sin x=\cos x$

For $n=2, y=\sin ^{2} x$.

$\therefore \dfrac{d y}{d x}=\dfrac{d}{d x}(\sin x \sin x)$

$=(\sin x)^{\prime}\left(\sin x+\sin x(\sin x)^{\prime} \quad\right.$ (By Leibnitz product rule)

$=\cos x \sin x+\sin x \cos x$

$=2 \sin x \cos x$

$\ldots .(1)$

For $n=3, y=\sin ^{3} x$

$\therefore \dfrac{d y}{d x}=\dfrac{d}{d x}\left(\sin x \sin ^{2} x\right)$

$=(\sin x)^{\prime} \sin ^{2} x+\sin x(\sin x)^{\prime}$

(By Leibnitz product rule)

$-\cos x \sin ^{2} x+\sin x(2 \sin x \cos x) \quad[$ Using $(1)]$

$=\cos x \sin ^{2} x+\sin ^{2} x \cos x$

$=3 \sin ^{2} x \cos x$

We assert that $\dfrac{d}{d x}\left(\sin ^{n} x\right)=n \sin ^{(n-1)} x \cos x$

Let our assertion be true for $n=k$.

i.e., $\dfrac{d}{d x}\left(\sin ^{k} x\right)=k \sin ^{(k-1)} x \cos x \quad \ldots .$ (2)

Consider,

$\dfrac{d}{d x}\left(\sin ^{k+1} x\right)=\dfrac{d}{d x}\left(\sin x \sin ^{(k)} x\right)$

$=(\sin x)^{\prime} \sin ^{k} x+\sin x\left(\sin ^{k} x\right)^{n}$

(By Leibnitz product rule)

$=\cos x \sin ^{k} x+\sin x\left(k \sin ^{k-1} \cos x\right) \quad[$ Using $(2)]$

$=\cos x \sin ^{k} x+2 \sin ^{k} x \cos x$

$-(k+1) \sin ^{k} x \cos x$

Thus, our assertion is true for $n=k+1$.

Hence, by mathematical induction, $\dfrac{d}{d x}\left(\sin ^{n} x\right)=n \sin ^{(n-1)} x \cos x$


20. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p, q, r$ and s are fixed non-zero constants and $m$ and n are integers): $\mathbf{\dfrac{a+b \sin x}{c+d \cos x}}$

Ans: Let $f(x)=\dfrac{a+b \sin x}{c+d \cos x}$

By the quotient rule,

$f^{\prime}(x)=\dfrac{(c+d \cos x) \dfrac{d}{d x}(a+b \sin x)-(a+b \sin x) \dfrac{d}{d x}(c+d \cos x)}{(c+d \cos x)^{2}}$

$=\dfrac{(c+d \cos x)(b \cos x)-(a+b \sin x)(-d \sin x)}{(c+d \cos x)^{2}}$

$=\dfrac{c b \cos x+b d \cos ^{2} x+a d \sin x+b d \sin ^{2} x}{(c+d \cos x)^{2}}$

$=\dfrac{b c \cos x+a d \sin x+b d\left(\cos ^{2} x+\sin ^{2} x\right)}{(C+d \cos x)^{2}}$

$=\dfrac{b c \cos x+a d \sin x+b d}{(c+d \cos x)^{2}}$


21. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p, q, r$ and s are fixed non-zero constants and m and $n$ are integers): $\mathbf{\dfrac{\sin (x+a)}{\cos x}}$

Ans: Let $f(x)=\dfrac{\sin (x+a)}{\cos x}$

By the quotient rule,

$f^{\prime}(x)=\dfrac{\cos x \dfrac{d}{d x}[\sin (x+a)]-\sin (x+a) \dfrac{d}{d x} \cos x}{\cos ^{2} x}$

$f^{\prime}(x)=\dfrac{\cos x \dfrac{d}{d x}[\sin (x+a)]-\sin (x+a) \dfrac{d}{d x}(-\sin x)}{\cos ^{2} x}$

Let $g(x)-\sin (x+a) .$ Accordingly,$g(x+h)=\sin (x+h+a)$

By first principle,

$g^{\prime}(x)=\lim _{h \rightarrow 0} \dfrac{g(x+h)-g(x)}{h}$

$=\lim _{n \rightarrow 0} \dfrac{1}{h}[\sin (x+h+a)-\sin (x+a)]$

$=\lim _{n \rightarrow 0} \dfrac{1}{h}\left[2 \cos \left(\dfrac{x+h+a+x+a}{2}\right) \sin \left(\dfrac{x+h+a-x-a}{2}\right)\right]$

$=\lim _{n \rightarrow 0} \dfrac{1}{h}\left[2 \cos \left(\dfrac{2 x+2 a+h}{2}\right) \sin \left(\dfrac{h}{2}\right)\right]$

$=\lim _{n \rightarrow 0}\left[\cos \left(\dfrac{2 x+2 a+h}{h}\right)\left\{\dfrac{\sin \left(\dfrac{h}{2}\right)}{\left(\dfrac{h}{2}\right)}\right\}\right]$

$=\lim _{n \rightarrow 0} \cos \left(\dfrac{2 x+2 a+h}{h}\right) \cdot \lim _{n \rightarrow 0}\left\{\dfrac{\sin \left(\dfrac{h}{2}\right)}{\left(\dfrac{h}{2}\right)}\right\} \quad\left[\right.$ As $\left.h \rightarrow 0 \Rightarrow \dfrac{h}{2} \rightarrow 0\right]$

$=\left(\cos \dfrac{2 x+2 a}{2}\right) \times 1 \quad\left[\lim _{n \rightarrow 0} \dfrac{\sin h}{h}=1\right]$

$=\cos (x+a) \quad \ldots$ (ii)

From (i) and (ii), we obtain $f^{\prime}(x)=\dfrac{\cos x \cos (x+a)+\sin x \sin (x+a)}{\cos ^{2} x}$

$=\dfrac{\cos (x+a-x)}{\cos ^{2} x}$

$=\dfrac{\cos a}{\cos ^{2} x}$


22. Find the derivative of the following functions (it is to be understood that $a, b, c$, d. $p, q, r$ and $s$ are fixed non-zero constants and $m$ and $n$ are integers) $\mathbf{: x^{4}(5 \sin x-3 \cos x)}$

Ans: Let $f(x)=x^{4}(5 \sin x-3 \cos x)$

By product rule.

$f^{\prime}(x)=x^{4} \dfrac{d}{d x}(5 \sin x-3 \cos x)+(5 \sin x-3 \cos x) \dfrac{d}{d x}\left(x^{4}\right)$

$=x^{4}\left[5 \dfrac{d}{d x}(\sin x)-3 \dfrac{d}{d x}(\cos x)\right]+(5 \sin x-3 \cos x) \dfrac{d}{d x}\left(x^{4}\right)$

$=x^{4}[5 \cos x-3(-\sin x)]+(5 \sin x-3 \cos x)\left(4 x^{3}\right)$

$=x^{3}[5 x \cos x+3 x \sin x+20 \sin x-12 \cos x]$


23. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\mathbf{\left(x^{2}+1\right) \cos x}$

Ans: Let $f(x)=\left(x^{2}+1\right) \cos x$

By product rule.

$f^{\prime}(x)=\left(x^{2}+1\right) \dfrac{d}{d x}(\cos x)+\cos x \dfrac{d}{d x}\left(x^{2}+1\right)$

$=\left(x^{2}+1\right)(-\sin x)+\cos x(2 x)$

$=-x^{2} \sin x-\sin x+2 x \cos x$


24. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p, q, r$ and s are fixed non-zero constants and $m$ and $n$ are integers): $\mathbf{\left(ax^{2}+\sin x\right)(p+q \cos x)}$

Ans: Let $f(x)=\left(a x^{2}+\sin x\right)(p+q \cos x)$

By product rule.

$f^{\prime}(x)=\left(a x^{2}+\sin x\right) \dfrac{d}{d x}(p+q \cos x)+(p+q \cos x) \dfrac{d}{d x}\left(a x^{2}+\sin x\right)$

$=\left(a x^{2}+\sin x\right)(-q \sin x)+(p+q \cos x)(2 a x+\cos x)$

$=-q \sin x\left(a x^{2}+\sin x\right)+(p+q \cos x)(2 a x+\cos x)$


25. Find the derivative of the following functions (it is to be understood that $a, b, c$, d. $p, q, r$ and $s$ are fixed non-zero constants and $m$ and $n$ are integers): $\mathbf{(x+\cos x)(x-\tan x)}$

Ans: Let $f(x)=(x+\cos x)(x-\tan x)$

By product rule,

$f^{\prime}(x)=(x+\cos x) \dfrac{d}{d x}(x-\tan x)+(x-\tan x) \dfrac{d}{d x}(x+\cos x)$

$=(x+\cos x)\left[\dfrac{d}{d x}(x)-\dfrac{d}{d x}(\tan x)\right]+(x-\tan x)(1-\sin x)$

$=(x+\cos x)\left[1-\dfrac{d}{d x}(\tan x)\right]+(x-\tan x)(1-\sin x)$

Let $g(x)=\tan x .$ Accordingly,$g(x+h)=\tan (x+h)$

By first principle,

$g^{\prime \prime}(x)=\lim _{n \rightarrow 0} \dfrac{g(x+h)-g(x)}{h}$

$=\lim _{h \rightarrow 0} \dfrac{\tan (x+h)-\tan (x)}{h}$

$=\lim _{n \rightarrow 0} \dfrac{1}{h}\left[\dfrac{\sin (x+h)}{\cos (x+h)}-\dfrac{\sin x}{\cos x}\right]$

$=\lim _{n \rightarrow 0} \dfrac{1}{h}\left[\dfrac{\sin (x+h) \cos x-\sin x \cos (x+h)}{\cos x \cos (x+h)}\right]$

$=\dfrac{1}{\cos x^{n \rightarrow 0}} \lim _{h} \dfrac{1}{h}\left[\dfrac{\sin (x+h-x)}{\cos (x+h)}\right]$

$=\dfrac{1}{\cos x^{h \rightarrow 0}} \lim _{h} \dfrac{1}{h}\left[\dfrac{\sin h}{\cos (x+h)}\right]$

$=\dfrac{1}{\cos x}\left(\lim _{n \rightarrow 0} \dfrac{\sin h}{h}\right)\left(\lim _{n \rightarrow 0} \dfrac{1}{\cos (x+h)}\right)$

$=\dfrac{1}{\cos x} \cdot \cdot\left(\dfrac{1}{\cos (x+0)}\right)$

$=\dfrac{1}{\cos ^{2} x}$

$=\sec ^{2} x \quad$... (ii)

Therefore, from (i) and (ii). We obtain

$f^{\prime}(x)=(x+\cos x)\left(1-\sec ^{2} x\right)+(x-\tan x)(1-\sin x)$

$=(x+\cos x)\left(-\tan ^{2} x\right)+(x-\tan x)(1-\sin x)$

$=-\tan ^{2} x(x+\cos x)+(x-\tan x)(1-\sin x)$


26. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p, q, r$ and s are fixed non-zero constants and m and $n$ are integers): $\mathbf{\dfrac{4 x+5 \sin x}{3 x+7 \cos x}}$

Ans: Let $f(x)=\dfrac{4 x+5 \sin x}{3 x+7 \cos x}$

Quotient rule,

$f^{\prime}(x)=\dfrac{(3 x+7 \cos x) \dfrac{d}{d x}(4 x+5 \sin x)-(4 x+5 \sin x) \dfrac{d}{d x}(3 x+7 \cos x)}{(3 x+7 \cos x)^{2}}$

$=\dfrac{(3 x+7 \cos x)\left[4 \dfrac{d}{d x}(x)+5 \dfrac{d}{d x}(\sin x)\right]-(4 x+5 \sin x)\left[3 \dfrac{d}{d x}(x)+7 \dfrac{d}{d x}(\cos x)\right]}{(3 x+7 \cos x)^{2}}$

$=\dfrac{(3 x+7 \cos x)[4 x+5 \cos x]-(4 x+5 \sin x)[3-7 \sin x]}{(3 x+7 \cos x)^{2}}$

$=\dfrac{12 x+15 x \cos x+28 x \cos x+35 \cos ^{2} x-12 x+28 x \sin x-15 \sin x+35\left(\cos ^{2} x+\sin ^{2} x\right)}{(3 x+7 \cos x)^{2}}$

$=\dfrac{15 x \cos x+28 \cos x+28 x \sin x-15 \sin x+35\left(\cos ^{2} x+\sin ^{2} x\right)}{(3 x+7 \cos x)^{2}}$

$=\dfrac{35+15 x \cos x+28 \cos x+28 x \sin x-15 \sin x}{(3 x+7 \cos x)^{2}}$


27. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p, q, r$ and $s$ are fixed non-zero constants and $m$ and $n$ are integers): $\mathbf{\dfrac{x^{2} \cos \left(\dfrac{\pi}{4}\right)}{\sin x}}$

Ans: Let $\mathrm{f}(\mathrm{x})=\dfrac{x^{2} \cos \left(\dfrac{\pi}{4}\right)}{\sin x}$

By quotient rule, $f^{\prime}(x)=\cos \left(\dfrac{\pi}{4}\right)\left[\dfrac{\sin x \dfrac{d}{d x}\left(x^{2}\right)-x^{2} \dfrac{d}{d x}(\sin x)}{\sin ^{2} x}\right]$

$=\cos \left(\dfrac{\pi}{4}\right)\left[\dfrac{\sin x(2 x)-x^{2}(\cos x)}{\sin ^{2} x}\right]$

$=\dfrac{x \cos \dfrac{\pi}{4}[2 \sin x-x \cos x]}{\sin ^{2} x}$


28. Find the derivative of the following functions (it is to be understood that $a, b, c$. d, p, q, r and s are fixed non-zero constants and $m$ and $n$ are integers): $\mathbf{\dfrac{x}{1+\tan x}}$

Ans: Let $f(x)=\dfrac{x}{1+\tan x}$

$f(x)=\dfrac{(1+\tan x) \dfrac{d}{d x}(x)-(x) \dfrac{d}{d x}(1+\tan x)}{(1+\tan x)^{2}}$

$f^{\prime}(x)=\dfrac{(1+\tan x)-x \dfrac{d}{d x}(1+\tan x)}{(1+\tan x)^{2}}$

Let $g(x)=1+\tan x .$ Accordingly $g(x+h)=1+\tan (x+h)$.

By first principle, $\dot{g}(x)=\lim _{n \rightarrow 0} \dfrac{g(x+h)-g(x)}{h}$

$\lim _{h \rightarrow 0}\left[\dfrac{1+\tan (x+h)-1-\tan (x)}{h}\right]$

$\lim _{n \rightarrow 0} \dfrac{1}{h}\left[\dfrac{\sin (x+h)}{\cos (x+h)}-\dfrac{\sin x}{\cos x}\right]$

$\lim _{n \rightarrow 0} \dfrac{1}{h}\left[\dfrac{\sin (x+h) \cos x-\sin x \cos x(x+h)}{\cos (x+h) \cos x}\right]$

$\lim _{n \rightarrow 0} \dfrac{1}{h}\left[\dfrac{\sin (x+h-x)}{\cos (x+h) \cos x}\right]$

$\lim _{h \rightarrow 0} \dfrac{1}{h}\left[\dfrac{\sinh }{\cos (x+h) \cos x}\right]$

$-\left(\lim _{n \rightarrow 0} \dfrac{\sinh }{h}\right) \cdot\left(\lim _{n \rightarrow 0} \dfrac{1}{\cos (x+h) \cos x}\right)$

$-1 \times \dfrac{1}{\cos ^{2}}=\sec ^{2} x$

$\Rightarrow \dfrac{d}{d x}\left(1+\tan ^{2} x\right)=\sec ^{2} x$

From (i) and (ii), we obtain

$\dot{f}(x)=\dfrac{1+\tan x-x \sec ^{2} x}{(1+\tan x)^{2}}$


29. Find the derivative of the following functions (it is to be understood that $\mathrm{a}, \mathrm{b}, \mathrm{c}$, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\mathbf{(x+\sec x)(x-\tan x)}$

Ans: Let $f(x)=(x+\sec x)(x-\tan x)$

By product rule.

$f(x)=(x+\sec x) \dfrac{d}{d x}(x-\tan x)+(x-\tan x) \dfrac{d}{d x}(x+\sec x)$

$-(x+\sec x)\left[\dfrac{d}{d x}(x)-\dfrac{d}{d x} \tan x\right]+(x-\tan x)\left[\dfrac{d}{d x}(x)-\dfrac{d}{d x} \sec x\right]$

$\left.-f(x+\sec x)\left[1-\dfrac{d}{d x} \tan x\right)\right]+(x-\tan x)\left[1+\dfrac{d}{d x} \sec x\right]$

$\ldots(\mathrm{i})$

Let $f_{1}(x)=\tan x, f_{2}(x)=\sec x$

Accordingly, $f_{1}(x+h) \cdot \tan (x+h)$ and $f_{2}(x+h)-\sec (x+h)$

$f_{1}^{\prime}(x)=\lim _{n \rightarrow 0}\left(\dfrac{f_{1}(x+h)-f_{1}(x)}{h}\right)$

$=\lim _{h \rightarrow 0}\left[\dfrac{\tan (x+h)-\tan (x)}{h}\right]$

$\begin{array}{l}-\lim _{n \rightarrow 0} \dfrac{1}{h}\left[\dfrac{\sin (x+h)}{\cos (x+h)}-\dfrac{\sin x}{\cos x}\right]\\-\lim _{n \rightarrow 0} \dfrac{1}{h}\left[\dfrac{\sin (x+h) \cos x-\sin x \cos x(x+h)}{\cos (x+h) \cos x}\right]\\-\lim _{n \rightarrow 0} \dfrac{1}{h}\left[\dfrac{\sin (x+h-x)}{\cos (x+h) \cos x}\right]\\-\lim _{n \rightarrow 0} \dfrac{1}{h}\left[\dfrac{\sinh }{\cos (x+h) \cos x}\right]\\-\left(\lim _{n \rightarrow 0} \dfrac{\sinh }{h}\right) \cdot\left(\lim _{n \rightarrow 0} \dfrac{1}{\cos (x+h) \cos x}\right)\\-1 \times \dfrac{1}{\cos ^{2}}=\sec ^{2} x\\\Rightarrow \dfrac{d}{d x}\left(1+\tan ^{2} x\right)=\sec ^{2} x\\f_{2}^{\prime}(x)=\lim _{n \rightarrow 0}\left(\dfrac{f_{2}+(x+h)-f_{2}(x)}{h}\right)\\=\lim _{h \rightarrow 0}\left(\dfrac{\sec (x+h)-\sec (x)}{h}\right)\\=\lim _{n \rightarrow 0} \dfrac{1}{h}\left(\dfrac{1}{\cos (x+h)}-\dfrac{1}{\cos x}\right)\\=\lim _{n \rightarrow 0} \dfrac{1}{h}\left(\dfrac{\cos x-\cos (x+h)}{\cos (x+h) \cos x}\right)\\=\dfrac{1}{\cos x^{\prime \rightarrow 0}} \lim _{h} \dfrac{1}{h}\left[\dfrac{-2 \sin \left(\dfrac{x+x+h}{2}\right) \cdot \sin \left(\dfrac{x-x-h}{2}\right)}{\cos (x+h)}\right]\\=\dfrac{1}{\cos x} \lim _{h \rightarrow 0} \dfrac{1}{h}\left[\dfrac{-2 \sin \left(\dfrac{2 x+h}{2}\right) \cdot \sin \left(\dfrac{-h}{2}\right)}{\cos (x+h)}\right]\end{array}$

$=\dfrac{1}{\cos x} \lim _{h \rightarrow 0} \dfrac{1}{h}\left[\dfrac{\sin \left(\dfrac{2 x+h}{2}\right)\left\{\dfrac{\sin\left(\dfrac{h}{2}\right)}{\left(\dfrac{h}{2}\right)}\right\}}{\cos (x+h)}\right]$

$=\sec x \dfrac{\left\{\lim _{n \rightarrow 0} \sin \left(\dfrac{2 x+h}{2}\right)\right\}\left\{\lim _{\dfrac{h}{2} \rightarrow 0} \dfrac{\sin \left(\dfrac{h}{2}\right)}{\left(\dfrac{h}{2}\right)}\right\}}{\lim _{n \rightarrow 0} \cos (x+h)}$

$=\sec x \cdot \dfrac{\sin x \cdot 1}{\cos x}$

$\Rightarrow \dfrac{d}{d x} \sec x=\sec x \tan x$

From (i). (ii), and (iii), we obtain

$f^{\prime}(x)=(x+\sec x)\left(1-\sec ^{2} x\right)+(x-\tan x)(1+\sec x \tan x)$


30. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p, q, r$ and s are fixed non-zero constants and $m$ and $n$ are integers): $\mathbf{\dfrac{x}{\sin ^{n} x}}$

Ans: Let $\mathrm{f}(\mathrm{x})=\dfrac{x}{\sin ^{n} x}$

By quotient rule, $f^{\prime}(x)=\dfrac{\sin ^{n} x \dfrac{d}{d x} x-x \dfrac{d}{d x} \sin ^{n} x}{\sin ^{2 n} x}$

It can be easily shown that $\dfrac{d}{d x} \sin ^{n} x=n \sin ^{n-1} x \cos x$

Therefore,

$f^{\prime}(x)=\dfrac{\sin ^{n} \times \dfrac{d}{d x} x-x \dfrac{d}{d x} \sin ^{n} x}{\sin ^{2 n} x}$

$=\dfrac{\sin ^{n} x \cdot 1-x\left(\operatorname{nin}^{n-1} x \cos x\right)}{\sin ^{2 n} x}$

$=\dfrac{\sin ^{n-1} x(\sin x-n x \cos x)}{\sin ^{2 n} x}$

$=\dfrac{\sin x-n x \cos x}{\sin ^{n+1} x}$


Conclusion

NCERT Solutions for Class 11 Maths Chapter 12, focused on Limits and Derivatives, are fundamental for understanding the basics of calculus. This chapter focuses on finding out the rates of change (derivatives) of functions and how they solve particular values (limits). To fully understand these concepts, you must focus on solving various kinds of problems. The basic foundation for advanced mathematical studies and practical applications is a knowledge of limits and derivatives. Using NCERT Solutions regularly provides complete exam preparation and improves your mathematical problem-solving skills.


Class 11 Maths Chapter 12: Exercises Breakdown

Exercise

Number of Questions

Exercise 12.1

32 Questions & Solutions

Exercise 12.2

11 Questions & Solutions


CBSE Class 11 Maths Chapter 12 Other Study Materials


Chapter-Specific NCERT Solutions for Class 11 Maths

Given below are the chapter-wise NCERT Solutions for Class 11 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.



Important Related Links for CBSE Class 11 Maths

WhatsApp Banner

FAQs on NCERT Solutions For Class 11 Maths Miscellaneous Exercise Chapter 12 Limits and Derivatives - 2025-26

1. Do the Class 11 Maths Chapter 12 miscellaneous exercise solutions just provide the final answer?

No, comprehensive NCERT Solutions for the miscellaneous exercise provide detailed, step-by-step explanations, not just the final answers. They are designed to show the application of theorems and formulas, helping you understand the logic behind solving complex problems involving limits and derivatives.


2. If a function's limit exists at a point, does the function have to be defined at that point?

No, a function's limit at a point can exist even if the function itself is undefined at that specific point. The concept of a limit concerns the value a function approaches as the input gets infinitesimally close to a point, not the value at the point itself.




3. Is the derivative of a function always just a single number representing its slope?

No, a function's limit at a point can exist even if the function itself is undefined at that specific point. The concept of a limit concerns the value a function approaches as the input gets infinitesimally close to a point, not the value at the point itself.






4. Is the miscellaneous exercise of Chapter 12 less important than the main exercises?

No, the miscellaneous exercise for Limits and Derivatives Class 11 is highly important for exam preparation. It contains higher-order thinking skills (HOTS) questions that integrate multiple concepts from the chapter, providing a thorough revision and a better reflection of final exam question patterns.


5. Can I use L'Hôpital's Rule to solve any 0/0 limit problem in my Class 11 exams?

No, you should not use L'Hôpital's Rule for your Class 11 Maths exams, as it is not part of the NCERT curriculum at this level. Problems involving indeterminate forms like 0/0 or ∞/∞ must be solved using prescribed methods like algebraic factorization, rationalization, or standard limit formulas.



6. Are Class 11 Maths Chapter 12 miscellaneous exercise solutions only useful for checking answers?

No, these solutions are a learning tool, not just an answer key. They are best used to verify your problem-solving method and identify errors after you have attempted the questions yourself. This process of self-correction helps reinforce concepts and builds confidence for exams.


7. If a function is continuous at a point, does that mean it must be differentiable there?

No, a function being continuous at a point does not guarantee it is differentiable there. Differentiability is a stronger condition; a function must be continuous to be differentiable, but the reverse is not always true. A function is not differentiable at points with sharp corners or cusps.




8. Do I have to pay to get the Limits and Derivatives miscellaneous solutions Class 11 PDF?

No, you do not need to pay. The complete **Free PDF** for the Class 11 Maths Chapter 12 miscellaneous exercise solutions is available on Vedantu for all students. It can be downloaded easily, allowing you to study the step-by-step solutions offline at your convenience.


9. After learning differentiation formulas, is the First Principle method useless?

No, the First Principle of derivatives is a fundamental concept, not an obsolete method. While shortcut formulas (like the power rule or product rule) are used for quick calculations, the First Principle is essential for understanding the definition of a derivative and is required to prove those formulas.




10. Are all online NCERT solutions for Class 11 Maths Chapter 12 equally reliable?

NCERT Solutions from established educational platforms are specifically created by subject experts to align with the latest syllabus and grading patterns. Unlike random online sources, these solutions are methodically checked for accuracy and clarity, ensuring the methods used are appropriate for your exams.