Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Exemplar for Class 11 Maths Chapter 13 - Limits and Derivatives (Book Solutions)

ffImage
Last updated date: 20th Apr 2024
Total views: 652.8k
Views today: 9.52k

NCERT Exemplar for Class 11 Maths - Limits and Derivatives - Free PDF Download

Free PDF download of NCERT Exemplar for Class 11 Maths Chapter 13 - Limits and Derivatives solved by expert Maths teachers on Vedantu.com as per NCERT (CBSE) Book guidelines. All Chapter 13 - Limits and Derivatives exercise questions with solutions to help you to revise the complete syllabus and score more marks in your examinations.

Competitive Exams after 12th Science

Access NCERT Exemplar Solutions for Class 11 Mathematics Chapter 13 - Limits and Derivatives

Examples

Short Answer Type Questions

Example 1: Evaluate: $\mathop {\lim }\limits_{x \to 2} \dfrac{1}{{x - 2}} - \dfrac{{2(2x - 3)}}{{{x^3} - 3{x^2} + 2x}}$

Ans: Given: $\mathop {\lim }\limits_{x \to 2} \dfrac{1}{{x - 2}} - \dfrac{{2(2x - 3)}}{{{x^3} - 3{x^2} + 2x}}$

Let $f$ and $g$ be two functions such that both $\mathop {\lim }\limits_{x \to a} f(x)$ and $\mathop {\lim }\limits_{x \to a} g(x)$ exist. Then $\mathop {\lim }\limits_{x \to a} [f(x) - g(x)] = \mathop {\lim }\limits_{x \to a} f(x) - \mathop {\lim }\limits_{x \to a} g(x)$

$\mathop {\lim }\limits_{x \to 2} \dfrac{1}{{x - 2}} - \dfrac{{2(2x - 3)}}{{{x^3} - 3{x^2} + 2x}}$

$= \mathop {\lim }\limits_{x \to 2} \dfrac{1}{{x - 2}} - \dfrac{{2(2x - 3)}}{{x(x - 1)(x - 2}}$

$= \mathop {\lim }\limits_{x \to 2} \dfrac{{x(x - 1) - 2(2x - 3)}}{{x(x - 1)(x - 2)}}$

$= \mathop {\lim }\limits_{x \to 2} \dfrac{{{x^2} - 5x + 6}}{{x(x - 1)(x - 2)}}$

$= \mathop {\lim }\limits_{x \to 2} \dfrac{{(x - 2)(x - 3)}}{{x(x - 1)(x - 2)}}\quad [x - 2 \ne 0]$

$= \mathop {\lim }\limits_{x \to 2} \dfrac{{x - 3}}{{x(x - 1)}} = \dfrac{{ - 1}}{2}$ 


Example 2: Evaluate  $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {2 + x}  - \sqrt 2 }}{x}$

Ans: Given: $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {2 + x}  - \sqrt 2 }}{x}$

Let $f$ and $g$ be two functions such that both $\mathop {\lim }\limits_{x \to a} f(x)$ and $\mathop {\lim }\limits_{x \to a} g(x)$ exist. Then $\mathop {\lim }\limits_{x \to a} [f(x) - g(x)] = \mathop {\lim }\limits_{x \to a} f(x) - \mathop {\lim }\limits_{x \to a} g(x)$

$\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {2 + x}  - \sqrt 2 }}{x}$

 Putting $y = 2 + x$ so that when$x \to 0,y \to 2$. 

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {2 + x}  - \sqrt 2 }}{x}$

$= \mathop {\lim }\limits_{y \to 2} \dfrac{{{y^{\dfrac{1}{2}}} - {2^{\dfrac{1}{2}}}}}{{y - 2}}$

$= \dfrac{1}{2}{(2)^{\dfrac{1}{2} - 1}}$

$= \dfrac{1}{2} \cdot {2^{ - \dfrac{1}{2}}} = \dfrac{1}{{2\sqrt 2 }}$ 


Example 3: Find the positive integer $n$ so that  $\mathop {\lim }\limits_{x \to 3} \dfrac{{{x^n} - {3^n}}}{{x - 3}} = 108$.

Ans: Given: $\mathop {\lim }\limits_{x \to 3} \dfrac{{{x^n} - {3^n}}}{{x - 3}} = 108$

$\mathop {\lim }\limits_{x \to a} \dfrac{{{x^n} - {a^n}}}{{x - a}} = n{a^{n - 1}}$ is to be used to solve the question.

$\mathop {\lim }\limits_{x \to 3} \dfrac{{{x^n} - {3^n}}}{{x - 3}} = n{(3)^{n - 1}}$

$= n{(3)^{n - 1}}$

$= 108$

$= 4(27) = 4{(3)^{4 - 1}}$ 

Comparing with $\mathop {\lim }\limits_{x \to a} \dfrac{{{x^n} - {a^n}}}{{x - a}} = n{a^{n - 1}}$

$n = 4$

$\therefore$ Positive integer $n$ is $4$


Example 4: Evaluate $\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} (\sec x - \tan x)$.

Ans: Given: $\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} (\sec x - \tan x)$

 Putting $y = \dfrac{\pi }{2} - x.$ Then $y \to 0$ as $x \to \dfrac{\pi }{2}.$

$= \mathop {\lim }\limits_{y \to 0} \left[ {\sec \left( {\dfrac{\pi }{2} - y} \right) - \tan \left( {\dfrac{\pi }{2} - y} \right)} \right]$

$= \mathop {\lim }\limits_{y \to 0} (\operatorname{cosec} y - \cot y)$

$= \mathop {\lim }\limits_{y \to 0} \dfrac{1}{{\sin y}} - \dfrac{{\cos y}}{{\sin y}}$

$= \mathop {\lim }\limits_{y \to 0} \dfrac{{1 - \cos y}}{{\sin y}}$ 

$= \mathop {\lim }\limits_{y \to 0} \dfrac{{2{{\sin }^2}\dfrac{y}{2}}}{{2\sin \dfrac{y}{2}\cos \dfrac{y}{2}}}\quad {\text{ }}\left( {\because {{\sin }^2}\dfrac{y}{2} = \dfrac{{1 - \cos y}}{2},\sin y = 2\sin \dfrac{y}{2}\cos \dfrac{y}{2}} \right)$

$= \mathop {\lim }\limits_{\dfrac{y}{2} \to 0} \tan \dfrac{y}{2} = 0$ 


Example 5: Evaluate $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin (2 + x) - \sin (2 - x)}}{x}$.

Ans: Given: $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin (2 + x) - \sin (2 - x)}}{x}$

$\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin (2 + x) - \sin (2 - x)}}{x}$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{2\cos \dfrac{{(2 + x + 2 - x)}}{2}\sin \dfrac{{(2 + x - 2 + x)}}{2}}}{x}$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{2\cos 2\sin x}}{x}$

$= 2\cos 2\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 2\cos 2\quad {\text{ }}\left( {{\text{as }}\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1} \right)$ 


Example 6: Find the derivative of $f(x) = ax + b$, where $a$ and $b$ are non-zero constants, by first principle. 

Ans: Given:$a$ and $b$ are non-zero constants

Suppose $f$ is a real valued function, then ${f^\prime }(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f(x)}}{h}$

$\because {f^\prime }(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f(x)}}{h}$

$= \mathop {\lim }\limits_{h \to 0} \dfrac{{a(x + h) + b - (ax + b)}}{h}$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{ax + ah + b - ax - b}}{h}$

$= \mathop {\lim }\limits_{h \to 0} \dfrac{{bh}}{h} = b$ 


Example 7: Find the derivative of $f(x) = a{x^2} + bx + c$, where $a,b$ and $c$ are none-zero constant, by first principle.

Ans: Given: $a,b$ and $c$ are none-zero constant

Suppose $f$ is a real valued function, then ${f^\prime }(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f(x)}}{h}$

${f^\prime }(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f(x)}}{h}$

$= \mathop {\lim }\limits_{h \to 0} \dfrac{{a{{(x + h)}^2} + b(x + h) + c - a{x^2} - bx - c}}{h}$

$= \mathop {\lim }\limits_{h \to 0} \dfrac{{bh + a{h^2} + 2axh}}{h}$

$= \mathop {\lim }\limits_{h \to 0} ah + 2ax + b = b + 2ax$ 


Example 8: Find the derivative of $f(x) = {x^3}$, by first principle. 

Ans: Given: $f(x) = {x^3}$

Suppose $f$ is a real valued function, then ${f^\prime }(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f(x)}}{h}$

  ${f^\prime }(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f(x)}}{h}$

   $= \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(x + h)}^3} - {x^3}}}{h}$

   $= \mathop {\lim }\limits_{h \to 0} \dfrac{{{x^3} + {h^3} + 3xh(x + h) - {x^3}}}{h}$

   $= \mathop {\lim }\limits_{h \to 0} \left( {{h^2} + 3x(x + h)} \right) = 3{x^2}$ 


Example 9: Find the derivative of $f(x) = \dfrac{1}{x}$ by first principle.

Ans: Given: $f(x) = \dfrac{1}{x}$

Suppose $f$ is a real valued function, then ${f^\prime }(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f(x)}}{h}$

${f^\prime }(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f(x)}}{h}$

$= \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h}\dfrac{1}{{x + h}} - \dfrac{1}{x}$

$= \mathop {\lim }\limits_{h \to 0} \dfrac{{ - h}}{{h(x + h)x}} = \dfrac{{ - 1}}{{{x^2}}}$ 


Example 10: Find the derivative of $f(x) = sinx$, by first principle

Ans: Given:$f(x) = \sin x$

${f^\prime }(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f(x)}}{h}$

$= \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin (x + h) - \sin x}}{h}$

$= \mathop {\lim }\limits_{h \to 0} \dfrac{{2\cos \dfrac{{2x + h}}{2}\sin \dfrac{h}{2}}}{{2 \cdot \dfrac{h}{2}}}$

$= \mathop {\lim }\limits_{h \to 0} \cos \dfrac{{(2x + h)}}{2} \cdot \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \dfrac{h}{2}}}{{\dfrac{h}{2}}}$

$= \cos x.1 = \cos x$


Example 11: Find the derivative of $f(x) = {x^n}$, where $n$ is positive integer, by first principle.

Ans: Given:$f(x) = {x^n}$ where $n$ is positive integer

${f^\prime }(x) = \dfrac{{f(x + h) - f(x)}}{h}$

$= \dfrac{{{{(x + h)}^n} - {x^n}}}{h}$ 

Using Binomial theorem, ${(x + h)^n}{ = ^n}{{\text{C}}_0}{x^n}{ + ^n}{{\text{C}}_1}{x^{n - 1}}h +  \ldots { + ^n}{{\text{C}}_n}{h^n}$

${f^\prime }(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(x + h)}^n} - {x^n}}}{h}$

$= \mathop {\lim }\limits_{h \to 0} \dfrac{{h\left( {n{x^{n - 1}} +  \ldots  + {h^{n - 1}}} \right]}}{h} = n{x^{n - 1}}.$


Example 12: Find the derivative of $2{x^4} + x$.

Ans: Given:$2{x^4} + x$

Derivative of the sum of two functions is the sum of the derivatives of the functions.

$\dfrac{d}{{dx}}[f(x) + g(x)] = \dfrac{d}{{dx}}f(x) + \dfrac{d}{{dx}}g(x)$

Let $y = 2{x^4} + x$

Differentiating both sides with respect to $x$, 

$\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {2{x^4}} \right) + \dfrac{d}{{dx}}(x)$

$= 2 \times 4{x^{4 - 1}} + 1{x^0}$ 

$= 8{x^3} + 1 \cdot \dfrac{d}{{dx}}\left( {2{x^4} + x} \right)$

$= 8{x^3} + 1.$ 


Example 13: Find the derivative of ${x^2}cosx$.

Ans: Given:${x^2}\cos x$

Derivative of the product of two functions is given by the following product rule.

$\dfrac{d}{{dx}}[f(x) \cdot g(x)] = \dfrac{d}{{dx}}f(x) \cdot g(x) + f(x) \cdot \dfrac{d}{{dx}}g(x)$

Let $y = {x^2}\cos x$

Differentiating both sides with respect to $x$, 

$\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {{x^2}\cos x} \right)$

$= {x^2}\dfrac{d}{{dx}}(\cos x) + \cos x\dfrac{d}{{dx}}\left( {{x^2}} \right)$

$= {x^2}( - \sin x) + \cos x(2x)$

$= 2x\cos x - {x^2}\sin x$ 


Example 14: Evaluate $\mathop {\lim }\limits_{x \to \dfrac{\pi }{6}} \dfrac{{2{{\sin }^2}x + \sin x - 1}}{{2{{\sin }^2}x - 3\sin x + 1}}$.

Ans: Given: $\mathop {\lim }\limits_{x \to \dfrac{\pi }{6}} \dfrac{{2{{\sin }^2}x + \sin x - 1}}{{2{{\sin }^2}x - 3\sin x + 1}}$

$\mathop {\lim }\limits_{x \to \dfrac{\pi }{6}} \dfrac{{2{{\sin }^2}x + \sin x - 1}}{{2{{\sin }^2}x - 3\sin x + 1}}$

$= \mathop {\lim }\limits_{x \to \dfrac{\pi }{6}} \dfrac{{(2\sin x - 1)(\sin x + 1)}}{{(2\sin x - 1)(\sin x - 1)}}$

$= \mathop {\lim }\limits_{x \to \dfrac{\pi }{6}} \dfrac{{\sin x + 1}}{{\sin x - 1}}\quad ({\text{ as }}2\sin x - 1 \ne 0)$

$= \dfrac{{1 + \sin \dfrac{\pi }{6}}}{{\sin \dfrac{\pi }{6} - 1}} =  - 3$ 


Example 15: Evaluate $\mathop {\lim }\limits_{x \to 0} \dfrac{{\tan x - \sin x}}{{{{\sin }^3}x}}$.

Ans: Given: $\mathop {\lim }\limits_{x \to 0} \dfrac{{\tan x - \sin x}}{{{{\sin }^3}x}}$

$\mathop {\lim }\limits_{x \to 0} \dfrac{{\tan x - \sin x}}{{{{\sin }^3}x}}$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x\dfrac{1}{{\cos x}} - 1}}{{{{\sin }^3}x}}$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{1 - \cos x}}{{\cos x{{\sin }^2}x}}$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{2{{\sin }^2}\dfrac{x}{2}}}{{\cos x - 4{{\sin }^2}\dfrac{x}{2} \cdot {{\cos }^2}\dfrac{x}{2}}} = \dfrac{1}{2}$ 


Example 16: Evaluate $\mathop {\lim }\limits_{x \to a} \dfrac{{\sqrt {a + 2x}  - \sqrt {3x} }}{{\sqrt {3a + x}  - 2\sqrt x }}$.

Ans: Given: $\mathop {\lim }\limits_{x \to a} \dfrac{{\sqrt {a + 2x}  - \sqrt {3x} }}{{\sqrt {3a + x}  - 2\sqrt x }}$

Let $f$ and $g$ be two functions such that both $\mathop {\lim }\limits_{x \to a} f(x)$ and $\mathop {\lim }\limits_{x \to a} g(x)$ exist. Then $\mathop {\lim }\limits_{x \to a} [f(x) - g(x)] = \mathop {\lim }\limits_{x \to a} f(x) - \mathop {\lim }\limits_{x \to a} g(x)$

$\mathop {\lim }\limits_{x \to a} \dfrac{{\sqrt {a + 2x}  - \sqrt {3x} }}{{\sqrt {3a + x}  - 2\sqrt x }}$

$= \mathop {\lim }\limits_{x \to a} \dfrac{{\sqrt {a + 2x}  - \sqrt {3x} }}{{\sqrt {3a + x}  - 2\sqrt x }} \times \dfrac{{\sqrt {a + 2x}  + \sqrt {3x} }}{{\sqrt {a + 2x}  + \sqrt {3x} }}$

$= \mathop {\lim }\limits_{x \to a} \dfrac{{a + 2x - 3x}}{{(\sqrt {3a + x}  - 2\sqrt x )(\sqrt {a + 2x}  + \sqrt {3x} )}}$

$= \mathop {\lim }\limits_{x \to a} \dfrac{{(a - x)(\sqrt {3a + x}  + 2\sqrt x )}}{{(\sqrt {a + 2x}  + \sqrt {3x} )(\sqrt {3a + x}  - 2\sqrt x )(\sqrt {3a + x}  + 2\sqrt x )}}$

$= \mathop {\lim }\limits_{x \to a} \dfrac{{(a - x)\sqrt {3a + x}  + 2\sqrt x }}{{(\sqrt {a + 2x}  + \sqrt {3x} )(3a + x - 4x)}}$

$= \dfrac{{4\sqrt a }}{{3 \times 2\sqrt {3a} }}$

$= \dfrac{2}{{3\sqrt 3 }} = \dfrac{{2\sqrt 3 }}{9}{\text{ }}{\text{. }}$ 


Example 17: Evaluate $\mathop {\lim }\limits_{x \to 0} \dfrac{{\cos ax - \cos bx}}{{\cos cx - 1}}$.

Ans: Given: $\mathop {\lim }\limits_{x \to 0} \dfrac{{\cos ax - \cos bx}}{{\cos cx - 1}}$

Let $f$ and $g$ be two functions such that both $\mathop {\lim }\limits_{x \to a} f(x)$ and $\mathop {\lim }\limits_{x \to a} g(x)$ exist. Then $\mathop {\lim }\limits_{x \to a} [f(x) - g(x)] = \mathop {\lim }\limits_{x \to a} f(x) - \mathop {\lim }\limits_{x \to a} g(x)$

$\mathop {\lim }\limits_{x \to 0} \dfrac{{ - 2\sin \left( {\dfrac{{(a + b)}}{2}x} \right)\sin \left( {\dfrac{{(a - b)}}{2}x} \right)}}{{ - 2{{\sin }^2}(cx/2)}}$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin \left( {\dfrac{{(a + b)x}}{2}} \right) \cdot \sin \left( {\dfrac{{(a - b)x}}{2}} \right)}}{{{x^2}}} \times \dfrac{{{x^2}}}{{{{\sin }^2}\dfrac{{cx}}{2}}}$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin \dfrac{{(a + b)x}}{2}}}{{\dfrac{{(a + b)x}}{2} \cdot \left( {\dfrac{2}{{a + b}}} \right)}} \times \dfrac{{\sin \dfrac{{(a - b)x}}{2}}}{{\dfrac{{(a - b)x}}{2} \cdot \dfrac{2}{{a - b}}}} \times \dfrac{{{{\left( {\dfrac{{cx}}{2}} \right)}^2} \times \dfrac{4}{{{c^2}}}}}{{{{\sin }^2}\dfrac{{cx}}{2}}}$

$= \left[ {\left( {\dfrac{{a + b}}{2}} \right)\left( {\dfrac{{a - b}}{2}} \right)\left( {\dfrac{4}{{{c^2}}}} \right)\mathop {\lim }\limits_{x \to 0} \left\{ {\dfrac{{\sin \dfrac{{(a + b)x}}{2}}}{{\dfrac{{(a + b)x}}{2}}}} \right\} \times } \right.\left. {\mathop {\lim }\limits_{x \to 0} \left\{ {\dfrac{{\sin \dfrac{{(a - b)x}}{2}}}{{\left( {\dfrac{{a - b}}{2}} \right)x}}} \right\}\mathop {\lim }\limits_{x \to 0} {{\left\{ {\dfrac{{\dfrac{{cx}}{2}}}{{\sin \dfrac{{cx}}{2}}}} \right\}}^2}} \right]$

$= \left( {\dfrac{{a + b}}{2} \times \dfrac{{a - b}}{2} \times \dfrac{4}{{{c^2}}}} \right)$

$= \dfrac{{{a^2} - {b^2}}}{{{c^2}}}$


Example 18: Evaluate $\mathop {\lim }\limits_{h \to 0} \dfrac{{{{(a + h)}^2}\sin (a + h) - {a^2}\sin a}}{h}$.

Ans: Given: $\mathop {\lim }\limits_{h \to 0} \dfrac{{{{(a + h)}^2}\sin (a + h) - {a^2}\sin a}}{h}$

Let $f$ and $g$ be two functions such that both $\mathop {\lim }\limits_{x \to a} f(x)$ and $\mathop {\lim }\limits_{x \to a} g(x)$ exist. Then $\mathop {\lim }\limits_{x \to a} [f(x) - g(x)] = \mathop {\lim }\limits_{x \to a} f(x) - \mathop {\lim }\limits_{x \to a} g(x)$

$\mathop {\lim }\limits_{h \to 0} \dfrac{{{{(a + h)}^2}\sin (a + h) - {a^2}\sin a}}{h}$

$= \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {{a^2} + {h^2} + 2ah} \right)[\sin a\cos h + \cos a\sin h] - {a^2}\sin a}}{h}$

$= \mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{{a^2}\sin a(\cos h - 1)}}{h} + \dfrac{{{a^2}\cos a\sin h}}{h} + (h + 2a)(\sin a\cos h + \cos a\sin h)} \right]$

$= \dfrac{{\mathop {\lim }\limits_{h \to 0} \dfrac{{{a^2}\sin a\left( { - 2{{\sin }^2}\dfrac{h}{2}} \right)}}{{\dfrac{{{h^2}}}{2}}}}}{ \cdot }\dfrac{h}{2} + \mathop {\lim }\limits_{h \to 0} \dfrac{{{a^2}\cos a\sin h}}{h} + \mathop {\lim }\limits_{h \to 0} (h + 2a)\sin (a + h)$

$= {a^2}\sin a \times 0 + {a^2}\cos a(1) + 2a\sin a$$= {a^2}\cos a + 2a\sin a.$


Example 19: Find the derivative of $f(x) = tan(ax + b)$, by first principle.

Ans: Given: $f(x) = \tan (ax + b)$

Since, ${f^\prime }(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f(x)}}{h}$

$= \mathop {\lim }\limits_{h \to 0} \dfrac{{\tan (a(x + h) + b) - \tan (ax + b)}}{h}$

$= \mathop {\lim }\limits_{h \to 0} \dfrac{{\dfrac{{\sin (ax + ah + b)}}{{\cos (ax + ah + b)}} - \dfrac{{\sin (ax + b)}}{{\cos (ax + b)}}}}{h}$

$= \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin (ax + ah + b)\cos (ax + b) - \sin (ax + b)\cos (ax + ah + b)}}{{h\cos (ax + b)\cos (ax + ah + b)}}$

$= \mathop {\lim }\limits_{h \to 0} \dfrac{{a\sin (ah)}}{{a \cdot h\cos (ax + b)\cos (ax + ah + b)}}$

$= \mathop {\lim }\limits_{h \to 0} \dfrac{a}{{\cos (ax + b)\cos (ax + ah + b)}}\mathop {\lim }\limits_{ah \to 0} \dfrac{{\sin ah}}{{ah}}$

$= \dfrac{a}{{{{\cos }^2}(ax + b)}} = a{\sec ^2}(ax + b).$ 

$\left[{\text{ as }} h \to 0 \Rightarrow ah \to 0\right]$ 


Example 20: Find the derivative of $f(x) = \sqrt {sinx}$, by first principle.

Ans: Given: $f(x) = \sqrt {\sin x}$

Since, ${f^\prime }(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f(x)}}{h}$

$= \mathop {\lim }\limits_{h \to 0} \dfrac{{\sqrt {\sin (x + h)}  - \sqrt {\sin x} }}{h}$

$= \mathop {\lim }\limits_{h \to 0} \dfrac{{(\sqrt {\sin (x + h)}  - \sqrt {\sin x} )(\sqrt {\sin (x + h)}  + \sqrt {\sin x} )}}{{h(\sqrt {\sin (x + h)}  + \sqrt {\sin x} )}}$

$= \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin (x + h) - \sin x}}{{h(\sqrt {\sin (x + h)}  + \sqrt {\sin x} )}}$

$= \mathop {\lim }\limits_{h \to 0} \dfrac{{2\cos \dfrac{{2x + h}}{2}\sin \dfrac{h}{2}}}{{2 \cdot \dfrac{h}{2}(\sqrt {\sin (x + h)}  + \sqrt {\sin x} )}}$

$= \dfrac{{\cos x}}{{2\sqrt {\sin x} }} = \dfrac{1}{2}\cot x\sqrt {\sin x}$


Example 21: Find the derivative of $\dfrac{{cosx}}{{1 + sinx}}$.

Ans: Given: $\dfrac{{\cos x}}{{1 + \sin x}}$

Derivative of quotient of two functions is given by the following quotient rule $\dfrac{d}{{dx}}\dfrac{{f(x)}}{{g(x)}} = \dfrac{{\dfrac{d}{{dx}}f(x) \cdot g(x) - f(x) \cdot \dfrac{d}{{dx}}g(x)}}{{{{(g(x))}^2}}}$

Assume, $y = \dfrac{{\cos x}}{{1 + \sin x}}$

Differentiating both sides with respects to $x$,

$\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\dfrac{{\cos x}}{{1 + \sin x}}$

$= \dfrac{{(1 + \sin x)\dfrac{d}{{dx}}(\cos x) - \cos x\dfrac{d}{{dx}}(1 + \sin x)}}{{{{(1 + \sin x)}^2}}}$

$= \dfrac{{(1 + \sin x)( - \sin x) - \cos x(\cos x)}}{{{{(1 + \sin x)}^2}}}$ 

$= \dfrac{{ - \sin x - {{\sin }^2}x - {{\cos }^2}x}}{{{{(1 + \sin x)}^2}}}$

$= \dfrac{{ - (1 + \sin x)}}{{{{(1 + \sin x)}^2}}} = \dfrac{{ - 1}}{{1 + \sin x}}$


Example22: $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{{x(1 + \cos x)}}$ is equal to

(A) 0

(B) $\dfrac{1}{2}$

(C) 1

(D) $- 1$

Ans: Given: $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{{x(1 + \cos x)}}$

If $\dfrac{{{\text{f}}({\text{x}})}}{{{\text{g}}({\text{x}})}}$ is in the form $\dfrac{0}{0}$ or $\dfrac{\infty }{\infty }$ then:

$\mathop {\lim }\limits_{x \to a} \dfrac{{f(x)}}{{g(x)}} = \mathop {\lim }\limits_{x \to a} \dfrac{{{f^\prime }(x)}}{{{g^\prime }(x)}}$

Applying L’ hospital rule

$\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{{x(1 + \cos x)}}$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{\cos x}}{{1 + \cos x - x\sin x}}$

$= \dfrac{{\cos 0}}{{1 + \cos 0 - 0 \cdot \sin 0}}$

$= \dfrac{1}{{1 + 1 - 0}}$$= \dfrac{1}{2}$

Correct Option: B


Example 23: $\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{1 - \sin x}}{{\cos x}}$ is equal to

(A) 0

(B) $- 1$

(C) 1

(D) Does not exist

Ans: Given: $\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{1 - \sin x}}{{\cos x}}$

Let $f$ and $g$ be two functions such that both $\mathop {\lim }\limits_{x \to a} f(x)$ and $\mathop {\lim }\limits_{x \to a} g(x)$ exist. Then $\mathop{\lim }\limits_{x \to a} \left[ f(x) - g(x) \right]$ = $\mathop{\lim }\limits_{x \to a} f(x) - \mathop {\lim }\limits_{x \to a} g(x)$

$\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{1 - \sin x}}{{\cos x}}$

$= \mathop {\lim }\limits_{y \to 0} \dfrac{{1 - \sin \left( {\dfrac{\pi }{2} - y} \right)}}{{\cos \left( {\dfrac{\pi }{2} - y} \right)}}\quad {\text{ taking }}\dfrac{\pi }{2} - x = y$ 

$= \mathop {\lim }\limits_{y \to 0} \dfrac{{1 - \cos y}}{{\sin y}}$

$= \mathop {\lim }\limits_{y \to 0} \dfrac{{2{{\sin }^2}\dfrac{y}{2}}}{{2\sin \dfrac{y}{2}\cos \dfrac{y}{2}}}$

$= \mathop {\lim }\limits_{y \to 0} \tan \dfrac{y}{2} = 0$ 

Correct Option: A


Example 24: $\mathop {\lim }\limits_{x \to 0} \dfrac{{|x|}}{x}$ is equal to

(A) 1

(B) $- 1$

(C) 0

(D) Does not exists 

Ans: Given: $\mathop {\lim }\limits_{x \to 0} \dfrac{{|x|}}{x}$

If the right and left hand limits coincide, then the common value is considered as the limit of $f$ at $x = a$ and denote it by $\mathop {\lim }\limits_{x \to a} f(x)$.

${\text{LHL}} = \mathop {\lim }\limits_{h \to 0} f(0 - h)$

$= \mathop {\lim }\limits_{h \to 0} \dfrac{{|0 - h|}}{{0 - h}}$

$= \mathop {\lim }\limits_{h \to 0} \dfrac{h}{{ - h}}$

$= \mathop {\lim }\limits_{h \to 0} ( - 1) =  - 1$ 

${\text{RHL}} = \mathop {\lim }\limits_{x \to 0} f(0 + h)$

$= \mathop {\lim }\limits_{h \to 0} \dfrac{{|0 + h|}}{{0 + h}}$

$= \mathop {\lim }\limits_{h \to 0} \dfrac{h}{h}$

$= \mathop {\lim }\limits_{h \to 0} (1) = 1$ 

$\therefore {\text{LHL}} \ne {\text{RHL}}$

$\Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{|x|}}{x}$ does not exist

Correct Option: D


Examples 25: $\mathop {\lim }\limits_{x \to 1} [x - 1]$, where [.] is greatest integer function, is equal to

(A) 1

(B) 2

(C) 0

(D) does not exists

Ans: Given: $\mathop {\lim }\limits_{x \to 1} [x - 1]$

If the right and left hand limits coincide, then the common value is considered as the limit of $f$ at $x = a$ and denote it by $\mathop {\lim }\limits_{x \to a} f(x)$.

${\text{R}}{\text{.H}}{\text{.L }} = \mathop {\lim }\limits_{x \to {1^ + }} [x - 1] = 0$

${\text{L}}{\text{.H}}{\text{.L}} = \mathop {\lim }\limits_{x \to {1^ - }} [x - 1] =  - 1$ 

$\therefore {\text{LHL}} \ne {\text{RHL}}$

$\Rightarrow \mathop {\lim }\limits_{x \to 1} [x - 1]$ does not exist

Correct Option: D


Example 26: $\mathop {\lim }\limits_{x \to 0} x\sin \dfrac{1}{x}$ is equals to

(A) 0

(B) 1

(C) $\dfrac{1}{2}$

(D) does not exist

Ans: Given: $\mathop {\lim }\limits_{x \to 0} x\sin \dfrac{1}{x}$

The squeeze (or sandwich) theorem states that if ${f(x)} \leqslant {g(x)} \leqslant {h(x)}$ for all numbers, and at some point $x = k$ we have $f(k) = h(k)$, then $g(k)$ must also be equal to them.

$\mathop {\lim }\limits_{x \to 0} x = 0{\text{ and }} - 1 \leqslant \sin \dfrac{1}{x} \leqslant 1,$ by Sandwich Theorem, 

$\mathop {\lim }\limits_{x \to 0} x \cdot  - 1 = \mathop {\lim }\limits_{x \to 0} x \cdot 1 = 0$

$\Rightarrow \mathop {\lim }\limits_{x \to 0} x\sin \dfrac{1}{x} = 0$

Correct Option: A


Example 27: $\mathop {\lim }\limits_{n \to \infty } \dfrac{{1 + 2 + 3 +  \ldots  + n}}{{{n^2}}},n \in {\mathbf{N}}$, is equal to

(A) 0

(B) 1

(C) $\dfrac{1}{2}$

(D) $\dfrac{1}{4}$

Ans: Given: $\mathop {\lim }\limits_{n \to \infty } \dfrac{{1 + 2 + 3 +  \ldots  + n}}{{{n^2}}},n \in {\mathbf{N}}$

If the right and left hand limits coincide, then the common value is considered as the limit of $f$ at $x = a$ and denote it by$\mathop {\lim }\limits_{x \to a} f(x)$.

$\mathop {\lim }\limits_{x \to \infty } \dfrac{{1 + 2 + 3 +  \ldots  + n}}{{{n^2}}}$

$= \mathop {\lim }\limits_{n \to \infty } \dfrac{{n(n + 1)}}{{2{n^2}}}$

$= \mathop {\lim }\limits_{x \to \infty } \dfrac{1}{2}\left( {1 + \dfrac{1}{n}} \right) = \dfrac{1}{2}$ 

Correct Option: C


Example 28: If $f(x) = x sinx$, then ${f’}\dfrac{\pi }{2}$ is equal to

(A) 0

(B) 1

(C) $- 1$

(D) $\dfrac{1}{2}$

Ans: Given: $f(x) = x\sin x$

The derivative of a function $f(x)$ is the function whose value at $x$ is ${f^\prime }(x)$

As ${f^\prime }(x) = x\cos x + \sin x$

${f^\prime }\left( {\dfrac{\pi }{2}} \right)$

$\Rightarrow \dfrac{\pi }{2}\cos \dfrac{\pi }{2} + \sin \dfrac{\pi }{2} = 1$ 

Correct Option: B


Exercise 13.1

Short Answer Type Question

1. Evaluate: $\mathop {\lim }\limits_{x \to 3} \dfrac{{{x^2} - 9}}{{x - 3}}$

Ans: Given:

$\mathop {\lim }\limits_{x \to 3} \dfrac{{{x^2} - 9}}{{x - 3}}$

\[\because [{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)]\]

$= \mathop {\lim }\limits_{x \to 3} \dfrac{{{x^2} - 9}}{{x - 3}}{\text{ }}\left( {{\text{given}}} \right)$

 $= \mathop {\lim }\limits_{x \to 3} \dfrac{{{x^2} - {{(3)}^2}}}{{x - 3}}$

$= \mathop {\lim }\limits_{x \to 3} \dfrac{{(x + 3)(x - 3)}}{{(x - 3)}}$

$   = \mathop {\lim }\limits_{x \to 3} (x + 3)$

$  = 3 + 3 = 6$ 


2. Evaluate: $\mathop {\lim }\limits_{x \to 1/2} \dfrac{{4{x^2} - 1}}{{2x - 1}}$

Ans: Given:

$\mathop {\lim }\limits_{x \to 1/2} \dfrac{{4{x^2} - 1}}{{2x - 1}}$

Then,

$= \mathop {\lim }\limits_{x \to 1/2} \dfrac{{{{(2x)}^2} - {{(1)}^2}}}{{2x - 1}}$

$= \mathop {\lim }\limits_{x \to 1/2} \dfrac{{(2x + 1)(2x - 1)}}{{(2x - 1)}}$

$= \mathop {\lim }\limits_{x \to 1/2} (2x + 1)$

$= 2 \times \dfrac{1}{2} + 1$

$= 1 + 1$

$= 2$ 


3. Evaluate: $\mathop {\lim }\limits_{h \to 0} \dfrac{{\sqrt {x + h}  - \sqrt x }}{h}$

Ans: Given:

$\mathop {\lim }\limits_{h \to 0} \dfrac{{\sqrt {x + h}  - \sqrt x }}{h}$

\[\because \mathop {\lim }\limits_{x \to a} \dfrac{{{x^n} - {a^n}}}{{x - a}} = n{a^{n - 1}}\]

\[\because h \to 0 \Rightarrow x + h \to x\]

\[ = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sqrt {x + h}  - \sqrt x }}{h}{\text{ }}\left( {{\text{given}}} \right)\]

\[ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(x + h)}^{1/2}} - {{(x)}^{1/2}}}}{{x + h - x}}\]

\[ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(x + h)}^{1/2}} - {{(x)}^{1/2}}}}{{(x + h) - x}}\quad \left[ {\because \mathop {\lim }\limits_{x \to a} \dfrac{{{x^n} - {a^n}}}{{x - a}} = n{a^{n - 1}}} \right]\]

\[ = \dfrac{1}{2}{x^{\dfrac{1}{2} - 1}}\]

\[ = \dfrac{1}{2}{x^{ - 1/2}}\quad {\text{  }}\left[ {\because h \to 0 \Rightarrow x + h \to x} \right]\]

\[ = \dfrac{1}{{2\sqrt x }}\]


4. Evaluate: $\mathop {\lim }\limits_{x \to 0} \dfrac{{{{(x + 2)}^{1/3}} - {2^{1/3}}}}{x}{\text{ }}$

Ans: Given:

$\mathop {\lim }\limits_{x \to 0} \dfrac{{{{(x + 2)}^{1/3}} - {2^{1/3}}}}{x}{\text{ }}$

Then,

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{{{(x + 2)}^{1/3}} - {2^{1/3}}}}{{(x + 2) - 2}}$

$= \dfrac{1}{3} \times {2^{\dfrac{1}{3} - 1}} = \dfrac{1}{3} \times {(2)^{ - 2/3}}\quad \left[ {\because \mathop {\lim }\limits_{x \to a} \dfrac{{{x^n} - {a^n}}}{{x - a}} = n{a^{n - 1}}} \right]$

$= \dfrac{1}{{3{{(2)}^{2/3}}}}\quad {\text{                    }}[\because x \to 0 \Rightarrow x + 2 \to 2]$


5. Evaluate: $\mathop {\lim }\limits_{x \to 0} \dfrac{{{{(1 + x)}^6} - 1}}{{{{(1 + x)}^2} - 1}}$

Ans: Given:

$\mathop {\lim }\limits_{x \to 0} \dfrac{{{{(1 + x)}^6} - 1}}{{{{(1 + x)}^2} - 1}}$

Divide numerator and denominator by \[x\]

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{{{{(1 + x)}^6} - 1}}{x}}}{{\dfrac{{{{(1 + x)}^2} - 1}}{x}}}$\[\left[ {\because x \to 0 \Rightarrow 1 + x \to 1} \right]\]

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{{{{(1 + x)}^6} - 1}}{{(1 + x) - 1}}}}{{\dfrac{{{{(1 + x)}^2} - 1}}{{(1 + x) - 1}}}}$

$= \dfrac{{\mathop {\lim }\limits_{x \to 0} \dfrac{{{{(1 + x)}^6} - {{(1)}^6}}}{{(1 + x) - 1}}}}{{\mathop {\lim }\limits_{x \to 0} \dfrac{{{{(1 + x)}^2} - {{(1)}^2}}}{{(1 + x) - 1}}}}$$\left[ {\because \mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{{\mathop {\lim }\limits_{x \to a} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to a} g\left( x \right)}}} \right]$

$= \dfrac{{6{{(1)}^{6 - 1}}}}{{2{{(1)}^{2 - 1}}}}$\[\left[ {\because \mathop {\lim }\limits_{x \to a} \dfrac{{{x^n} - {a^n}}}{{x - a}} = n{a^{n - 1}}} \right]\]

$= \dfrac{{6 \times 1}}{{2 \times 1}}$

$= \dfrac{6}{2}$

$= 3$


6. Evaluate: $\mathop {\lim }\limits_{x \to a} \dfrac{{{{(2 + x)}^{5/2}} - {{(a + 2)}^{5/2}}}}{{x - a}}$.

Ans: Given:

$\mathop {\lim }\limits_{x \to a} \dfrac{{{{(2 + x)}^{5/2}} - {{(a + 2)}^{5/2}}}}{{x - a}}$

Then,

$= \mathop {\lim }\limits_{x \to a} \dfrac{{{{(2 + x)}^{5/2}} - {{(a + 2)}^{5/2}}}}{{(2 + x) - (a + 2)}}$

$= \dfrac{5}{2}{\left( {a + 2} \right)^{\dfrac{5}{2} - 1}}\left[ {\because \mathop {\lim }\limits_{x \to a} \dfrac{{{x^n} - {a^n}}}{{x - a}} = n{a^{n - 1}}} \right]$

$= \dfrac{5}{2}{\left( {a + 2} \right)^{\dfrac{3}{2}}}{\text{                }}\left[ {\because x \to a \Rightarrow x + 2 \to a + 2} \right]$


7. Evaluate: $\mathop {\lim }\limits_{x \to 1} \dfrac{{x - \sqrt x }}{{\sqrt x  - 1}}$.

Ans: Given:

$\mathop {\lim }\limits_{x \to 1} \dfrac{{x - \sqrt x }}{{\sqrt x  - 1}}$

Then,

Then,

$= \mathop {\lim }\limits_{x \to 1} \dfrac{{\sqrt x \left[ {{{\left( x \right)}^{\dfrac{7}{2}}} - 1} \right]}}{{\sqrt x  - 1}}$

$= \mathop {\lim }\limits_{x \to 1} \dfrac{{{{(x)}^{7/2}} - 1}}{{\sqrt x  - 1}} \cdot \mathop {\lim }\limits_{x \to 1} \sqrt x$

$\left[ {\because \mathop {\lim }\limits_{x \to a} f\left( x \right) \cdot g\left( x \right) = \mathop {\lim }\limits_{x \to a} f\left( x \right) \cdot \mathop {\lim }\limits_{x \to a} g\left( x \right)} \right]$

$= \mathop {\lim }\limits_{x \to 1} \dfrac{{\dfrac{{{x^{7/2}} - 1}}{{x - 1}}}}{{\dfrac{{{{(x)}^{1/2}} - 1}}{{x - 1}}}} \cdot 1$

$= \dfrac{{\mathop {\lim }\limits_{x \to 1} \dfrac{{{x^{7/2}} - 1}}{{x - 1}}}}{{\mathop {\lim }\limits_{x \to 1} \dfrac{{{{(x)}^{1/2}} - 1}}{{x - 1}}}}$$\left[ {\because \mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{{\mathop {\lim }\limits_{x \to a} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to a} g\left( x \right)}}} \right]$

$= \dfrac{{\dfrac{7}{2}{{(1)}^{\dfrac{7}{2} - 1}}}}{{\dfrac{1}{2}{{(1)}^{\dfrac{1}{2} - 1}}}}$

$= \dfrac{{\dfrac{7}{2}}}{{\dfrac{1}{2}}}$

$= 7$


8. Evaluate: $\mathop {\lim }\limits_{x \to 2} \dfrac{{{x^2} - 4}}{{\sqrt {3x - 2}  - \sqrt {x + 2} }}$

Ans: Given:

$\mathop {\lim }\limits_{x \to 2} \dfrac{{{x^2} - 4}}{{\sqrt {3x - 2}  - \sqrt {x + 2} }}$

Then, 

$= \mathop {\lim }\limits_{x \to 2} \dfrac{{\left. {\left( {{x^2} - 4} \right)\sqrt {3x - 2}  + \sqrt {x + 2} } \right)}}{{(\sqrt {3x - 2}  - \sqrt {x + 2} )(\sqrt {3x - 2}  - \sqrt {x + 2} )}}$

$= \mathop {\lim }\limits_{x \to 2} \dfrac{{\left( {{x^2} - 4} \right)(\sqrt {3x - 2}  + \sqrt {x + 2} )}}{{{{(\sqrt {3x - 2} )}^2} - {{(\sqrt {x + 2} )}^2}}}{\text{  }}\left[ {\because \left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}} \right]$

$= \mathop {\lim }\limits_{x \to 2} \dfrac{{\left( {{x^2} - 4} \right)(\sqrt {3x - 2}  + \sqrt {x + 2} )}}{{(3x - 2) - (x + 2)}}$

$= \mathop {\lim }\limits_{x \to 2} \dfrac{{\left( {{x^2} - 4} \right)(\sqrt {3x - 2}  + \sqrt {x + 2)} }}{{3x - 2 - x - 2}}$

$= \mathop {\lim }\limits_{x \to 2} \dfrac{{\left( {{x^2} - 4} \right)(\sqrt {3x - 2}  + \sqrt {x + 2} )}}{{2x - 4}}$

$= \mathop {\lim }\limits_{x \to 2} \dfrac{{(x + 2)(x - 2)(\sqrt {3x - 2}  + \sqrt {x + 2} )}}{{2(x - 2)}}$

$= \mathop {\lim }\limits_{x \to 2} \dfrac{{(x + 2)(\sqrt {3x - 2}  + \sqrt {x + 2} )}}{2}$

$= \dfrac{{(2 + 2)(\sqrt {6 - 2}  + \sqrt {2 + 2} )}}{2}$

$= \dfrac{{4(2 + 2)}}{2} = 8$


9. Evaluate: $\mathop {\lim }\limits_{x \to \sqrt 2 } \dfrac{{{x^4} - 4}}{{{x^2} + 3\sqrt 2 x - 8}}$

Ans: Given:     

$\mathop {\lim }\limits_{x \to \sqrt 2 } \dfrac{{{x^4} - 4}}{{{x^2} + 3\sqrt 2 x - 8}}$

Then, 

$\mathop {\lim }\limits_{x \to \sqrt 2 } \dfrac{{{x^4} - 4}}{{{x^2} + 3\sqrt 2 x - 8}}$

$= \mathop {\lim }\limits_{x \to \sqrt 2 } \dfrac{{{{\left( {{x^2}} \right)}^2} - {{(2)}^2}}}{{{x^2} + 3\sqrt 2 x - 8}}$

$= \mathop {\lim }\limits_{x \to \sqrt 2 } \dfrac{{\left( {{x^2} - 2} \right)\left( {{x^2} + 2} \right)}}{{{x^2} + 4\sqrt 2 x - \sqrt 2 x - 8}}$

$= \mathop {\lim }\limits_{x \to \sqrt 2 } \dfrac{{(x - \sqrt 2 )(x + \sqrt 2 )\left( {{x^2} + 2} \right)}}{{x(x + 4\sqrt {2)}  - \sqrt 2 (x + 4\sqrt 2 )}}$

$= \mathop {\lim }\limits_{x \to \sqrt 2 } \dfrac{{(x - \sqrt 2 )(x + \sqrt 2 )\left( {{x^2} + 2} \right)}}{{(x - \sqrt 2 )(x + 4\sqrt 2 )}}$

$= \mathop {\lim }\limits_{x \to \sqrt 2 } \dfrac{{(x + \sqrt 2 )\left( {{x^2} + 2} \right)}}{{(x + 4\sqrt 2 )}}$

\[ = \dfrac{{\left( {\sqrt 2  + \sqrt 2 } \right)\left[ {{{\left( {\sqrt 2 } \right)}^2} + 2} \right]}}{{\left( {\sqrt 2  + 4\sqrt 2 } \right)}}\]

\[ = \dfrac{{2\sqrt 2 \left( {2 + 2} \right)}}{{5\sqrt 2 }}\]

\[ = \dfrac{8}{5}\]


10. Evaluate: $\mathop {\lim }\limits_{x \to 1} \dfrac{{{x^7} - 2{x^5} + 1}}{{{x^3} - 3{x^2} + 2}}$

Ans: Given:

$\mathop {\lim }\limits_{x \to 1} \dfrac{{{x^7} - 2{x^5} + 1}}{{{x^3} - 3{x^2} + 2}}$

Then,

$= \mathop {\lim }\limits_{x \to 1} \dfrac{{{x^7} - {x^5} - {x^5} + 1}}{{{x^3} - {x^2} - 2{x^2} + 2}}$

$= \mathop {\lim }\limits_{x \to 1} \dfrac{{{x^5}\left( {{x^2} - 1} \right) - 1\left( {{x^5} - 1} \right)}}{{{x^2}(x - 1) - 2\left( {{x^2} - 1} \right)}}$

On dividing numerator and denominator by $\left( {x - 1} \right){\text{, then}}$

$= \mathop {\lim }\limits_{x \to 1} \dfrac{{\dfrac{{{x^5}\left( {{x^2} - 1} \right)}}{{(x - 1)}} - \dfrac{{1\left( {{x^2} - 1} \right)}}{{(x - 1)}}}}{{\dfrac{{{x^2}(x - 1)}}{{(x - 1)}} - \dfrac{{2\left( {{x^2} - 1} \right)}}{{(x - 1)}}}}$

$= \dfrac{{\mathop {\lim }\limits_{x \to 1} {x^5}(x + 1) - \mathop {\lim }\limits_{x \to 1} \left( {\dfrac{{{x^5} - 1}}{{x - 1}}} \right)}}{{\mathop {\lim }\limits_{x \to 1} {x^2} - \mathop {\lim }\limits_{x \to 1} (x + 1)}}$

$= \dfrac{{1 \times 2 - 5 \times {{(1)}^4}}}{{1 - 2 \times 2}}$

$= \dfrac{{2 - 5}}{{1 - 4}}$

$= \dfrac{{ - 3}}{{ - 3}} = 1$


11. Evaluate: $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {1 + {x^3}}  - \sqrt {1 - {x^3}} }}{{{x^2}}}$.

Ans: Given:

$\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {1 + {x^3}}  - \sqrt {1 - {x^3}} }}{{{x^2}}}$

Then, 

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {1 + {x^3}}  - \sqrt {1 - {x^3}} }}{{{x^2}}}{\text{ }}\left( {{\text{given}}} \right)$

Rationalise with $\sqrt {1 + {x^3}}  + \sqrt {1 - {x^3}}$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {1 + {x^3}}  - \sqrt {1 - {x^3}} }}{{{x^2}}} \cdot \dfrac{{\sqrt {1 + {x^3}}  + \sqrt {1 - {x^3}} }}{{\sqrt {1 + {x^3}}  + \sqrt {1 - {x^3}} }}$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {1 + {x^3}} \right) - \left( {1 - {x^3}} \right)}}{{{x^2}\left( {\sqrt {1 + {x^3}}  + \sqrt {1 - {x^3}} } \right)}}$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{1 + {x^3} - 1 + {x^3}}}{{{x^2}\left( {\sqrt {1 + {x^3}}  + \sqrt {1 - {x^3}} } \right)}}$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{2{x^3}}}{{{x^2}\left( {\sqrt {1 + {x^3}}  + \sqrt {1 - {x^3}} } \right)}}$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{2x}}{{\left( {\sqrt {1 + {x^3}}  + \sqrt {1 - {x^3}} } \right)}}$

$= 0$


12. Evaluate: \[\mathop {\lim }\limits_{x \to  - 3} \dfrac{{{x^3} + 27}}{{{x^5} + 243}}\]

Ans: Given:

\[\mathop {\lim }\limits_{x \to  - 3} \dfrac{{{x^3} + 27}}{{{x^5} + 243}}\]

Then, 

\[ = \mathop {\lim }\limits_{x \to  - 3} \dfrac{{{x^3} + 27}}{{{x^5} + 243}}{\text{ }}\left( {{\text{given}}} \right)\]

\[ = \mathop {\lim }\limits_{x \to  - 3} \dfrac{{\dfrac{{{x^3} + 27}}{{x + 3}}}}{{\dfrac{{{x^5} + 243}}{{x + 3}}}}\]

\[ = \mathop {\lim }\limits_{x \to  - 3} \dfrac{{\dfrac{{{x^3} - {{( - 3)}^3}}}{{x - ( - 3)}}}}{{\dfrac{{{x^5} - {{( - 3)}^5}}}{{x - ( - 3)}}}}\]

\[ = \dfrac{{\mathop {\lim }\limits_{x \to  - 3} \dfrac{{{x^3} - {{( - 3)}^3}}}{{x - ( - 3)}}}}{{\mathop {\lim }\limits_{x \to  - 3} \dfrac{{{x^5} - {{( - 3)}^5}}}{{x - ( - 3)}}}}{\text{ }}\left[ {\because \mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{{\mathop {\lim }\limits_{x \to a} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to a} g\left( x \right)}}} \right]\]

\[ = \dfrac{{3{{( - 3)}^{3 - 1}}}}{{5{{( - 3)}^{5 - 1}}}}\left[ {\because \mathop {\lim }\limits_{x \to a} \dfrac{{{x^n} - {a^n}}}{{x - a}} = n{a^{n - 1}}} \right]\]

\[ = \dfrac{3}{5}\dfrac{{{{( - 3)}^2}}}{{{{( - 3)}^4}}}\]

\[ = \dfrac{3}{{5{{( - 3)}^2}}}\]

\[ = \dfrac{3}{{45}}\]

\[ = \dfrac{1}{{15}}\]


13. Evaluate: $\mathop {\lim }\limits_{x \to 1/2} \left( {\dfrac{{8x - 3}}{{2x - 1}} - \dfrac{{4{x^2} + 1}}{{4{x^2} - 1}}} \right)$.

Ans: Given:

$\mathop {\lim }\limits_{x \to 1/2} \left( {\dfrac{{8x - 3}}{{2x - 1}} - \dfrac{{4{x^2} + 1}}{{4{x^2} - 1}}} \right)$

Then,

$= \mathop {\lim }\limits_{x \to 1/2} \left( {\dfrac{{8x - 3}}{{2x - 1}} - \dfrac{{4{x^2} + 1}}{{4{x^2} - 1}}} \right)\,\left( {{\text{given}}} \right)$

$= \mathop {\lim }\limits_{x \to 1/2} \left[ {\dfrac{{(8x - 3)(2x + 1) - \left( {4{x^2} + 1} \right)}}{{\left( {4{x^2} - 1} \right)}}} \right]$

$= \mathop {\lim }\limits_{x \to 1/2} \left[ {\dfrac{{16{x^2} + 8x - 6x - 3 - 4{x^2} - 1}}{{4{x^2} - 1}}} \right]$

$= \mathop {\lim }\limits_{x \to 1/2} \left[ {\dfrac{{12{x^2} + 2x - 4}}{{4{x^2} - 1}}} \right]$

$= \mathop {\lim }\limits_{x \to 1/2} \dfrac{{2\left( {6{x^2} + x - 2} \right)}}{{4{x^2} - 1}}$

$= \mathop {\lim }\limits_{x \to 1/2} \dfrac{{2\left( {6{x^2} + 4x - 3x - 2} \right)}}{{4{x^2} - 1}}$

$= \mathop {\lim }\limits_{x \to 1/2} \dfrac{{2[2x(3x + 2) - 1(3x + 2)]}}{{4{x^2} - 1}}$

$= \mathop {\lim }\limits_{x \to 1/2} \dfrac{{2[(3x + 2)(2x - 1)]}}{{{{(2x)}^2} - {{(1)}^2}}}$

$= \mathop {\lim }\limits_{x \to 1/2} \dfrac{{2(3x + 2)(2x - 1)}}{{(2x - 1)(2x + 1)}}$

$= \mathop {\lim }\limits_{x \to 1/2} \dfrac{{2(3x + 2)}}{{2x - 1}}$

$= \dfrac{{2\left( {3 \times \dfrac{1}{2} + 2} \right)}}{{2 \times \dfrac{1}{2} + 1}}$

$= \dfrac{3}{2} + 2$

$= \dfrac{7}{2}$ 


14. Find ‘n’, if \[\mathop {\lim }\limits_{x \to 2} \dfrac{{{x^n} - {2^n}}}{{x - 2}} = 80,{\text{ }}n \in N\]

Ans: Given:

\[\mathop {\lim }\limits_{x \to 2} \dfrac{{{x^n} - {2^n}}}{{x - 2}} = 80,{\text{ }}n \in N\]

Then, 

\[ \Rightarrow {\text{ }}n{(2)^{n - 1}} = 80{\text{  }}\left[ {\because \mathop {\lim }\limits_{x \to a} \dfrac{{{x^n} - {a^n}}}{{x - a}} = n{a^{n - 1}}} \right]\]

\[ \Rightarrow {\text{ }}n \times {2^{n - 1}} = 5 \times 16\]

\[ \Rightarrow {\text{ }}n \times {2^{n - 1}} = 5 \times {(2)^4}\]

\[ \Rightarrow {\text{ }}n \times {2^{n - 1}} = 5 \times {(2)^{5 - 1}}\]

\[\therefore n = 5\]


15. Evaluate: $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin 3x}}{{\sin 7x}}$.

Ans: Given:

$\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin 3x}}{{\sin 7x}}$

We know that,

$\because \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1$

$\because x \to 0 \Rightarrow \left( {kx \to 0} \right),{\text{ here }}k{\text{ is real number}}$

\[ = \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin 3x}}{{\sin 7x}}{\text{ }}\left( {{\text{given}}} \right)\]

Multiply and divide 3x in numerator and denominator 

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{{\sin 3x}}{{3x}} \cdot 3x}}{{\dfrac{{\sin 7x}}{{7x}} \cdot 7x}}$

$= \dfrac{{\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin 3x}}{{3x}}}}{{\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin 7x}}{{7x}}}} \cdot \dfrac{{3x}}{{7x}}$

$= \dfrac{3}{7} \cdot \dfrac{{\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin 3x}}{{3x}}}}{{\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin 7x}}{{7x}}}}{\text{  }}\left[ {\because \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1} \right]$

$= \dfrac{3}{7}{\text{                    }}\left[ {\because x \to 0 \Rightarrow \left( {kx \to 0} \right),{\text{ here }}k{\text{ is real number}}} \right]$


16. Evaluate: $\mathop {\lim }\limits_{x \to 0} \dfrac{{{{\sin }^2}2x}}{{{{\sin }^2}4x}}$.

Ans: Given:

$\mathop {\lim }\limits_{x \to 0} \dfrac{{{{\sin }^2}2x}}{{{{\sin }^2}4x}}$

We know that, \[\because [\sin 2\theta  = 2\sin \theta \cos \theta ]\]

\[\because \cos 0 = 1\]

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{{{\sin }^2}2x\mid }}{{{{[\sin 2(2x)]}^2}}}$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{{{\sin }^2}2x}}{{{{(2\sin 2x\cos 2x)}^2}}}$

\[ = \mathop {\lim }\limits_{x \to 0} \dfrac{{{{\sin }^2}2x}}{{4{{\sin }^2}2x{{\cos }^2}2x}}{\text{ }}\left[ {\because \sin 2\theta  = 2\sin \theta \cos \theta } \right]\]

\[ = \mathop {\lim }\limits_{x \to 0} \dfrac{1}{{4{{\cos }^2}2x}}\left[ {\because \cos 0 = 1} \right]\]

\[ = \dfrac{1}{4}\]


17. Evaluate: $\mathop {\lim }\limits_{x \to 0} \dfrac{{1 - \cos 2x}}{{{x^2}}}$.

Ans: Given:

$\mathop {\lim }\limits_{x \to 0} \dfrac{{1 - \cos 2x}}{{{x^2}}}$

We know that, $\cos 2x = 1 - 2{\sin ^2}x$

$\because \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1$

Then,

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{1 - \cos 2x}}{{{x^2}}}{\text{ }}\left( {{\text{given}}} \right)$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{1 - 1 + 2{{\sin }^2}x}}{{{x^2}}}{\text{ }}\left[ {\because \cos 2x = 1 - 2{{\sin }^2}x} \right]$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{2{{\sin }^2}x}}{{{x^2}}}$

$= 2\mathop {\lim }\limits_{x \to 0} \dfrac{{{{\sin }^2}x}}{{{x^2}}}$ 

$= 2\mathop {\lim }\limits_{x \to 0} {\left( {\dfrac{{\sin x}}{x}} \right)^2}\left[ {\because \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1} \right]$

$= 2 \times 1 = 2$


18. Evaluate: $\mathop {\lim }\limits_{x \to 0} \dfrac{{2\sin x - \sin 2x}}{{{x^3}}}$.

Ans: Given:

$\mathop {\lim }\limits_{x \to 0} \dfrac{{2\sin x - \sin 2x}}{{{x^3}}}$

We know that,

$\because \sin 2x = 2\sin x\cos x$

$\because \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{2\sin x - \sin 2x}}{{{x^3}}}{\text{ }}\left( {{\text{given}}} \right)$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{2\sin x - 2\sin x\cos x}}{{{x^3}}}{\text{ }}\left[ {\because \sin 2x = 2\sin x\cos x} \right]$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{2\sin x(1 - \cos x)}}{{{x^3}}}$

$= 2\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} \cdot \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{1 - \cos x}}{{{x^2}}}} \right)$

$= 2 \cdot 1\mathop {\lim }\limits_{x \to 0} \dfrac{{1 - \cos x}}{{{x^2}}}{\text{                }}\left[ {\because \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1} \right]$

$= 2\mathop {\lim }\limits_{x \to 0} \dfrac{{1 - 1 + 2{{\sin }^2}\dfrac{x}{2}}}{{{x^2}}}$

$= 2\mathop {\lim }\limits_{x \to 0} \dfrac{{2{{\sin }^2}\dfrac{x}{2}}}{{4 \times \dfrac{{{x^2}}}{4}}}$ 

$= \dfrac{{2 \cdot 2}}{4}\mathop {\lim }\limits_{x \to 0} {\left( {\dfrac{{\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}} \right)^2}$

$= \mathop {\lim }\limits_{x \to 0} {\left( {\dfrac{{\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}} \right)^2} = 1$ 


19. Evaluate: $\mathop {\lim }\limits_{x \to 0} \dfrac{{1 - \cos mx}}{{1 - \cos nx}}$.

Ans: Given:

$\mathop {\lim }\limits_{x \to 0} \dfrac{{1 - \cos mx}}{{1 - \cos nx}}$

We know that,

$\because \cos mx = 1 - 2{\sin ^2}\dfrac{{mx}}{2}{\text{and }}\sin nx = 1 - 2{\sin ^2}\dfrac{{nx}}{2}$

\[\because \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1\]

Then,

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{1 - \cos mx}}{{1 - \cos nx}}{\text{ }}\left( {{\text{given}}} \right)$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{1 - 1 + 2{{\sin }^2}\dfrac{{mx}}{2}}}{{1 - 1 + 2{{\sin }^2}\dfrac{{nx}}{2}}}$

${\because \cos mx = 1 - 2{{\sin }^2}\dfrac{{mx}}{2}}$ 

${{\text{ and }}\sin nx = 1 - 2{{\sin }^2}\dfrac{{nx}}{2}}$

$\mathop { = \lim }\limits_{x \to 0} \dfrac{{{{\sin }^2}\dfrac{{mx}}{2}}}{{{{\sin }^2}\dfrac{{nx}}{2}}}$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{{{{\sin }^2}\dfrac{{mx}}{2}}}{{{{\left( {\dfrac{{mx}}{2}} \right)}^2}}} \cdot {{\left( {\dfrac{{mx}}{2}} \right)}^2}}}{{\dfrac{{{{\sin }^2}\dfrac{{nx}}{2}}}{{{{\left( {\dfrac{{nx}}{2}} \right)}^2}}} \cdot {{\left( {\dfrac{{nx}}{2}} \right)}^2}}}$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{\mathop {\lim }\limits_{x \to 0} {{\left( {\dfrac{{\sin \dfrac{{mx}}{2}}}{{\dfrac{{mx}}{2}}}} \right)}^2}}}{{\mathop {\lim }\limits_{x \to 0} {{\left( {\dfrac{{\sin \dfrac{{nx}}{2}}}{{\dfrac{{nx}}{2}}}} \right)}^2}}} \cdot \dfrac{{{m^2}\dfrac{{{x^2}}}{4}}}{{{n^2}\dfrac{{{x^2}}}{4}}}$

\[ = \dfrac{{{m^2}}}{{{n^2}}} \cdot \dfrac{{\mathop {\lim }\limits_{x \to 0} {{\left( {\dfrac{{\sin \dfrac{{mx}}{2}}}{{\dfrac{{mx}}{2}}}} \right)}^2}}}{{\mathop {\lim }\limits_{x \to 0} {{\left( {\dfrac{{\sin \dfrac{{nx}}{2}}}{{\dfrac{{nx}}{2}}}} \right)}^2}}}{\text{  }}\left[ {\because \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1} \right]\]

\[ = \dfrac{{{m^2}}}{{{n^2}}}{\text{                          }}\left[ {\because x \to 0 \Rightarrow kx \to 0} \right]\]


20. Evaluate: $\mathop {\lim }\limits_{x \to \pi /3} \dfrac{{\sqrt {1 - \cos 6x} }}{{\sqrt 2 \left( {\dfrac{\pi }{3} - x} \right)}}$.

Ans: Given:

$\mathop {\lim }\limits_{x \to \pi /3} \dfrac{{\sqrt {1 - \cos 6x} }}{{\sqrt 2 \left( {\dfrac{\pi }{3} - x} \right)}}$

We know that,

$\because \cos 2x = 1 - 2{\sin ^2}x$

$\because \sin \left( {\pi  - \theta } \right) = \sin \theta$

$\because \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1$

$\because x \to \dfrac{\pi }{3} \Rightarrow \left( {x - \dfrac{\pi }{3}} \right) \to 0$

Then,

$= \mathop {\lim }\limits_{x \to \pi /3} \dfrac{{\sqrt {1 - \cos 6x} }}{{\sqrt 2 \left( {\dfrac{\pi }{3} - x} \right)}}{\text{ }}\left( {{\text{given}}} \right)$

$= \mathop {\lim }\limits_{x \to \pi /3} \dfrac{{\sqrt {1 - 1 + 2{{\sin }^2}3x} }}{{\sqrt 2 \left( {\dfrac{\pi }{3} - x} \right)}}{\text{ }}\left[ {\because \cos 2x = 1 - 2{{\sin }^2}x} \right]$

$= \mathop {\lim }\limits_{x \to \pi /3} \dfrac{{\sqrt 2 \sin 3x}}{{\sqrt 2 \left( {\dfrac{\pi }{3} - x} \right)}}$

$= \mathop {\lim }\limits_{x \to \pi /3} \dfrac{{\sin 3x}}{{\dfrac{\pi }{3} - x}}$ 

$= \mathop {\lim }\limits_{x \to \pi /3} \dfrac{{\sin (\pi  - 3x)}}{{\dfrac{{\pi  - 3x}}{3}}}{\text{         }}\left[ {\because \sin \left( {\pi  - \theta } \right) = \sin \theta } \right]$

$= 3\mathop {\lim }\limits_{x \to \pi /3} \dfrac{{\sin (\pi  - 3x)}}{{(\pi  - 3x)}}{\text{       }}\left[ {\because \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1} \right]$

$= 3 \times 1$ 

$= 3{\text{  }}\left[ {\because x \to \dfrac{\pi }{3} \Rightarrow \left( {x - \dfrac{\pi }{3}} \right) \to 0} \right]$


21. Evaluate: $\mathop {\lim }\limits_{x \to \pi /4} \dfrac{{\left( {\sin x - \cos x} \right)}}{{\left( {x - \dfrac{\pi }{4}} \right)}}{\text{   }}$

Ans: Given:

$\mathop {\lim }\limits_{x \to \pi /4} \dfrac{{\left( {\sin x - \cos x} \right)}}{{\left( {x - \dfrac{\pi }{4}} \right)}}{\text{   }}$

We know that,

$\because \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1$

$\because x \to \dfrac{\pi }{4} \Rightarrow \left( {x - \dfrac{\pi }{4}} \right) \to 0$

Then,

$\mathop {\lim }\limits_{x \to \pi /4} \dfrac{{\left( {\sin x - \cos x} \right)}}{{\left( {x - \dfrac{\pi }{4}} \right)}}{\text{ }}\left( {{\text{given}}} \right)$

$= \mathop {\lim }\limits_{x \to \pi /4} \dfrac{{\sqrt 2 \left( {\sin x \cdot \dfrac{1}{{\sqrt 2 }} - \cos x \cdot \dfrac{1}{{\sqrt 2 }}} \right)}}{{\left( {x - \dfrac{\pi }{4}} \right)}}$

$= \mathop {\lim }\limits_{x \to \pi /4} \dfrac{{\sqrt 2 \left( {\sin x\cos \dfrac{\pi }{4} - \cos x \cdot \sin \dfrac{\pi }{4}} \right)}}{{\left( {x - \dfrac{\pi }{4}} \right)}}$

$= \mathop {\lim }\limits_{x \to \pi /4} \dfrac{{\sqrt 2 \left\{ {\sin \left( {x - \dfrac{\pi }{4}} \right)} \right\}}}{{\left( {x - \dfrac{\pi }{4}} \right)}}$

$= \sqrt 2 \mathop {\lim }\limits_{x \to \pi /4} \dfrac{{\sin \left( {x - \dfrac{\pi }{4}} \right)}}{{\left( {x - \dfrac{\pi }{4}} \right)}}{\text{  }}\left[ {\because \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1} \right]$

$= \sqrt 2 \quad {\text{                          }}\left[ {\because x \to \dfrac{\pi }{4} \Rightarrow \left( {x - \dfrac{\pi }{4}} \right) \to 0} \right]$


22. Evaluate: $\mathop {\lim }\limits_{x \to \pi /6} \dfrac{{\sqrt 3 \sin x - \cos x}}{{x - \dfrac{\pi }{6}}}$.

Ans: Given:

$\mathop {\lim }\limits_{x \to \pi /6} \dfrac{{\sqrt 3 \sin x - \cos x}}{{x - \dfrac{\pi }{6}}}$

We know that,

$\because \sin A\cos B - \cos A\sin B = \sin (A - B)]$

$\because \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1{\text{ and }}x \to \dfrac{\pi }{6} \Rightarrow \left( {x - \dfrac{\pi }{6}} \right) \to 0$

Then,

$= \mathop {\lim }\limits_{x \to \pi /6} \dfrac{{\sqrt 3 \sin x - \cos x}}{{x - \dfrac{\pi }{6}}}{\text{ }}\left( {{\text{given}}} \right)$

$= \mathop {\lim }\limits_{x \to \pi /6} \dfrac{{2\left( {\dfrac{{\sqrt 3 }}{2}\sin x - \dfrac{1}{2}\cos x} \right)}}{{\left( {x - \dfrac{\pi }{6}} \right)}}$

$= \mathop {\lim }\limits_{x \to \pi /6} \dfrac{{2\left( {\sin x\cos \dfrac{\pi }{6} - \cos x\sin \dfrac{\pi }{6}} \right)}}{{\left( {x - \dfrac{\pi }{6}} \right)}}{\text{  }}[\because \sin A\cos B - \cos A\sin B = \sin (A - B)]$

$= 2\mathop {\lim }\limits_{x \to \pi /6} \dfrac{{\sin \left( {x - \dfrac{\pi }{6}} \right)}}{{\left( {x - \dfrac{\pi }{6}} \right)}}$

$\left[ {\because \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1} \right]$

$\left[ {\because x \to \dfrac{\pi }{6} \Rightarrow \left( {x - \dfrac{\pi }{6}} \right) \to 0} \right]$ 

$= 2$


23. Evaluate: $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin 2x + 3x}}{{2x + \tan 3x}}$

Ans: Given:

$\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin 2x + 3x}}{{2x + \tan 3x}}$

We know that,

\[\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1\,{\text{and }}\mathop {\lim }\limits_{x \to 0} \dfrac{{\tan x}}{x} = 1\]

Then,

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin 2x + 3x}}{{2x + \tan 3x}}{\text{ }}\left( {{\text{given}}} \right)$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{{\sin 2x + 3x}}{{2x}} \cdot 2x}}{{\dfrac{{2x + \tan 3x}}{{3x}} \cdot 3x}}$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\dfrac{{\sin 2x}}{{2x}} + \dfrac{{3x}}{{2x}}} \right)2x}}{{\left( {\dfrac{{2x}}{{3x}} + \dfrac{{\tan 3x}}{{3x}}} \right)3x}}$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{{\sin 2x}}{{2x}} + \dfrac{3}{2}}}{{\dfrac{2}{3} + \dfrac{{\tan 3x}}{{3x}}}} \cdot \dfrac{2}{3}$

$= \dfrac{2}{3}\mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{{\sin 2x}}{{2x}} + \dfrac{3}{2}}}{{\dfrac{2}{3} + \mathop {\lim }\limits_{x \to 0} \dfrac{{\tan 3x}}{{3x}}}}$

\[ = \dfrac{2}{3}\left( {\dfrac{{1 + \dfrac{3}{2}}}{{\dfrac{2}{3} + 1}}} \right)\quad \left[ {\because \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1} \right.\,{\text{and }}\left. {\mathop {\lim }\limits_{x \to 0} \dfrac{{\tan x}}{x} = 1} \right]\]

$= \dfrac{2}{3} \times \dfrac{{\dfrac{5}{5}}}{{\dfrac{5}{3}}} = \dfrac{2}{3} \times \dfrac{5}{2} \times \dfrac{3}{5}$

$= 1$ 


24. Evaluate: $\mathop {\lim }\limits_{x \to a} \dfrac{{\sin x - \sin a}}{{\sqrt x  - \sqrt a }}$.

Ans: Given:

$\mathop {\lim }\limits_{x \to a} \dfrac{{\sin x - \sin a}}{{\sqrt x  - \sqrt a }}$

We know that,

$\because \sin C - \sin D = 2\cos \dfrac{{C + D}}{2} \cdot \sin \dfrac{{C - D}}{2}$

$\because \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1$

Then,

\[ = \mathop {\lim }\limits_{x \to a} \dfrac{{\sin x - \sin a}}{{\sqrt x  - \sqrt a }}{\text{ }}\left( {{\text{given}}} \right)\]

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{2\cos \left( {\dfrac{{x + a}}{2}} \right)\sin \left( {\dfrac{{x - a}}{2}} \right)}}{{\sqrt x  - \sqrt a }}{\text{ }}\left[ {\because \sin C - \sin D = 2\cos \dfrac{{C + D}}{2} \cdot \sin \dfrac{{C - D}}{2}} \right]$

$= \mathop {\lim }\limits_{x \to a} \dfrac{{2\cos \left( {\dfrac{{x + a}}{2}} \right)\sin \left( {\dfrac{{x - a}}{2}} \right)(\sqrt {x + \sqrt a } )}}{{(\sqrt {x - \sqrt a )} (\sqrt x  + \sqrt a )}}$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{2\cos \left( {\dfrac{{x + a}}{2}} \right)\sin \left( {\dfrac{{x - a}}{2}} \right)(\sqrt x  + \sqrt a )}}{{x - a}}$

$= 2\mathop {\lim }\limits_{x \to a} \cos \left( {\dfrac{{x + a}}{2}} \right)(\sqrt x  + \sqrt a )\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin \left( {\dfrac{{x - a}}{2}} \right)}}{{2\left( {\dfrac{{x - a}}{2}} \right)}}$

$= 2\mathop {\lim }\limits_{x \to 0} \cos \left( {\dfrac{{x + a}}{2}} \right)(\sqrt x  + \sqrt a ) \cdot \dfrac{1}{2}\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin \left( {\dfrac{{x - a}}{2}} \right)}}{{\left( {\dfrac{{x - a}}{2}} \right)}}$

$= 2 \cdot \cos \dfrac{a}{2} \cdot \sqrt a  \cdot \dfrac{1}{2}\quad {\text{                 }}\left[ {\because \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1} \right]$

$= \sqrt a \cos \dfrac{a}{2}$


25. Evaluate:  $\mathop {\lim }\limits_{x \to \pi /6} \dfrac{{{{\cot }^2}x - 3}}{{\operatorname{cosec} x - 2}}$.

Ans: Given:

$\mathop {\lim }\limits_{x \to \pi /6} \dfrac{{{{\cot }^2}x - 3}}{{\operatorname{cosec} x - 2}}$

We know that,

$\because {\operatorname{cosec} ^2}x = 1 + {\cot ^2}x$

Then,

$= \mathop {\lim }\limits_{x \to \pi /6} \dfrac{{{{\cot }^2}x - 3}}{{\operatorname{cosec} x - 2}}{\text{ }}\left( {{\text{given}}} \right)$

$= \mathop {\lim }\limits_{x \to \pi /6} \dfrac{{{{\operatorname{cosec} }^2}x - 1 - 3}}{{\operatorname{cosec} x - 2}}\quad \left[ {\because {{\operatorname{cosec} }^2}x = 1 + {{\cot }^2}x} \right]$

$= \mathop {\lim }\limits_{x \to \pi /6} \dfrac{{{{\operatorname{cosec} }^2}x - 4}}{{\operatorname{cosec} x - 2}}$

$= \mathop {\lim }\limits_{x \to \pi /6} \dfrac{{{{(\operatorname{cosec} x)}^2} - {{(2)}^2}}}{{\operatorname{cosec} x - 2}}$

$= \mathop {\lim }\limits_{x \to \pi /6} \dfrac{{(\operatorname{cosec} x + 2)(\operatorname{cosec} x - 2)}}{{(\operatorname{cosec} x - 2)}}$

$= \mathop {\lim }\limits_{x \to \pi /6} (\operatorname{cosec} x + 2)$

$= \operatorname{cosec} \dfrac{\pi }{6} + 2 = 2 + 2$

$= 4$


26. Evaluate: $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt 2  - \sqrt {1 + \cos x} }}{{{{\sin }^2}x}}$

Ans: Given:

$\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt 2  - \sqrt {1 + \cos x} }}{{{{\sin }^2}x}}$

We know that,

$\because \cos x = 2{\cos ^2}\dfrac{x}{2} - 1$

$\because \sin x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$

Then,

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt 2  - \sqrt {1 + 2{{\cos }^2}\dfrac{x}{2} - 1} }}{{{{\sin }^2}x}}\quad \left[ {\because \cos x = 2{{\cos }^2}\dfrac{x}{2} - 1} \right]$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt 2  - \sqrt {2{{\cos }^2}\dfrac{x}{2}} }}{{{{\sin }^2}x}}\quad {\text{        }}\left[ {\because \sin x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \right]$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt 2 \left( {1 - \cos \dfrac{x}{2}} \right)}}{{{{\sin }^2}x}}$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt 2 \left( {1 - 1 + 2{{\sin }^2}\dfrac{x}{4}} \right)}}{{{{\sin }^2}x}}$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt 2 \left( {2{{\sin }^2}\dfrac{x}{4}} \right)}}{{{{\sin }^2}x}}$

$= \mathop {\lim }\limits_{x \to 0} 2\sqrt 2 \dfrac{{{{\sin }^2}\dfrac{x}{4}}}{{{{\left( {\dfrac{x}{4}} \right)}^2}}} \cdot \dfrac{{{{\left( {\dfrac{x}{4}} \right)}^2}}}{{{{\sin }^2}x}}$

$= 2\sqrt 2 \mathop {\lim }\limits_{x \to 0} {\left( {\dfrac{{\sin \dfrac{x}{4}}}{{\dfrac{x}{4}}}} \right)^2} \cdot \mathop {\lim }\limits_{x \to 0} {\left( {\dfrac{x}{{\sin x}}} \right)^2} \cdot \dfrac{1}{{16}}$

$= 2\sqrt 2  \cdot 1 \cdot 1 \cdot \dfrac{1}{{16}}$

$= \dfrac{1}{{4\sqrt 2 }}$


27. Evaluate: $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x - 2\sin 3x + \sin 5x}}{x}$

Ans: Given:

$\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x - 2\sin 3x + \sin 5x}}{x}$

We know that,

$\because \sin x + \sin y = 2\cos \dfrac{{x + y}}{2}\cos \dfrac{{x - y}}{2}$

$\because \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1$

Then,

$\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x - 2\sin 3x + \sin 5x}}{x}$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin 5x + \sin x - 2\sin 3x}}{x}$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{2\sin 3x\cos 2x - 2\sin 3x}}{x}$$\left[ {\because \sin x + \sin y = 2\cos \dfrac{{x + y}}{2}\cos \dfrac{{x - y}}{2}} \right]$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{2\sin 3x(\cos 2x - 1)}}{x}$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{2\sin 3x}}{{\dfrac{1}{3} \times 3x}}(\cos 2x - 1)$

$= 6\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin 3x}}{{3x}}(\cos 2x - 1)$

$= 6\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin 3x}}{{3x}} \cdot \mathop {\lim }\limits_{x \to 0} (\cos 2x - 1)$$\left[ {\because \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1} \right]$

$= 6 \times 1 \times 0 = 0$


28. Evaluate: If $\mathop {\lim }\limits_{x \to 1} \dfrac{{{x^4} - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to k} \dfrac{{{x^3} - {k^3}}}{{{x^2} - {k^2}}}$, then find the value of \[k\].

Ans: Given:

$\mathop {\lim }\limits_{x \to 1} \dfrac{{{x^4} - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to k} \dfrac{{{x^3} - {k^3}}}{{{x^2} - {k^2}}}$

We know that,

$\because \mathop {\lim }\limits_{x \to a} \dfrac{{{x^n} - {a^n}}}{{x - a}} = n{a^{n - 1}}$

$\because \mathop {\lim }\limits_{x \to a} \dfrac{{f(x)}}{{g(x)}} = \dfrac{{\mathop {\lim }\limits_{x \to a} f(x)}}{{\mathop {\lim }\limits_{x \to a} g(x)}}$

Then,

$\Rightarrow \quad \mathop {\lim }\limits_{x \to 1} \dfrac{{{x^4} - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to k} \dfrac{{{x^3} - {k^3}}}{{{x^2} - {k^2}}}\,\left( {{\text{given}}} \right)$

$\Rightarrow \quad 4{(1)^{4 - 1}} = \mathop {\lim }\limits_{x \to k} \dfrac{{\dfrac{{{x^3} - {k^3}}}{{x - k}}}}{{\dfrac{{{x^2} - {k^2}}}{{x - k}}}}\quad \left[ {\because \mathop {\lim }\limits_{x \to a} \dfrac{{{x^n} - {a^n}}}{{x - a}} = n{a^{n - 1}}} \right]$

$\Rightarrow \quad 4 = \dfrac{{\mathop {\lim }\limits_{x \to k} \dfrac{{{x^3} - {k^3}}}{{x - k}}}}{{\mathop {\lim }\limits_{x \to k} \dfrac{{{x^2} - {k^2}}}{{x - k}}}}1\quad \left[ {\because \mathop {\lim }\limits_{x \to a} \dfrac{{f(x)}}{{g(x)}} = \dfrac{{\mathop {\lim }\limits_{x \to a} f(x)}}{{\mathop {\lim }\limits_{x \to a} g(x)}}} \right]$

$\Rightarrow \quad 4 = \dfrac{{3{k^2}}}{{2k}}$

$\Rightarrow {\text{ }}4 = \dfrac{3}{2}k$

$\therefore \quad k = \dfrac{{4 \times 2}}{3} = \dfrac{8}{3}$


Differentiate each of the functions w. r. t x  in Exercises 29 to 42:

29. \[\dfrac{{{x^4} + {x^3} + {x^2} + 1}}{x}\]

Ans: Given:

\[\dfrac{{{x^4} + {x^3} + {x^2} + 1}}{x}\]

Then

\[ = \dfrac{d}{{dx}}\left( {\dfrac{{{x^4} + {x^3} + {x^2} + 1}}{x}} \right)\]

\[ = \dfrac{d}{{dx}}\left( {{x^3} + {x^2} + x + \dfrac{1}{x}} \right)\]

\[ = \dfrac{d}{{dx}}{x^3} + \dfrac{d}{{dx}}{x^2} + \dfrac{d}{{dx}}x + \dfrac{d}{{dx}}\left( {\dfrac{1}{x}} \right)\]          (by chain rule)

\[ = 3{x^2} + 2x + 1 + \left( { - \dfrac{1}{{{x^2}}}} \right)\]

\[ = 3{x^2} + 2x + 1 - \dfrac{1}{{{x^2}}}\]

\[ = \dfrac{{3{x^4} + 2{x^3} + {x^2} - 1}}{{{x^2}}}\]


30: ${\left( {x + \dfrac{1}{x}} \right)^3}$

Ans: Given:

${\left( {x + \dfrac{1}{x}} \right)^3}$

${\text{Let }}\quad y = {\left( {x + \dfrac{1}{x}} \right)^3}$

Differentiate on both side w.r.t \[x\]

$\therefore \quad \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}{\left( {x + \dfrac{1}{x}} \right)^3}$

$= 3{\left( {x + \dfrac{1}{x}} \right)^{3 - 1}}\dfrac{d}{{dx}}\left( {x + \dfrac{1}{x}} \right)$ (by chain rule)

$= 3{\left( {x + \dfrac{1}{x}} \right)^2}\left( {1 - \dfrac{1}{{{x^2}}}} \right)$

$= 3{x^2} - \dfrac{3}{{{x^2}}} - \dfrac{3}{{{x^4}}} + 3$


31. $(3x + 5)(1 + tanx)$

Ans: Given:

$(3x + 5)(1 + \tan x)$

We know that,

Differentiate the given equation w.r.t \[x\] using product rule

\[\because \dfrac{d}{{dx}}\left( {uv} \right) = v\dfrac{d}{{dx}}u + u\dfrac{d}{{dx}}v\]

Then,$\quad y = (3x + 5)(1 + \tan x)$

Differentiate on both side w.r.t \[x\]

$\therefore \quad \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}[(3x + 5)(1 + \tan x)]$

$= (3x + 5)\dfrac{d}{{dx}}(1 + \tan x) + (1 + \tan x)\dfrac{d}{{dx}}(3x + 5){\text{ }}\left[ {{\text{product rule}}} \right]$

$= (3x + 5)\left( {{{\sec }^2}x} \right) + (1 + \tan x) \cdot 3$

$= (3x + 5){\sec ^2}x + 3(1 + \tan x)$

$= 3x{\sec ^2}x + 5{\sec ^2}x + 3\tan x + 3$


32. $(secx - 1)(secx + 1)$

Ans: Given:

$(\sec x - 1)(\sec x + 1)$

We know that, Differentiate the given equation w.r.t \[x\] using chain rule

\[\because \dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \cdot \dfrac{{du}}{{dx}}\]

$\because (a + b)(a - b) = {a^2} - {b^2}$

Let, $y = (\sec x - 1)(\sec x + 1)$

$y = \left( {{{\sec }^2} - 1} \right)$$\left[ {\because (a + b)(a - b) = {a^2} - {b^2}} \right]$

$= {\tan ^2}x$

$\therefore \quad \dfrac{{dy}}{{dx}} = 2\tan x \cdot \dfrac{d}{{dx}}\tan x$

$= 2\tan x \cdot {\sec ^2}x$                    (By chain rule)


33. $\dfrac{{3x + 4}}{{5{x^2} - 7x + 9}}$

Ans: Given:

$\dfrac{{3x + 4}}{{5{x^2} - 7x + 9}}$

We know that,

Differentiate the given equation w.r.t \[x\] using quotient rule

\[\because \dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{d}{{dx}}u - u\dfrac{d}{{dx}}v}}{{{v^2}}}\]

Let,  $\quad y = \dfrac{{3x + 4}}{{5{x^2} - 7x + 9}}$

$\therefore \dfrac{{dy}}{{dx}} = \dfrac{{\left( {5{x^2} - 7x + 9} \right)\dfrac{d}{{dx}}(3x + 4) - (3x + 4)\dfrac{d}{{dx}}\left( {5{x^2} - 7x + 9} \right)}}{{{{\left( {5{x^2} - 7x + 9} \right)}^2}}}{\text{ }}\left[ {{\text{by quotient rule}}} \right]$

${\text{       }} = \dfrac{{\left( {5{x^2} - 7x + 9} \right) \cdot 3 - (3x + 4)(10x - 7)}}{{{{\left( {5{x^2} - 7x + 9} \right)}^2}}}$

${\text{       }} = \dfrac{{15{x^2} - 21x + 27 - 30{x^2} + 21x - 40x + 28}}{{{{\left( {5{x^2} - 7x + 9} \right)}^2}}}$

${\text{       }} = \dfrac{{ - 15{x^2} - 40x + 55}}{{{{\left( {5{x^2} - 7x + 9} \right)}^2}}}$

${\text{       }} = \dfrac{{55 - 15{x^2} - 40x}}{{{{\left( {5{x^2} - 7x + 9} \right)}^2}}}$


34. $\dfrac{{{x^5} - cosx}}{{sinx}}$

Ans: Given:

$\dfrac{{{x^5} - \cos x}}{{\sin x}}$

We know that, Differentiate the given equation w.r.t \[x\] using quotient rule

\[\because \dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{d}{{dx}}u - u\dfrac{d}{{dx}}v}}{{{v^2}}}\]

Then,Let $y = \dfrac{{{x^5} - \cos x}}{{\sin x}}$

$\dfrac{{dy}}{{dx}} = \dfrac{{\sin x\dfrac{d}{{dx}}\left( {{x^5} - \cos x} \right) - \left( {{x^5} - \cos x} \right)\dfrac{{dy}}{{dx}}\sin x}}{{{{\left( {\sin x} \right)}^2}}}$    (by quotient rule)

$= \dfrac{{\sin x\left( {5{x^4} + \sin x} \right) - \left( {{x^5} - \cos x} \right)\cos x}}{{{{\sin }^2}x}}$

$= \dfrac{{5{x^4}\sin x + {{\sin }^2}x - {x^5}\cos x + {{\cos }^2}x}}{{{{\sin }^2}x}}$

$= \dfrac{{5{x^4}\sin x - {x^5}\cos x + {{\sin }^2}x + {{\cos }^2}x}}{{{{\sin }^2}x}}$

$= \dfrac{{5{x^4}\sin x - {x^5}\cos x + 1}}{{{{\sin }^2}x}}$


35. \[\dfrac{{{x^2}cos\dfrac{\pi }{4}}}{{sinx}}\]

Ans: Given:

\[\dfrac{{{x^2}\cos \dfrac{\pi }{4}}}{{\sin x}}\]

We know that, Differentiate the given equation w.r.t \[x\] using quotient rule

\[\because \dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{d}{{dx}}u - u\dfrac{d}{{dx}}v}}{{{v^2}}}\]

Let \[y = \dfrac{{{x^2}\cos \dfrac{\pi }{4}}}{{\sin x}}\]

\[y = \dfrac{1}{{\sqrt 2 }} \cdot \dfrac{{{x^2}}}{{\sin x}}\]

$\dfrac{{dy}}{{dx}} = \dfrac{1}{{\sqrt 2 }}\left[ {\dfrac{{\sin x \cdot \dfrac{d}{{dx}}{x^2} - {x^2}\dfrac{d}{{dx}}\sin x}}{{{{\sin }^2}x}}} \right]$       (by quotient rule)

$= \dfrac{1}{{\sqrt 2 }}\left[ {\dfrac{{\sin x \cdot 2x - {x^2} \cdot \cos x}}{{{{\sin }^2}x}}} \right]$

$= \dfrac{1}{{\sqrt 2 }} \cdot \dfrac{{2x\sin x - {x^2}\cos x}}{{{{\sin }^2}x}}$

$= \dfrac{x}{{\sqrt 2 }}[2\operatorname{cosec} x - x\cot x\operatorname{cosec} x]$

$= \dfrac{x}{{\sqrt 2 }}\operatorname{cosec} [2 - x\cot x]$


36. \[\left( {a{x^2} + cotx} \right)\left( {p + qcosx} \right)\]

Ans: Given:

\[\left( {a{x^2} + \cot x} \right)\left( {p + q\cos x} \right)\]

We know that, Differentiate the given equation w.r.t \[x\] using product rule

\[\because \dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{d}{{dx}}v + v\dfrac{d}{{dx}}u\]

Let \[y = \left( {a{x^2} + \cot x} \right)\left( {p + q\cos x} \right)\]

$\therefore \quad \dfrac{{dy}}{{dx}} = \left( {a{x^2} + \cot x} \right)\dfrac{d}{{dx}}(p + q\cos x) + (p + q\cos x)\dfrac{d}{{dx}}\left( {a{x^2} + \cot x} \right){\text{ }}\left[ {{\text{by product rule}}} \right]$

$= \left( {a{x^2} + \cot x} \right)( - q\sin x) + (p + q\cos x)\left( {2ax - {{\operatorname{cosec} }^2}x} \right)$

$=  - q\sin x\left( {a{x^2} + \cot x} \right) + (p + q\cos x)\left( {2ax - {{\operatorname{cosec} }^2}x} \right)$


37. $\dfrac{{a + bsinx}}{{c + dcosx}}$

Ans: Given:

$\dfrac{{a + b\sin x}}{{c + d\cos x}}$

We know that, Differentiate the given equation w.r.t \[x\] using quotient rule

\[\because \dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{d}{{dx}}u - u\dfrac{d}{{dx}}v}}{{{v^2}}}\]

Let, $y = \dfrac{{a + b\sin x}}{{c + d\cos x}}$

$\therefore \dfrac{{dy}}{{dx}} = \dfrac{{(c + d\cos x)\dfrac{d}{{dx}}(a + b\sin x) - (a + b\sin x)\dfrac{d}{{dx}}(c + d\cos x)}}{{{{(c + d\cos x)}^2}}}{\text{ }}\left[ {{\text{by quotient rule}}} \right]$

$= \dfrac{{(c + d\cos x)(b\cos x) - (a + b\sin x)( - d\sin x)}}{{{{(c + d\cos x)}^2}}}$

$= \dfrac{{bc\cos x + bd{{\cos }^2}x + ad\sin x + bd{{\sin }^2}x}}{{{{(c + d\cos x)}^2}}}$

$= \dfrac{{bc\cos x + ad\sin x + bd\left( {{{\cos }^2}x + {{\sin }^2}x} \right)}}{{{{(c + d\cos x)}^2}}}$

$= \dfrac{{bc\cos x + ad\sin x + bd}}{{{{(c + d\cos x)}^2}}}$


38. ${\left( {sinx + cosx} \right)^2}$

Ans: Given:

${\left( {\sin x + \cos x} \right)^2}$

We know that, Differentiate the given equation w.r.t \[x\] using quotient rule

\[\because \dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \cdot \dfrac{{du}}{{dx}}\]

\[\because \cos 2x = {\cos ^2}x - {\sin ^2}x\]

\[{\text{Let }}y = {\left( {\sin x + \cos x} \right)^2}\]

\[\therefore \dfrac{{dy}}{{dx}} = 2\left( {\sin x + \cos x} \right)\left( {\sin x - \cos x} \right)\](By chain rule)

\[{\text{       }} = 2\left( {{{\cos }^2}x - {{\sin }^2}x} \right){\text{                   }}\left[ {\because \cos 2x = {{\cos }^2}x - {{\sin }^2}x} \right]\]

\[{\text{       }} = 2\cos 2x\]


39. ${(2x - 7)^2}{(3x + 5)^3}$

Ans: Given:

${(2x - 7)^2}{(3x + 5)^3}$

We know that, Differentiate the given equation w.r.t \[x\] using product rule and chain rule

\[\because \dfrac{d}{{dx}}\left( {uv} \right) = v\dfrac{d}{{dx}}u + u\dfrac{d}{{dx}}v\] and \[\because \dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \cdot \dfrac{{du}}{{dx}}\]

Let $y = {(2x - 7)^2}{(3x + 5)^3}$

$\therefore \dfrac{{dy}}{{dx}} = {(2x - 7)^2}\dfrac{d}{{dx}}{(3x + 5)^3} + {(3x + 5)^3}\dfrac{d}{{dx}}{(2x - 7)^2}{\text{   }}\left[ {{\text{by product rule}}} \right]$

$= {(2x - 7)^2}(3){(3x + 5)^2}(3) + {(3x + 5)^3}2(2x - 7)(2){\text{   }}\left[ {{\text{by chain rule}}} \right]$

$= 9{(2x - 7)^2}{(3x + 5)^2} + 4{(3x + 5)^3}(2x - 7)$

$= (2x - 7){(3x + 5)^2}[9(2x - 7) + 4(3x + 5)]$

$= (2x - 7){(3x + 5)^2}(18x - 63 + 12x + 20)$

$= (2x - 7){(3x + 5)^2}(30x - 43)$


40. ${x^2}sinx + cos2x$

Ans: Given:

${x^2}\sin x + \cos 2x$

We know that, Differentiate the given equation w.r.t \[x\] using product rule 

\[\because \dfrac{d}{{dx}}\left( {uv} \right) = v\dfrac{d}{{dx}}u + u\dfrac{d}{{dx}}v\]

${\text{Let }}y = {x^2}\sin x + \cos 2x$

$\therefore \dfrac{{dy}}{{dx}} = \dfrac{{d\left( {{x^2}\sin x} \right)}}{{dx}} + \dfrac{{d\left( {\cos 2x} \right)}}{{dx}}$

${\text{       }} = \left( {2x\sin x + {x^2} \cdot \cos x} \right) + \left( { - \sin 2x \cdot 2} \right){\text{ }}\left[ {{\text{By product rule}}} \right]$

${\text{       }} = 2x\sin x + {x^2} \cdot \cos x - 2\sin 2x\left[ {{\text{By chain rule}}} \right]{\text{       }}$ 


41. \[si{n^3}xco{s^3}x\]

Ans: Given:

\[{\sin ^3}x{\cos ^3}x\]

We know that, Differentiate the given equation w.r.t \[x\] using product rule and chain rule

\[\because \dfrac{d}{{dx}}\left( {uv} \right) = v\dfrac{d}{{dx}}u + u\dfrac{d}{{dx}}v\]

\[\because \dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \cdot \dfrac{{du}}{{dx}}\]

$\because \sin 2x = 2\sin x\cos x$

Let \[y = {\sin ^3}x{\cos ^3}x\]

\[\dfrac{{dy}}{{dx}} = {\sin ^3}x \cdot \dfrac{d}{{dx}}{\cos ^3}x + {\cos ^3}x\dfrac{d}{{dx}}{\sin ^3}x\]                    (by product rule)

$= {\sin ^3}x \cdot 3{\cos ^2}x( - \sin x) + {\cos ^3}x \cdot 3{\sin ^2}x\cos x\quad$ (by chain rule)

$=  - 3{\cos ^2}x{\sin ^4}x + 3{\sin ^2}x{\cos ^4}x$

$= 3{\sin ^2}x{\cos ^2}x\left( {{{\cos }^2}x - {{\sin }^2}x} \right)$

$= 3{\sin ^2}x{\cos ^2}x\cos 2x$

$= \dfrac{3}{4}{(2\sin x\cos x)^2}\cos 2x{\text{                                       }}\left[ {\because \sin 2x = 2\sin x\cos x} \right]$

$= \dfrac{3}{4}{\sin ^2}2x\cos 2x$


42. $\dfrac{1}{{a{x^2} + bx + c}}$

Ans: Given:

$\dfrac{1}{{a{x^2} + bx + c}}$

We know that, Differentiate the given equation w.r.t \[x\] using product rule and chain rule

\[\because \dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \cdot \dfrac{{du}}{{dx}}\]

Let $y = \dfrac{1}{{a{x^2} + bx + c}} = {\left( {a{x^2} + bx + c} \right)^{ - 1}}$

$\dfrac{{dy}}{{dx}} =  - {\left( {a{x^2} + bx + c} \right)^{ - 2}}\left( {2ax + b} \right){\text{ }}\left[ {{\text{By chain rule}}} \right]$

$= \dfrac{{ - (2ax + b)}}{{{{\left( {a{x^2} + bx + c} \right)}^2}}}$


Long Answer Type:

Differentiate each of the functions with respect to ‘x’ in Exercises 43 to 46 using the first principle method.

43. \[cos\left( {{x^2} + 1} \right)\]

Ans: Given:

\[\cos \left( {{x^2} + 1} \right)\]

We know that, To differentiate the given equation

$\because \cos C - \cos D =  - 2\sin \dfrac{{C + D}}{2} \cdot \sin \dfrac{{C - D}}{2}$

$\because x \to 0 \Rightarrow kx \to 0$

Let,

\[\therefore \dfrac{d}{{dx}}f\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h}\]

$= \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos \left\{ {{{(x + h)}^2} + 1} \right\} - \cos \left( {{x^2} + 1} \right)}}{h}$

$= \mathop {\lim }\limits_{h \to 0} \dfrac{{ - 2\sin \left\{ {\dfrac{{{{(x + h)}^2} + 1 + {x^2} + 1}}{2}} \right\}\sin \left\{ {\dfrac{{{{(x + h)}^2} + 1 - {x^2} - 1}}{2}} \right\}}}{h}\left[ {\because \cos C - \cos D =  - 2\sin \dfrac{{C + D}}{2} \cdot \sin \dfrac{{C - D}}{2}} \right]$$= \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h}\left[ { - 2\sin \left\{ {\dfrac{{{{(x + h)}^2} + {x^2} + 2}}{2}} \right\}\sin \left\{ {\dfrac{{{{(x + h)}^2} - {x^2}}}{2}} \right\}} \right]$

$= \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h}\left[ { - 2\sin \left\{ {\dfrac{{{{(x + h)}^2} + {x^2} + 2}}{2}} \right\}\sin \left\{ {\dfrac{{{x^2} + {h^2} + 2xh - {x^2}}}{2}} \right\}} \right]$

$= \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h}\left[ { - 2\sin \left\{ {\dfrac{{{{(x + h)}^2} + {x^2} + 2}}{2}} \right\}\sin \left\{ {\dfrac{{{h^2} + 2hx}}{2}} \right\}} \right]$

$=  - 2\mathop {\lim }\limits_{h \to 0} \sin \left\{ {\dfrac{{{{(x + h)}^2} + {x^2} + 2}}{2}} \right\}\mathop {\lim }\limits_{h \to 0} \left\{ {\dfrac{{\sin h\left( {\dfrac{{h + 2x}}{2}} \right)}}{{h\left( {\dfrac{{h + 2x}}{2}} \right)}}} \right\} \times \left( {\dfrac{{h + 2x}}{2}} \right)$

$=  - 2\mathop {\lim }\limits_{h \to 0} \sin \left\{ {\dfrac{{{{(x + h)}^2} + {x^2} + 2}}{2}} \right\}\mathop {\lim }\limits_{h \to 0} \left( {\dfrac{{h + 2x}}{2}} \right)\quad \left[ {\because \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1} \right]$

\[ =  - 2x\sin \left( {{x^2} + 1} \right)\quad \left[ {\because x \to 0 \Rightarrow kx \to 0} \right]\]


44. $\dfrac{{ax + b}}{{cx + d}}$

Ans: Given, $\dfrac{{ax + b}}{{cx + d}}$

Let,

 $f\left( x \right) = \dfrac{{ax + b}}{{cx + d}}$

$f\left( {x + h} \right) = \dfrac{{a\left( {x + h} \right) + b}}{{c\left( {x + h} \right) + d}}$

$\therefore \dfrac{d}{{dx}}f\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h}\left[ {f\left( {x + h} \right) - f\left( x \right)} \right]$

$= \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h}\left[ {\dfrac{{a(x + h) + b}}{{c(x + h) + d}} - \dfrac{{ax + b}}{{cx + d}}} \right]$

$= \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h}\left[ {\dfrac{{ax + b + ah}}{{c(x + h) + d}} - \dfrac{{ax + b}}{{cx + d}}} \right]$

$= \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h}\left[ {\dfrac{{(ax + ah + b)(cx + d) - (ax + b\{ c(x + h) + d\} }}{{\{ c(x + h) + d\} (cx + d)}}} \right]$

$= \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h}\left[ {\dfrac{{(ax + ah + b)(cx + d) - (ax + b)(cx + ch + d)}}{{\{ c(x + h) + d)\} (cx + d)}}} \right]$

$= \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h}\left[ {\dfrac{{ac{x^2} + achx + bcx + adx + adh + bd - ac{x^2} - achx - adx - bcx - bch - bd}}{{\{ c(x + h) + d\} (cx + d)}}} \right]$

$= \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h}\left[ {\dfrac{{adh - bch}}{{\{ c(x + h) + d\} (cx + d)}}} \right]$

$= \mathop {\lim }\limits_{h \to 0} \dfrac{{ad - bc}}{{\{ c(x + h) + d\} (cx + d)}}$

$= \dfrac{{ad - bc}}{{{{(cx + d)}^2}}}$


45. ${x^{\dfrac{2}{3}}}$

Ans: Given:

${x^{\dfrac{2}{3}}}$

We know that,

\[\because \mathop {\lim }\limits_{x \to a} \dfrac{{{x^x} - {a^n}}}{{x - a}} = n{a^{n - 1}}\]

Let,

\[f(x) = {x^{2/3}}\]

\[f(x + h) = {(x + h)^{2/3}}\]

\[\dfrac{d}{{dx}}f(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f(x)}}{h}\]

\[ = \mathop {\lim }\limits_{(h \to 0} \left[ {\dfrac{{(x + h)2/3 - {x^{2/3}}}}{h}} \right]\]

\[ = \mathop {\lim }\limits_{(x + h) \to x} \left[ {\dfrac{{(x + h)2/3 - {x^{2/3}}}}{{(x + h) - x}}} \right]\left[ {\because \mathop {\lim }\limits_{x \to a} \dfrac{{{x^x} - {a^n}}}{{x - a}} = n{a^{n - 1}}} \right]\]

\[ = \dfrac{2}{3}{(x)^{2/3 - 1}}\quad \]

\[ = \dfrac{2}{3}{x^{ - 1/3}}\]


46. \[xcosx\]

Ans: Given:

\[x\cos x\]

We know that,

$\because \cos C - \cos D =  - 2\sin \dfrac{{C + D}}{2} \cdot \sin \dfrac{{C - D}}{2}$

Then,

$= \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h}[(x + h)\cos (x + h) - x\cos x]$

$= \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h}[x\cos (x + h) + h\cos (x + h) - x\cos x]$

$= \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h}[x\{ \cos (x + h) - \cos x\}  + h\cos (x + h)]$

$= \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h}\left[ {x\left\{ { - 2\sin \left( {\dfrac{{2x + h}}{2}} \right)\sin \dfrac{h}{2}} \right\} + h\cos (x + h)} \right]$

$= \mathop {\lim }\limits_{h \to 0} \left[ { - 2x\sin \left( {x + \dfrac{h}{2}} \right)\dfrac{{\sin \dfrac{h}{2}}}{h} + \cos (x + h)} \right]\left[ {\because \cos C - \cos D =  - 2\sin \dfrac{{C + D}}{2} \cdot \sin \dfrac{{C - D}}{2}} \right]$

\[ =  - 2\mathop {\lim }\limits_{h \to 0} x\sin \left( {x + \dfrac{h}{2}} \right)\mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \dfrac{h}{2}}}{{\dfrac{h}{2}}} \cdot \dfrac{1}{2} + \mathop {\lim }\limits_{h \to 0} \cos (x + h)\]

\[ =  - 2 \cdot \dfrac{1}{2}x\sin x + \cos x\]

\[ = \cos x - x\sin x\]


Evaluate each of the following limits in Exercises 47 to 53:

47. $\mathop{\lim }\limits_{y \rightarrow 0} \dfrac{(x+y) \sec (x+y)-x \sec x}{y}$

Ans: Given:

$\mathop {\lim }\limits_{y \to 0} \dfrac{{\left( {x + y} \right){\text{sec}}\left( {x + y} \right) - x\sec x}}{y}$

Let,

$\mathop {\lim }\limits_{y \to 0} \dfrac{{\left( {x + y} \right){\text{sec}}\left( {x + y} \right) - x\sec x}}{y}$

$= \mathop {\lim }\limits_{y \to 0} \dfrac{{\dfrac{{x + y}}{{\cos (x + y)}} - \dfrac{x}{{\cos x}}}}{y}$

$= \mathop {\lim }\limits_{y \to 0} \dfrac{{(x + y)\cos x - x\cos (x + y)}}{{y\cos x\cos (x + y)}}$

$= \mathop {\lim }\limits_{y \to 0} \left[ {\dfrac{{x\cos x + y\cos x - x\cos (x + y)}}{{y\cos x\cos (x + y)}}} \right]$

$= \mathop {\lim }\limits_{y \to 0} \left[ {\dfrac{{x\cos x - x\cos (x + y) + y\cos x}}{{y\cos x\cos (x + y)}}} \right]$

$= \mathop {\lim }\limits_{y \to 0} \dfrac{{x\{ \cos x - \cos (x + y)\}  + y\cos x}}{{y\cos x\cos (x + y)}}$

$= \mathop {\lim }\limits_{y \to 0} \dfrac{{x\left[ { - 2\sin \left( {x + \dfrac{y}{2}} \right)\sin \left( {\dfrac{{ - y}}{2}} \right)} \right] + y\cos x}}{{y\cos x\cos (x + y)}}\left[ {\because \cos C - \cos D = 2\sin \dfrac{{C + D}}{2} \cdot \sin \dfrac{{C - D}}{2}} \right]$

$= \mathop {\lim }\limits_{y \to 0} \left[ {\dfrac{{x\left\{ {2\sin \left( {x + \dfrac{y}{2}} \right)\sin \dfrac{y}{2}} \right\} + y\cos x}}{{y\cos x\cos (x + y)}}} \right]$

$= \mathop {\lim }\limits_{y \to 0} \dfrac{{2x\sin \left( {x + \dfrac{y}{2}} \right)}}{{\cos x\cos (x + y)}} \cdot \mathop {\lim }\limits_{y \to 0} \dfrac{{\sin \dfrac{y}{2}}}{{\dfrac{y}{2}}} \cdot \dfrac{1}{2} + \mathop {\lim }\limits_{y \to 0} \sec (x + y)$

$\quad \left[ {\because \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1} \right.$ and $\left. {x \to 0 \Rightarrow kx \to 0} \right]$

$= \mathop {\lim }\limits_{y \to 0} \dfrac{{2x\sin \left( {x + \dfrac{y}{2}} \right)}}{{\cos x\cos (x + y)}} \cdot \dfrac{1}{2} + \mathop {\lim }\limits_{y \to 0} \sec (x + y)$

$= \dfrac{{2x\sin x}}{{\cos x\cos x}} \cdot \dfrac{1}{2} + \sec x$

$= x\tan x\sec x + \sec x$

$= \sec x(x\tan x + 1)$


48. $\mathop{\lim }\limits_{x \rightarrow 0} \dfrac{(\sin (\alpha+\beta) x+\sin (\alpha-\beta) x+\sin 2 \alpha x)}{\cos 2 \beta x-\cos 2 \alpha x} \cdot x$

Ans: Given:

$\mathop {\lim }\limits_{x \to 0} \dfrac{{\left[ {\sin \left( {\alpha  + \beta } \right)x + \sin \left( {\alpha  - \beta } \right)x + \sin 2\alpha x} \right]}}{{\cos 2\beta x - \cos 2\alpha x}} \cdot x$

We know that,

$\because \sin C + \sin D = 2\sin \dfrac{{C + D}}{2}\cos \dfrac{{C - D}}{2}$

$\because \cos C - \cos D = 2\sin \dfrac{{C + D}}{2} \cdot \sin \dfrac{{D - C}}{2}$

$\because \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1{\text{ and }}x \to 0 \Rightarrow kx \to 0{\text{ }}$

Let,

$\mathop {\lim }\limits_{x \to 0} \dfrac{{\left[ {\sin \left( {\alpha  + \beta } \right)x + \sin \left( {\alpha  - \beta } \right)x + \sin 2\alpha x} \right]}}{{\cos 2\beta x - \cos 2\alpha x}} \cdot x$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{\left[ {\sin \left( {\alpha  + \beta } \right)x + \sin \left( {\alpha  - \beta } \right)x + \sin 2\alpha x} \right]}}{{\cos 2\beta x - \cos 2\alpha x}} \cdot x$

$\left[ {\because \sin C + \sin D = 2\sin \dfrac{{C + D}}{2}\cos \dfrac{{C - D}}{2}} \right]$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{\left[ {2\sin \alpha x \cdot \cos \beta x + \sin 2\alpha x} \right]}}{{\cos 2\beta x - \cos 2\alpha x}} \cdot x$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{[2\sin \alpha x\cos \beta x + \sin 2\alpha x]x}}{{2\sin (\alpha  + \beta )x\sin (\alpha  - \beta )x}}$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{[2\sin \alpha x\cos \beta x + 2\sin \alpha x\cos \alpha x]x}}{{2\sin (\alpha  + \beta )x\sin (\alpha  - \beta )x}}$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{2\sin \alpha x[\cos \beta x + \cos \alpha x]x}}{{2\sin (\alpha  + \beta )x\sin (\alpha  - \beta )x}}$

$\left[ {\because \cos C - \cos D = 2\sin \dfrac{{C + D}}{2} \cdot \sin \dfrac{{D - C}}{2}} \right]$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin \alpha x\left[ {2\cos \left( {\dfrac{{\alpha  + \beta }}{2}} \right)x\cos \left( {\dfrac{{\alpha  - \beta }}{2}} \right)x} \right]x}}{{2\sin \left( {\dfrac{{\alpha  + \beta }}{2}} \right)x\cos \left( {\dfrac{{\alpha  + \beta }}{2}} \right)x \cdot 2\sin \left( {\dfrac{{\alpha  - \beta }}{2}} \right)x\cos \left( {\dfrac{{\alpha  - \beta }}{2}} \right)x}}$

$\left[ {\because \cos C + \cos D = 2\cos \dfrac{{C + D}}{2}\cos \dfrac{{C - D}}{2}\operatorname{and} \sin 2\theta  = 2\sin \theta \cos \theta } \right]$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin \alpha x \cdot x}}{{2\sin \left( {\dfrac{{\alpha  + \beta }}{2}} \right)x\sin \left( {\dfrac{{\alpha  - \beta }}{2}} \right)x}}$

$= \dfrac{1}{2}\mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{{\sin \alpha x}}{{\alpha x}} \cdot x \cdot (\alpha x)}}{{2\sin \dfrac{{\left( {\dfrac{{\alpha  + \beta }}{2}} \right)x}}{{\left( {\dfrac{{\alpha  + \beta }}{2}} \right)x}} \cdot \sin \dfrac{{\left( {\dfrac{{\alpha  - \beta }}{2}} \right)x}}{{\left( {\dfrac{{\alpha  - \beta }}{2}} \right)x}} \cdot \left( {\dfrac{{\alpha  + \beta }}{2}} \right)x \cdot \left( {\dfrac{{\alpha  - \beta }}{2}} \right)x}}$

$= \dfrac{{\dfrac{1}{2}\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin \alpha x}}{{\alpha x}} \cdot \alpha {x^2}}}{{\mathop {\lim }\limits_{x \to 0} \sin \dfrac{{\left( {\dfrac{{\alpha  + \beta }}{2}} \right)x}}{{\left( {\dfrac{{\alpha  + \beta }}{2}} \right)x}}\mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\dfrac{{\alpha  - \beta }}{2}} \right)x}}{{\left( {\dfrac{{\alpha  - \beta }}{2}} \right)x}} \cdot \left( {\dfrac{{{\alpha ^2} - {\beta ^2}}}{4}} \right){x^2}}}$

$= \dfrac{1}{2} \cdot \dfrac{{\alpha  \cdot 4}}{{{\alpha ^2} - {\beta ^2}}}\left[ {\dfrac{{\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin \alpha x}}{{\alpha x}}}}{{\mathop {\lim }\limits_{x \to 0} \sin \dfrac{{\left( {\dfrac{{\alpha  + \beta }}{2}} \right)x}}{{\left( {\dfrac{{\alpha  + \beta }}{2}} \right)x}}\mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\dfrac{{\alpha  - \beta }}{2}} \right)x}}{{\left( {\dfrac{{\alpha  - \beta }}{2}} \right)x}}}}} \right]$

$\left[ {\because \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1{\text{ and }}x \to 0 \Rightarrow kx \to 0{\text{ }}} \right]$

$= \dfrac{1}{2} \cdot \dfrac{{4\alpha }}{{{\alpha ^2} - {\beta ^2}}}$

$= \dfrac{{2\alpha }}{{{\alpha ^2} - {\beta ^2}}}$


49. $\mathop{\lim }\limits_{x \rightarrow \dfrac{\pi}{4}} \dfrac{\tan ^{3} x-\tan x}{\cos x+\dfrac{\pi}{4}}$

Ans: Given:

$\mathop {\lim }\limits_{x \to \pi /4} \dfrac{{{{\tan }^3}x - \tan x}}{{\cos \left( {x + \dfrac{\pi }{4}} \right)}}$

We know that,

$\dfrac{0}{0}{\text{ form}}$

$\because {a^2} - {b^2} = (a + b)(a - b)$

$\because \cos A \cdot \cos B - \sin A\sin B = \cos (A + B)$

Let,

$\mathop {\lim }\limits_{x \to \pi /4} \dfrac{{{{\tan }^3}x - \tan x}}{{\cos \left( {x + \dfrac{\pi }{4}} \right)}}$$\left[ {\dfrac{0}{0}{\text{ form}}} \right]$

$= \mathop {\lim }\limits_{x \to \pi /4} \dfrac{{\tan x\left( {{{\tan }^2}x - 1} \right)}}{{\cos \left( {x + \dfrac{\pi }{4}} \right)}} = \mathop {\lim }\limits_{x \to \pi /4} \tan x \cdot \mathop {\lim }\limits_{x \to \pi /4} \left( {\dfrac{{1 - {{\tan }^2}x}}{{\cos \left( {x + \dfrac{{g\pi }}{4}} \right)}}} \right)$

$\left[ {\because {a^2} - {b^2} = (a + b)(a - b)} \right]$

$=  - 1 \times \mathop {\lim }\limits_{x \to \pi /4} \dfrac{{(1 + \tan x)(1 - \tan x)}}{{\cos \left( {x + \dfrac{\pi }{4}} \right)}}$

${=  - \mathop {\lim }\limits_{x \to \pi /4} (1 + \tan x)\mathop {\lim }\limits_{x \to \pi /4} \dfrac{{\cos x - \sin x}}{{\cos x \cdot \cos \left( {x + \dfrac{\pi }{4}} \right)}}}$

$=  - (1 + 1) \times \mathop {\lim }\limits_{x \to \pi /4} \dfrac{{\sqrt 2 \left[ {\dfrac{1}{{\sqrt 2 }} \cdot \cos x - \dfrac{1}{{\sqrt 2 }} \cdot \sin x} \right]}}{{\cos x \cdot \cos \left( {x + \dfrac{\pi }{4}} \right)}}$

$=  - 2\sqrt 2 \mathop {\lim }\limits_{x \to \pi /4} \left[ {\dfrac{{\cos \dfrac{\pi }{4} \cdot \cos x - \sin \dfrac{\pi }{4} \cdot \sin x}}{{\cos x \cdot \cos \left( {x + \dfrac{\pi }{4}} \right)}}} \right]$

$\because \cos A \cdot \cos B - \sin A\sin B = \cos (A + B)$

$=  - 2\sqrt 2 \mathop {\lim }\limits_{x \to \pi /4} \dfrac{{\cos \left( {x + \dfrac{\pi }{4}} \right)}}{{\cos x \cdot \cos \left( {x + \dfrac{\pi }{4}} \right)}}$

$=  - 2\sqrt 2  \times \dfrac{1}{{\dfrac{1}{{\sqrt 2 }}}}$

$=  - 2\sqrt 2  \times \sqrt 2$

$=  - 4$


50. $\mathop{\lim }\limits _{x \rightarrow \pi} \dfrac{1-\sin \dfrac{x}{2}}{\cos \dfrac{x}{2} \cos \dfrac{x}{4}-\sin \dfrac{x}{4}}$

Ans: Given:

$\mathop {\lim }\limits_{x \to \pi } \dfrac{{1 - \sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}\left( {\cos \dfrac{x}{4} - \sin \dfrac{x}{4}} \right)}}$

We know that,

$\because {\sin ^2}\theta  + {\cos ^2}\theta  = \sin 2\theta  = 2\sin \theta \cos \theta$

$\because {\cos ^2}2\theta  = {\cos ^2}\theta  - {\sin ^2}\theta$

$\because {a^2} - {b^2} = (a + b)(a - b]$

Let,

$\mathop {\lim }\limits_{x \to \pi } \dfrac{{1 - \sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}\left( {\cos \dfrac{x}{4} - \sin \dfrac{x}{4}} \right)}}$

$= \mathop {\lim }\limits_{x \to \pi } \dfrac{{{{\cos }^2}\dfrac{x}{4} + {{\sin }^2}\dfrac{x}{4} - 2 \cdot \sin \dfrac{x}{4} \cdot \cos \dfrac{x}{4}}}{{\cos \dfrac{x}{2} \cdot \left( {\cos \dfrac{x}{4} - \sin \dfrac{x}{4}} \right)}}\left[ {\because {{\sin }^2}\theta  + {{\cos }^2}\theta  = 1\sin 2\theta  = 2\sin \theta \cos \theta } \right]$

$= \mathop {\lim }\limits_{x \to \pi } \dfrac{{{{\left( {\cos \dfrac{x}{4} - \sin \dfrac{x}{4}} \right)}^2}}}{{\left( {{{\cos }^2}\dfrac{x}{4} - {{\sin }^2}\dfrac{x}{4}} \right)\left( {\cos \dfrac{x}{4} - \sin \dfrac{x}{4}} \right)}}\quad \left[ {\because {{\cos }^2}2\theta  = {{\cos }^2}\theta  - {{\sin }^2}\theta } \right]$

$= \mathop {\lim }\limits_{x \to \pi } \dfrac{{\left( {\cos \dfrac{x}{4} - \sin \dfrac{x}{4}} \right)}}{{\left( {\cos \dfrac{x}{4} + \sin \dfrac{x}{4}} \right)\left( {\cos \dfrac{x}{4} - \sin \dfrac{x}{4}} \right)}}\quad \left[ {\because {a^2} - {b^2} = (a + b)(a - b} \right]$

$= \mathop {\lim }\limits_{x \to \pi } \dfrac{1}{{\cos \dfrac{x}{4} + \sin \dfrac{x}{4}}}$

$= \dfrac{1}{{\dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }}}}$

$= \dfrac{{\sqrt 2 }}{2}$

$= \dfrac{1}{{\sqrt 2 }}$


51. Show that $\mathop{\lim }\limits_{x \rightarrow 4} \dfrac{|x-4|}{x-4}$ does not exists

Ans: Given:

$\mathop {\lim }\limits_{x \to \pi /4} \dfrac{{|x - 4|}}{{x - 4}}$

Let,

$\mathop {\lim }\limits_{x \to \pi /4} \dfrac{{|x - 4|}}{{x - 4}}$

${\text{LHL}} = \mathop {\lim }\limits_{x \to \dfrac{{{\pi ^ - }}}{4}} \dfrac{{ - (x - 4)}}{{x - 4}}\quad [\because |x - 4| =  - (x - 4),x < 4]$

${\text{       }} =  - 1$

${\text{RHL}} = \mathop {\lim }\limits_{x \to \dfrac{{{\pi ^ + }}}{4}} \dfrac{{(x - 4)}}{{x - 4}}[\because |x - 4| = (x - 4),x > 4]$

${\text{        }} = 1$

$\therefore {\text{LHL}} \ne {\text{RHL}}$

So, limit does not exist


52. Let $f(x)=\dfrac{k \cos x}{\pi-2 x}, when x \neq \dfrac{\pi}{2} \& 3, x=\dfrac{\pi}{2}$ and if $\mathop{\lim }\limits_{x \rightarrow \dfrac{\pi}{2}}$ $f(x)=f\left(\dfrac{\pi}{2}\right)$, find the value of $k$.

Ans:

$\therefore {\text{LHL}} = \mathop {\lim }\limits_{x \to \dfrac{{{\pi ^ - }}}{2}} \dfrac{{k\cos x}}{{\pi  - 2x}}$

$= \mathop {\lim }\limits_{h \to 0} \dfrac{{k\cos \left( {\dfrac{\pi }{2} - h} \right)}}{{\pi  - 2\left( {\dfrac{\pi }{2} - h} \right)}}$

$= \mathop {\lim }\limits_{h \to 0} \dfrac{{k\sin h}}{{\pi  - \pi  + 2h}}$

$= \mathop {\lim }\limits_{h \to 0} \dfrac{{{\text{ksin}}h}}{{2h}}$

$= \dfrac{k}{2}\mathop {\lim }\limits_{h \to 0} \dfrac{{\sin h}}{h}$

$= \dfrac{k}{2} \cdot 1$

$= \dfrac{k}{2}$

${\text{RHL}} = \mathop {\lim }\limits_{x \to \dfrac{{{\pi ^ + }}}{2}} \dfrac{{k\cos x}}{{\pi  - 2x}}$

$= \mathop {\lim }\limits_{x \to \dfrac{\pi }{2}}  + \dfrac{{k\cos \left( {\dfrac{\pi }{2} + h} \right)}}{{\pi  - 2\left( {\dfrac{\pi }{2} + h} \right)}}$

$= \mathop {\lim }\limits_{h \to 0} \dfrac{{ - k\sin h}}{{\pi  - \pi  - 2h}}$

$= \mathop {\lim }\limits_{h \to 0} \dfrac{{k\sin h}}{{2h}}$

$= \dfrac{k}{2}\mathop {\lim }\limits_{h \to 0} \dfrac{{\sin h}}{h}$

$= \dfrac{k}{2}$

${\text{ }}f\left( {\dfrac{\pi }{2}} \right) = 3$ (given)

It is given that,

$\mathop {\lim }\limits_{x \to \pi /2} f(x) = f\left( {\dfrac{\pi }{2}} \right)$

$\Rightarrow \dfrac{k}{2} = 3$

$\therefore k = 6$


53. Let $f(x)= \left\{\begin{align} &  x + 2, x \leq -1 \\ &  c{x^2}, x >  - 1 \end{align} \right.$, find ' $c$ ' if $\mathop{\lim }\limits_{x \rightarrow-1} f(x)$ exists.

Ans: $f(x)= \left\{\begin{align} &  x + 2, x \leq -1 \\ &  c{x^2}, x >  - 1 \end{align} \right.$

${\text{LHL}} = \mathop {\lim }\limits_{x \to  - {1^ - }} f(x)$

$= \mathop {\lim }\limits_{x \to  - {1^ - }} (x + 2)$

$= \mathop {\lim }\limits_{x \to  - {1^ - }} (x + 2)$

$= \mathop {\lim }\limits_{h \to 0} (1 - h) = 1$

${\text{RHL}} = \mathop {\lim }\limits_{x \to  - {1^ + }} f(x)$

$= \mathop {\lim }\limits_{x \to  - {1^ + }} c{x^2}$

$= \mathop {\lim }\limits_{h \to 0} c{( - 1 + h)^2}$

$= c$

If $\mathop {\lim }\limits_{x \to  - 1} f\left( x \right)$ exist, then $LHL = RHL$

$\therefore c = 1$


Objective Type Questions:

Choose the correct answer out of 4 options given against each Exercise 54 to 76 (M.C.Q).

54. $\mathop{\lim }\limits _{x \rightarrow \pi} \dfrac{\sin x}{x-\pi}$ is

(A) 1

(B) 2

(C) $-1$

(D) $-2$

Ans: 

Given: 

$\mathop {\lim }\limits_{x \to \pi } \dfrac{{\sin x}}{{x - \pi }}$

We know that,

$\because \sin \left( {\pi  - \,\theta } \right)\, = \,\sin \theta$

$\because \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1{\text{ and }}\pi  - x \to 0 \Rightarrow x \to \pi$

Let,     

$= \mathop {\lim }\limits_{x \to \pi } \dfrac{{\sin x}}{{x - \pi }}$

$= \mathop {\lim }\limits_{x \to \pi } \dfrac{{\sin \left( {\pi  - x} \right)}}{{ - \left( {\pi  - x} \right)}}{\text{  }}\left[ {{\text{ }}\because \sin \left( {\pi  - \theta } \right) = \sin \theta {\text{ }}} \right]$

$=  - \mathop {\lim }\limits_{x \to \pi } \dfrac{{\sin \left( {\pi  - x} \right)}}{{\left( {\pi  - x} \right)}}\left[ {{\text{ }}\because \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1{\text{ and }}\pi  - x \to 0 \Rightarrow x \to \pi {\text{ }}} \right]{\text{ }}$

$=  - 1$ 

Correct Option:  C 


55. $\mathop{\lim }\limits _{x \rightarrow 0} \dfrac{x^{2} \cos x}{1-\cos x}$ is

(A) 2

(B) $\dfrac{3}{2}$

(C) $\dfrac{-3}{2}$

(D) 1

Ans: Given: 

$\mathop {\lim }\limits_{x \to 0} \dfrac{{{x^2}\cos x}}{{1 - \cos x}}$

We know that,

$\because {\text{ }}1 - \cos x = 2{\sin ^2}\dfrac{x}{2}$

Let,

$\mathop {\lim }\limits_{x \to 0} \dfrac{{{x^2}\cos x}}{{1 - \cos x}}$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{{x^2}\cos x}}{{2{{\sin }^2}\dfrac{x}{2}}}\quad \left[ {\because 1 - \cos x = 2{{\sin }^2}\dfrac{x}{2}} \right]$

$= 2\mathop {\lim }\limits_{x \to 0} \dfrac{{{{\left( {\dfrac{x}{2}} \right)}^2}}}{{{{\sin }^2}\dfrac{x}{2}}} \cdot \mathop {\lim }\limits_{x \to 0} \cos x$

$= 2 \cdot 1 = 2$ 

Correct Option:  A


56. $\mathop{\lim }\limits_{x \rightarrow 0} \dfrac{(1+x)^{n}-1}{x}$ is

(A) $n$

(B) 1

(C) $-n$

(D) 0

Ans: Given:

$\mathop {\lim }\limits_{x \to 0} \dfrac{{{{\left( {1 + x} \right)}^n} - 1}}{x}$

We know that,

$\because \mathop {\lim }\limits_{x \to a} \dfrac{{{x^n} - {a^n}}}{{x - a}} = n{a^{n - 1}}$

Then,

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{{{\left( {1 + x} \right)}^n} - 1}}{x}$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{{{(1 + x)}^n} - 1}}{{(1 + x) - 1}}$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{{{(1 + x)}^n} - {1^n}}}{{(1 + x) - 1}}$

$= \mathop {\lim }\limits_{(1 + x) \to 1} \dfrac{{{{(1 + x)}^n} - {1^n}}}{{(1 + x) - 1}}$

$= n \cdot {(1)^{n - 1}}$\[\left[ {\because \mathop {\lim }\limits_{x \to a} \dfrac{{{x^n} - {a^n}}}{{x - a}} = n{a^{n - 1}}} \right]\]

$= n$

Correct Option:  A


57. $\mathop{\lim }\limits_{x \rightarrow 1} \dfrac{x^{m}-1}{x^{n}-1}$ is

(A) 1

(B) $\dfrac{m}{n}$

(C) $-\dfrac{m}{n}$

(D) $\dfrac{m^{2}}{n^{2}}$

Ans: Given:

$\mathop {\lim }\limits_{x \to 1} \dfrac{{{x^m} - 1}}{{{x^n} - 1}}$

We know that,

\[\because \mathop {\lim }\limits_{x \to a} \dfrac{{{x^n} - {a^n}}}{{x - a}} = n{a^{n - 1}}\]

Then,

$=\lim _{x \rightarrow 1 \atop \rightarrow 1} \dfrac{x^{m}-1}{x^{n}-1}$

$= \mathop {\lim }\limits_{x \to 1} \dfrac{{\dfrac{{{x^m} - 1}}{{x - 1}}}}{{\dfrac{{{x^n} - 1}}{{x - 1}}}}$ 

$= \dfrac{{\mathop {\lim }\limits_{x \to 1} \dfrac{{{x^m} - {1^m}}}{{x - 1}}}}{{\mathop {\lim }\limits_{x \to 1} \dfrac{{{x^n} - {1^n}}}{{x - 1}}}}$

$=\lim _{x \rightarrow 1 \atop \rightarrow 1} \dfrac{x^{m}-1}{x^{n}-1}$

$= \mathop {\lim }\limits_{x \to 1} \dfrac{{\dfrac{{{x^m} - 1}}{{x - 1}}}}{{\dfrac{{{x^n} - 1}}{{x - 1}}}}$

$= \dfrac{{\mathop {\lim }\limits_{x \to 1} \dfrac{{{x^m} - {1^m}}}{{x - 1}}}}{{\mathop {\lim }\limits_{x \to 1} \dfrac{{{x^n} - {1^n}}}{{x - 1}}}}$

$= \dfrac{{m{{(1)}^{m - 1}}}}{{n{{(1)}^{n - 1}}}}$

$= \dfrac{m}{n}\quad \left[ {\because \mathop {\lim }\limits_{x \to a} \dfrac{{{x^n} - {a^n}}}{{x - a}} = n{a^{n - 1}}} \right]$ 

Correct Option:  B


58. $\mathop{\lim }\limits_{x \rightarrow 0} \dfrac{1-\cos 4 \theta}{1-\cos 6 \theta}$ is

(A) $\dfrac{4}{9}$

(B) $\dfrac{1}{2}$

(C) $\dfrac{-1}{2}$

(D) $-1$

Ans: Given:

$\mathop {\lim }\limits_{\theta  \to 0} \dfrac{{1 - \cos 4\theta }}{{1 - \cos 6\theta }}$

We know that,

$\because 1 - \cos 2\theta  = 2{\sin ^2}\theta$

\[\because \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1{\text{ and }}x \to 0 \Rightarrow kx \to 0\]

Let,

$\mathop {\lim }\limits_{\theta  \to 0} \dfrac{{1 - \cos 4\theta }}{{1 - \cos 6\theta }}$

$= \mathop {\lim }\limits_{\theta  \to 0} \dfrac{{2{{\sin }^2}2\theta }}{{2{{\sin }^2}3\theta }}\quad \left[ {\because 1 - \cos 2\theta  = 2{{\sin }^2}\theta } \right]$

\[ = \dfrac{{\mathop {\lim }\limits_{\theta  \to 0} \dfrac{{{{\sin }^2}2\theta }}{{{{(2\theta )}^2}}} \cdot {{(2\theta )}^2}}}{{\mathop {\lim }\limits_{\theta  \to 0} \dfrac{{{{\sin }^2}3\theta }}{{{{(3\theta )}^2}}} \cdot {{(3\theta )}^2}}}{\text{ }}\]

\[ = \dfrac{4}{9} \cdot \dfrac{{\mathop {\lim }\limits_{\theta  \to 0} {{\left( {\dfrac{{\sin 2\theta }}{{2\theta }}} \right)}^2}}}{{\mathop {\lim }\limits_{\theta  \to 0} {{\left( {\dfrac{{\sin 3\theta }}{{3\theta }}} \right)}^2}}}\quad \left[ {\because \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1} \right]\]

$= \dfrac{4}{9}{\text{                            }}\left[ {x \to 0 \Rightarrow kx \to 0} \right]$

Correct Option:  A


59. $\mathop{\lim }\limits_{x \rightarrow 0} \dfrac{\operatorname{cosec} x-\cot x}{x}$ is

(A) $\dfrac{-1}{2}$

(B) 1

(C) $\dfrac{1}{2}$

(D) 1

Ans: Given:

\[\mathop {\lim }\limits_{\theta  \to 0} \dfrac{{\operatorname{co} {\text{sec }}x - \cot x}}{x}{\text{ }}\]

We know that,

$\because \mathop {\lim }\limits_{\theta  \to 0} \dfrac{{\tan \theta }}{\theta } = 1$

Let,

$\mathop {\lim }\limits_{x \to 0} \dfrac{{\operatorname{cosec} x - \cot x}}{x}$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{1}{{\sin x}} - \dfrac{{\cos x}}{{\sin x}}}}{x}$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{1 - \cos x}}{{x \cdot \sin x}}$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{2{{\sin }^2}\dfrac{x}{2}}}{{x \cdot 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{\tan \dfrac{x}{2}}}{x}$${\text{  }}\left[ {\because \mathop {\lim }\limits_{\theta  \to 0} \dfrac{{\tan \theta }}{\theta } = 1} \right]$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{\tan \dfrac{x}{2}}}{{\dfrac{x}{2}}} \cdot \dfrac{1}{2}$

$= \dfrac{1}{2}$

Correct Option:  C


60. $\mathop{\lim }\limits _{x \rightarrow 0} \dfrac{\sin x}{\sqrt{x+1}-\sqrt{1-x}}$ is

(A) 2

(B) 0

(C) 1

(D) $-1$

Ans: Given:

$\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{{\sqrt {x + 1}  - \sqrt {x - 1} }}$

We know that,

$\because \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1$

Let,

$\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{{\sqrt {x + 1}  - \sqrt {1 - x} }}$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{{\sqrt {x + 1}  - \sqrt {1 - x} }} \cdot \dfrac{{\sqrt {x + 1}  + \sqrt {1 - x} }}{{\sqrt {x + 1}  + \sqrt {1 - x} }}$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x(\sqrt {x + 1}  + \sqrt {1 - x} )}}{{(x + 1) - (1 - x)}}$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x(\sqrt {x + 1}  + \sqrt {1 - x} )}}{{x + 1 - 1 + x}}$

$= \dfrac{1}{2}\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x}\mathop {\lim }\limits_{x \to 0} (\sqrt {x + 1}  + \sqrt {1 - x} )$

$= \dfrac{1}{2} \cdot 1 \cdot 2\,\left[ {\because \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1} \right]$

$= 1\quad$ 

Correct Option:  C


61. $\mathop{\lim }\limits_{x \rightarrow \dfrac{\pi}{4}} \dfrac{\sec ^{2} x-2}{\tan x-1}$ is

(A) 3

(B) 1

(C) 0

(D) $\sqrt{2}$

Ans: Given:

$\mathop {\lim }\limits_{x \to \pi /4} \dfrac{{{\text{se}}{{\text{c}}^2}{\text{ }}x - 2}}{{{\text{tan }}x - 1}}$

We know that,

\[\because \sec x = 1 + \tan x\]

\[\because {a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]

Let,

$\mathop {\lim }\limits_{x \to \pi /4} \dfrac{{{{\sec }^2}x - 2}}{{\tan x - 1}}$

$= \mathop {\lim }\limits_{x \to \pi /4} \dfrac{{1 + {{\tan }^2}x - 2}}{{\tan x - 1}}$

$= \mathop {\lim }\limits_{x \to \pi /4} \dfrac{{{{\tan }^2}x - 1}}{{\tan x - 1}}$

$= \mathop {\lim }\limits_{x \to \pi /4} \dfrac{{(\tan x + 1)(\tan x - 1)}}{{(\tan x - 1)}}$

$= \mathop {\lim }\limits_{x \to \pi /4} (\tan x + 1)$

$= 2$

Correct Option:  D


62. $\mathop{\lim }\limits_{x \rightarrow 1} \dfrac{(\sqrt{x}-1)(2 x-3)}{2 x^{2}+x-3}$ is

(A) $\dfrac{1}{10}$

(B) $\dfrac{-1}{10}$

(C) 1

(D) None of these

Ans: Given:

$\mathop {\lim }\limits_{x \to 1} \dfrac{{(\sqrt x  - 1)(2x - 3)}}{{(2{x^2} + x - 3)}}$

We know that,

\[\because {a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]

Let,

$\mathop {\lim }\limits_{x \to 1} \dfrac{{(\sqrt x  - 1)(2x - 3)}}{{2{x^2} + x - 3}}$

$= \mathop {\lim }\limits_{x \to 1} \dfrac{{(\sqrt x  - 1)(2x - 3)}}{{(2x + 3)(x - 1)}}$

$= \mathop {\lim }\limits_{x \to 1} \dfrac{{(\sqrt x  - 1)(2x - 3)}}{{(2x + 3)(\sqrt x  - 1)(\sqrt x  + 1)}}$

$= \mathop {\lim }\limits_{x \to 1} \dfrac{{2x - 3}}{{(2x + 3)(\sqrt x  + 1)}}$

$= \dfrac{{ - 1}}{{5 \times 2}}$

$= \dfrac{{ - 1}}{{10}}$

Correct Option:  B


63. If $f(x)=\dfrac{\sin [x]}{[x]}, [x] \neq 0$, $[x]=0$, where [.] denotes the greatest integer function, then $\mathop{\lim }\limits_{x \rightarrow 0} f(x)$ is equal to

(A) 1

(B) 0

(C) $-1$

(D) None of these

Ans:

Let,

$f\left( x \right) = \dfrac{{\sin \left[ x \right]}}{{\left[ x \right]}},{\text{  }}\left[ x \right] \ne 0$

$0,{\text{           }}\left[ x \right] = 0$ 

${\text{LHL}} = \mathop {\lim }\limits_{x \to {0^ - }} f(x)$

${\text{       }} = \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\sin [x]}}{{[x]}}$

${\text{       }} = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin [0 - h]}}{{[0 - h]}}$

${\text{       }} = \mathop {\lim }\limits_{h \to 0} \dfrac{{ - \sin [ - h]}}{{[ - h]}} =  - 1$

${\text{RHL}} = \mathop {\lim }\limits_{x \to {0^ + }} f(x)$

${\text{        }} = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\sin [x]}}{{[x]}}$

${\text{        }} = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\sin [0 + h]}}{{[0 + h]}}$

${\text{        }} = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin [h]}}{{[h]}} = 1$

\[{\text{LHL}} \ne {\text{RHL}}\]

Therefore, the limit does not exist.

Correct Option:  D


64. $\mathop{\lim }\limits _{x \rightarrow 0} \dfrac{|\sin x|}{x}$ is

(A) 1

(B) $-1$

(C) does not exist

(D) None of these

Ans: 

\[\therefore {\text{ }}LHL = \mathop {\lim }\limits_{x \to {0^ - }} \left( {\dfrac{{ - \sin x}}{x}} \right)\]

\[{\text{           }} =  - \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\sin x}}{x}\]

\[{\text{           }} =  - 1\]

\[{\text{   }}RHL = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\sin x}}{x}\]

\[{\text{           }} = 1\]

\[\because LHL \ne RHL\]

Thus, the limit does not exist.

Correct Option :  C


65. Let $f(x)= \left\{ \begin{align} & {x}^{2}-1,0<x<2 \\& 2x+3,2 \leq x<3  \\ \end{align} \right.$, the quadratic equation whose roots are $\mathop {\lim }\limits_{x \rightarrow 2^{-}} f(x)$ and $\mathop {\lim }\limits_{x \rightarrow 2^{+}} f(x)$ is

(A) $x^{2}-6 x+9=0$

(B) $x^{2}-7 x+8=0$

(C) $x^{2}-14 x+49=0$

(D) $x^{2}-10 x+21=0$

Ans: $\therefore \mathop {\lim }\limits_{x \to {2^ - }} f(x) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {{x^2} - 1} \right)$

${\text{                    }} = \mathop {\lim }\limits_{h \to 0} \left[ {{{(2 - h)}^2} - 1} \right]$

${\text{                    }} = \mathop {\lim }\limits_{h \to 0} \left( {4 + {h^2} - 4h - 1} \right)$

${\text{                    }} = \mathop {\lim }\limits_{h \to 0} \left( {{h^2} - 4h + 3} \right)$

${\text{                    }} = 3$

${\text{and}}\mathop {\lim }\limits_{x \to {2^ + }} f(x) = \mathop {\lim }\limits_{x \to {2^ + }} (2x + 3)$

${\text{                    }} = \mathop {\lim }\limits_{h \to 0} [2(2 + h) + 3]$

${\text{                    }} = \mathop {\lim }\limits_{h \to 0} (4 + 2h + 3)$

${\text{                    }} = 7$

Thus, quadratic equation whose roots are $3{\text{ and }}7$

${x^2} - \left( {3 + 7} \right)x + 3 \times 7 = 0$

$i.e,{\text{ }}{x^2} - 10x + 21 = 0$

Correct Option :  D


66. $\mathop {\lim }\limits_{x \rightarrow 0} \dfrac{\tan 2 x-x}{3 x-\sin x}$ is

(A) 2

(B) $\dfrac{1}{2}$

(C) $\dfrac{-1}{2}$

(D) $\dfrac{1}{4}$

Ans: Correct Option :  B

Given:

$\mathop {\lim }\limits_{x \to 0} \dfrac{{\tan 2x - x}}{{3x - \sin x}}$

We know that,

$\because \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1$

$\because \mathop {\lim }\limits_{x \to 0} \dfrac{{\tan x}}{x} = 1$

$x \to 0 \Rightarrow kx \to 0$

Let,

$\mathop {\lim }\limits_{x \to 0} \dfrac{{\tan 2x - x}}{{3x - \sin x}}$

$= \mathop {\lim }\limits_{x \to 0} \dfrac{{x\left[ {\dfrac{{\tan 2x}}{x} - 1} \right]}}{{x\left[ {3 - \dfrac{{\sin x}}{x}} \right]}}$

$= \dfrac{{\mathop {\lim }\limits_{x \to 0} 2 \times \dfrac{{\tan 2x}}{{2x}} - 1}}{{3 - \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x}}}$ 

${\because \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1}$

$\left[ {x \to 0 \Rightarrow kx \to 0} \right]$

$\left[ {\because \mathop {\lim }\limits_{x \to 0} \dfrac{{\tan x}}{x} = 1} \right]$ 

$= \dfrac{{2 - 1}}{{3 - 1}}$

$= \dfrac{1}{2}$


67. Let $f(x)=x-[x] ; \in \mathbf{R}$, then $f^{\prime} \dfrac{1}{2}$ is

(A) $\dfrac{3}{2}$

(B) 1

(C) 0

(D) $-1$

Ans: $f\left( x \right) = x - \left[ x \right]$ (given)

$f'\left( x \right) = 1 + 0$

${\text{         }} = 1$ 

\[\left[ {\because \dfrac{d}{{dx}}x = 1{\text{ and }}\dfrac{d}{{dx}}\left[ x \right] = 0} \right]\]

Therefore, \[f'\left( {\dfrac{1}{2}} \right) = 1\]

Correct Option:  B


68. If $y=\sqrt{x}+\dfrac{1}{\sqrt{x}}$, then $\dfrac{d y}{d x}$ at $x=1$ is

(A) 1

(B) $\dfrac{1}{2}$

(C) $\dfrac{1}{\sqrt{2}}$

(D) 0

Ans: Given:

\[y = \sqrt x  + \dfrac{1}{{\sqrt x }}\]

We know that,

We will differentiate the given equation using chain rule

\[\because \dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \cdot \dfrac{{du}}{{dx}}\]

Then,

$y = \sqrt x  + \dfrac{1}{{\sqrt x }}$

${\text{now, }}\dfrac{{dy}}{{dx}} = \dfrac{1}{{2\sqrt x }} - \dfrac{1}{{2{x^{3/2}}}}$

$\therefore {\text{ }}{\left( {\dfrac{{dy}}{{dx}}} \right)_{x = 1}} = \dfrac{1}{2} - \dfrac{1}{2}$

${\text{                 }} = 0$

Correct Option:  D


69. If $f(x)=\dfrac{x-4}{2 \sqrt{x}}$, then $f^{\prime}(1)$ is

(A) $\dfrac{5}{4}$

(B) $\dfrac{4}{5}$

(C) 1

(D) 0

Ans: Given:

$f\left( x \right) = \dfrac{{x - 4}}{{2\sqrt x }}$

We know that, Differentiate  \[f\left( x \right)\]

\[\because \dfrac{d}{{dx}}\left( {uv} \right) = v\dfrac{d}{{dx}}u + u\dfrac{d}{{dx}}v\]

At last putting \[1\] in \[f'\left( x \right)\] to get the final answer

Then,$f\left( x \right) = \dfrac{{x - 4}}{{2\sqrt x }}$

$f'\left( x \right) = \dfrac{{2\sqrt x  - (x - 4) \cdot 2 \cdot \dfrac{1}{{2\sqrt x }}}}{{4x}}$       (by quotient rule)

${\text{         }} = \dfrac{{2x - (x - 4)}}{{4{x^{3/2}}}}$

${\text{          }} = \dfrac{{2x - x + 4}}{{4{x^{3/2}}}}$

${\text{          }} = \dfrac{{x + 4}}{{4{x^{3/2}}}}$

$f'\left( 1 \right) = \dfrac{{1 + 4}}{{4 \times {{(1)}^{3/2}}}}$

${\text{           = }}\dfrac{5}{4}$

Correct Option :  A


70. If $y=\dfrac{1+\dfrac{1}{x^{2}}}{1-\dfrac{1}{x^{2}}}$, then $\dfrac{d y}{d x}$ is

(A) $\dfrac{-4 x}{\left(x^{2}-1\right)^{2}}$

(B) $\dfrac{-4 x}{x^{2}-1}$

(C) $\dfrac{1-x^{2}}{4 x}$

(D) $\dfrac{4 x}{x^{2}-1}$

Ans: Given:

$y = \dfrac{{1 + \dfrac{1}{{{x^2}}}}}{{1 - \dfrac{1}{{{x^2}}}}}$

We know that, We will differentiate the given equation using quotient rule

\[\because \dfrac{d}{{dx}}\left( {uv} \right) = v\dfrac{d}{{dx}}u + u\dfrac{d}{{dx}}v\]

Then,

\[y = \dfrac{{1 + \dfrac{1}{{{x^2}}}}}{{1 - \dfrac{1}{{{x^2}}}}}\]

\[{\text{  }} = \dfrac{{{x^2} + 1}}{{{x^2} - 1}}\]

Differentiating \[y\] w.r.t  \[x\]

\[\dfrac{{dy}}{{dx}} = \dfrac{{\left( {{x^2} - 1} \right)2x - \left( {{x^2} + 1} \right)(2x)}}{{{{\left( {{x^2} - 1} \right)}^2}}}{\text{ }}\left[ {{\text{By Quotient rule}}} \right]\]

\[ = \dfrac{{2x\left( {{x^2} - 1 - {x^2} - 1} \right)}}{{{{\left( {{x^2} - 1} \right)}^2}}}\]

\[ = \dfrac{{2x( - 2)}}{{{{\left( {{x^2} - 1} \right)}^2}}}\]

\[ = \dfrac{{ - 4x}}{{{{\left( {{x^2} - 1} \right)}^2}}}\]

Correct Option:  A


71. If $y=\dfrac{\sin x+\cos x}{\sin x-\cos x} \text {, then } \dfrac{d y}{d x} \text { at } x=0$ is

(A) $-2$

(B) 0

(C) $\dfrac{1}{2}$

(D) does not exist

Ans: Given, 

\[y = \dfrac{{\sin x + \cos x}}{{\sin x - \cos x}}\]

Now, Differentiating \[y\] w.r.t  \[x\]

\[\dfrac{{dy}}{{dx}} = \dfrac{{\sin x + \cos x}}{{\sin x - \cos x}}\]

\[\dfrac{{dy}}{{dx}} = \dfrac{{(\sin x - \cos x)(\cos x - \sin x) - (\sin x + \cos x)(\cos x + \sin x)}}{{{{(\sin x - \cos x)}^2}}}{\text{ }}\left[ {{\text{by quotient rule}}} \right]\]$= \dfrac{{ - {{(\sin x - \cos x)}^2} - {{(\sin x + \cos x)}^2}}}{{{{(\sin x - \cos x)}^2}}}$

$= \dfrac{{ - \left[ {{{(\sin x - \cos x)}^2} + {{(\sin x + \cos x)}^2}} \right]}}{{{{(\sin x - \cos x)}^2}}}$

$= \dfrac{{ - \left[ {{{\sin }^2}x + {{\cos }^2}x - 2\sin x\cos x + {{\sin }^2}x + {{\cos }^2}x + 2\sin x\cos x} \right]}}{{{{(\sin x - \cos x)}^2}}}$

$= \dfrac{{ - 2}}{{{{(\sin x - \cos x)}^2}}}$

\[\therefore {\left( {\dfrac{{dy}}{{dx}}} \right)_{x = 0}} =  - 2\]

Correct Option:  A


72. If $y=\dfrac{\sin (x+9)}{\cos x}$ then $\dfrac{d y}{d x}$ at $x=0$ is

(A) $\cos 9$

(B) $\sin 9$

(C) 0

(D) 1

Ans: Given, $y = \dfrac{{\sin (x + 9)}}{{\cos x}}$

 Differentiating \[y\] w.r.t  \[x\]

$\dfrac{{dy}}{{dx}} = \dfrac{{\cos x\cos (x + 9) - \sin (x + 9)( - \sin x)}}{{{{(\cos x)}^2}}}\left[ {{\text{by quotient rule}}} \right]$

$= \dfrac{{\cos x\cos (x + 9) + \sin x\sin (x + 9)}}{{{{\cos }^2}x}}\left[ {\because \cos x\cos y + \sin x\sin y = \cos \left( {x - y} \right)} \right]$

$= \dfrac{{\cos \left( {x + 9 - x} \right)}}{{{{\cos }^2}x}}$

${\left( {\dfrac{{dy}}{{dx}}} \right)_{x = 0}} = \dfrac{{\cos 9}}{1}$

$= \cos 9$

Correct Option:  A


73. If $f(x)=1+x+\dfrac{x^{2}}{2}+\ldots+ \dfrac{x^{100}}{100}$, then $f^{\prime}(1)$ is equal to

(A) $\dfrac{1}{100}$

(B) 100

(C) does not exist

(D) 0

Ans: Given:

$f\left( x \right) = 1 + x + \dfrac{{{x^2}}}{2} + ... + \dfrac{{{x^{100}}}}{{100}}$

We know that,Differentiating the \[f\left( x \right)\] w.r.t  \[x\]

Then, putting \[x = 1\] in the solved equation

Then,

\[{\text{          }}f\left( x \right) = 1 + x + \dfrac{{{x^2}}}{2} + ... + \dfrac{{{x^{100}}}}{{100}}\]

 Differentiating the equation w.r.t  \[x\]

\[{\text{         }}f\left( x \right)' = 0 + 1 + 2 \times \dfrac{x}{2} + ... + \dfrac{{{x^{100}}}}{{100}}\]

\[\therefore {\text{      }}f\left( x \right)' = 1 + x + {x^2} + ... + {x^{99}}\]

Now, putting \[x = 1\]in the solved equation

\[{\text{Now, }}f\left( x \right)' = 1 + 1 + 1 + ... + 1\left( {100{\text{ times}}} \right)\]

\[{\text{                  }} = 100\]

Correct Option :  B


74. If $f(x)=\dfrac{x^{n}-a^{n}}{x-a}$ for some constant ' $a$ ', then $f^{\prime}(a)$ is

(A) 1

(B) 0

(C) does not exist

(D) $\dfrac{1}{2}$

Ans: Given:

\[{\text{ }}f\left( x \right) = \dfrac{{{x^n} - {a^n}}}{{x - a}}\]

We know that, Differentiating the given equation by quotient rule

\[\because \dfrac{d}{{dx}}\left( {uv} \right) = v\dfrac{d}{{dx}}u + u\dfrac{d}{{dx}}v\]

Putting  \[a\] in the solved equation to get the final answer

Then,

\[{\text{ }}f\left( x \right) = \dfrac{{{x^n} - {a^n}}}{{x - a}}\]

Differentiating the given equation w.r.t  \[x\]

$\therefore {\text{ }}f'(x) = \dfrac{{(x - a)n{x^{n - 1}} - \left( {{x^n} - {a^n}} \right)(1)}}{{{{(x - a)}^2}}}{\text{ }}\left[ {{\text{by quotient rule}}} \right]$

$\Rightarrow f'(x) = \dfrac{{n{x^{n - 1}}(x - a) - {x^n} + {a^n}}}{{{{(x - a)}^2}}}$

${\text{Now, }}f'(a) = \dfrac{{n{a^{n - 1}}(0) - {a^n} + {a^n}}}{{{{(x - a)}^2}}}$

$\Rightarrow {\text{      }}{f^\prime }(a) = \dfrac{0}{0}$

So, \[f'\left( a \right)\] does not exist,

Since, \[f\left( x \right)\] is not defined at \[x = a\].

Hence, \[f'\left( x \right)\] at \[x = a\] does not exist.

Correct Option :  D


75. If $f(x)=x^{100}+x^{99}+\ldots+x+1$, then $f^{\prime}(1)$ is equal to

(A) 5050

(B) 5049

(C) 5051

(D) 50051

Ans: Given:

\[{\text{ }}f\left( x \right) = {x^{100}} + {x^{99}} + ... + x + 1\]

We know that,Differentiating $f\left( x \right)$ w.r.t $x$

Then using this formula to find sum

${S_n} = \dfrac{n}{2}\{ 2a + (n - 1)d\}$

Then, $f(x) = {x^{100}} + {x^{99}} +  \ldots  + x + 1$

Differentiating w.r.t $x$

$\therefore f'(x) = 100{x^{99}} + 99{x^{98}} +  \ldots  + 1 + 0$

$= 100{x^{99}} + 99{x^{98}} +  \ldots  + 1$

${\text{Now, }}f'(1) = 100 + 99 +  \ldots  + 1$

${\text{                 }} = \dfrac{{100}}{2}[2 \times 100 + (100 - 1)( - 1)]\,\left[ {\because {S_n} = \dfrac{n}{2}\{ 2a + (n - 1)d\} } \right]$

${\text{                 }} = 50[200 - 99]\quad$

${\text{                 }} = 50 \times 101$

${\text{                 }} = 5050$

Correct Option:  A


76. If $f(x)=1-x+x^{2}-x^{3} \ldots-x^{99}+x^{100}$, then $f^{\prime}(1)$ is equal to

(A) 150

(B) $-50$

(C) $-150$

(D) 50

Ans: Given:

$f\left( x \right) = 1 - x + {x^2} - {x^3} + ... - {x^{99}} + {x^{100}}$

We know that, Differentiating $f\left( x \right)$ w.r.t $x$

Then using this formula to find sum

${S_n} = \dfrac{n}{2}\{ 2a + (n - 1)d\}$

Then,

$f\left( x \right) = 1 - x + {x^2} - {x^3} + ... - {x^{99}} + {x^{100}}$

Differentiating above equation w.r.t $x$

$f'(x) = 0 - 1 + 2x - 3{x^2} +  \ldots  - 99{x^{98}} + 100{x^{99}}$

$=  - 1 + 2x - 3{x^2} +  \ldots  - 99{x^{98}} + 100{x^{99}}{f^\prime }(1)$

$=  - 1 + 2 - 3 +  \ldots  - 99 + 100$

$\therefore f'\left( x \right) = ( - 1 - 3 - 5 -  \ldots  - 99) + (2 + 4 +  \ldots  + 100)$

$=  - \dfrac{{50}}{2}[2 \times 1 + (50 - 1)2] + \dfrac{{50}}{2}[2 \times 2 + (50 - 1)2]\,{\text{ }}\left[ {{S_n} = \dfrac{n}{2}\{ 2a + (n - 1)d\} } \right]$

$=  - 25[2 + 49 \times 2] + 25[4 + 49 \times 2]$

$=  - 25(2 + 98) + 25(4 + 98)$

$=  - 25 \times 100 + 25 \times 102$

$=  - 2500 + 2550$

$= 50$

Correct Option :  A


Fill in the blanks in Exercises 77 to 80: 

77. If $f(x)=\dfrac{\tan x}{x-\pi}$, then $\mathop {\lim }\limits _{x \rightarrow \pi} f(x)=$

Ans: Given:

\[f\left( x \right) = \dfrac{{\tan x}}{{x - \pi }}\]

We know that,

$\because \mathop {\lim }\limits_{x \to 0} \dfrac{{\tan x}}{x} = 1{\text{ }}$

Then,

\[f\left( x \right) = \dfrac{{\tan x}}{{x - \pi }}\]

\[ \Rightarrow \mathop {\lim }\limits_{x \to \pi } f\left( x \right) = \mathop {\lim }\limits_{x \to \pi } \dfrac{{\tan x}}{{x - \pi }}\]

\[{\text{                  }} = \mathop {\lim }\limits_{\pi  - x \to 0} \dfrac{{ - \tan \left( {\pi  - x} \right)}}{{x - \pi }}\]$\left[ {\because \mathop {\lim }\limits_{x \to 0} \dfrac{{\tan x}}{x} = 1{\text{ }}} \right]$

\[{\text{                  }} = 1\]


78. $\mathop{\lim}\limits _{x \rightarrow 0} \sin m x \cot \dfrac{x}{\sqrt{3}}=2$, then $m=$

Ans: Given:

\[\mathop {\lim }\limits_{x \to 0} \left( {\sin mx{\text{cot}}\dfrac{x}{{\sqrt 3 }}} \right) = 2\]

We know that,

\[\because {\text{cot}}\dfrac{x}{{\sqrt 3 }} = \dfrac{1}{{\tan \dfrac{x}{{\sqrt 3 }}}}\]

Then,

\[\mathop {\lim }\limits_{x \to 0} \left( {\sin mx{\text{cot}}\dfrac{x}{{\sqrt 3 }}} \right) = 2\] (given)

Multiplying $\dfrac{{mx}}{{mx}}$ in L.H.S  $\left[ {\because \dfrac{{mx}}{{mx}} = 1} \right]$

$\Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin mx}}{{mx}} \cdot mx \cdot \dfrac{1}{{\tan \dfrac{x}{{\sqrt 3 }}}} = 2$\[\left[ {\because {\text{cot}}\dfrac{x}{{\sqrt 3 }} = \dfrac{1}{{\tan \dfrac{x}{{\sqrt 3 }}}}} \right]\]

Multiplying and dividing \[\dfrac{x}{{\sqrt 3 }}\]in numerator and denominator in L.H.S

$\Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin mx}}{{mx}} \cdot mx \cdot \dfrac{{\dfrac{x}{{\sqrt 3 }}}}{{\tan \dfrac{x}{{\sqrt 3 }}}} \cdot \dfrac{1}{{\dfrac{x}{{\sqrt 3 }}}} = 2$

$\Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin mx}}{{mx}} \cdot \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{x}{{\sqrt 3 }}}}{{\tan \dfrac{x}{{\sqrt 3 }}}} \cdot \mathop {\lim }\limits_{x \to 0} \dfrac{{mx}}{{\dfrac{x}{{\sqrt 3 }}}} = 2$

$\Rightarrow \sqrt 3 x = 2$

$\therefore m = \dfrac{{2\sqrt 3 }}{3}$


79. if $y=1+\dfrac{x}{1 !}+\dfrac{x^{2}}{2 !}+\dfrac{x^{3}}{3 !}+\ldots$, then $\dfrac{d y}{d x}=$

Ans: Given:

$y = 1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + ...$

Then,

$y = 1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^4}}}{{4!}} +  \ldots$ (given)

$\therefore \dfrac{{dy}}{{dx}} = 0 + 1 + \dfrac{{2x}}{2} + \dfrac{{3{x^2}}}{6} + \dfrac{{4{x^3}}}{{4!}}$

${\text{       }} = 1 + x + \dfrac{{{x^2}}}{2} + \dfrac{{{x^3}}}{6} +  \ldots$

${\text{       }} = 1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} +  \ldots$

${\text{        }} = y$


80. $\mathop {\lim }\limits_{x \to {3^ + }} \dfrac{x}{{\left[ x \right]}}=$

Ans: $\mathop {\lim }\limits_{x \to {3^ + }} \dfrac{x}{{\left[ x \right]}}$

$= \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {3 + h} \right)}}{{\left[ {3 + h} \right]}}$

$= \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {3 + h} \right)}}{{\left[ 3 \right]}}$

$= 1$ 


Ncert Exemplar Solutions For Class 11 Mathematics Chapter 13 Limits And Derivatives

The NCERT Exemplar solutions for class 11 provide a comprehensive solution for all the questions in the NCERT Exemplar textbook to the students of class 11 maths. To perform well in the board examinations, the students can refer to these solutions, which will help them increase their level of confidence, as the concepts are clearly structured and explained by the subject experts at Vedantu. The solutions here are prepared and reviewed by the field experts and are revised according to the latest NCERT syllabus and the guidelines of the CBSE board. The NCERT Exemplar books are widely used by the students who want to excel in the board exams, as it provides them with a vast number of questions to solve and practice. With the help of the NCERT Exemplar Solutions, the class 11 students will be able to solve the complex problems in each exercise of the textbook.

 

Chapter 13 Limits and Derivatives of the NCERT Exemplar Solutions for Class 11 Maths is a good study resource. The chapter Limits and Derivatives explains the limits of a function. We at Vedantu have provided the answers to the NCERT Exemplar Solutions in simple PDF format for the students, which they can easily download from Vedantu’s website. The solutions will help the students to clarify their doubts and provide them with a strong foundation for every concept. 

 

Important Topics of Chapter-13 Limits and Derivatives

The important topics here include the following:

  • Limits of a function

  • Some properties of limits

  • Limits of polynomials and rational functions

  • Limits of trigonometric functions

  • Derivatives

  • Algebra of derivatives of functions

FAQs on NCERT Exemplar for Class 11 Maths Chapter 13 - Limits and Derivatives (Book Solutions)

1. What is the NCERT Exemplar for Class 11 Maths Chapter 13 - Limits and Derivatives (Book Solutions)?

The NCERT exemplar for Class 11 is the book published by the NCERT of the CBSE board. The NCERT Exemplar book for Class 11 NCERT consists of several advanced-level questions from every chapter. The questions are highly conceptual and application-based to promote logical thinking amongst the students. The solutions for these NCERT Exemplar Class 11 Maths are provided at Vedantu’s site for the students to assess the solutions and prepare for the final exams. Moreover, the NCERT Exemplar is also helpful for the students preparing for the competitive exams that lie ahead. 

2. How Can I download the NCERT exemplar for Class 11 Maths Chapter-13 Limits and Derivatives?

The NCERT or the National Council of Educational Research and Training develops the NCERT Exemplar books for the students of CBSE. In particular, the Exemplar books are prepared for the students to enlighten them with the subject knowledge in depth and prepare for the competitive exams that lie ahead in the future. Moreover, the students can download the books in pdf format available for free download from Vedantu’s website. The study material provided on Vedantu’s website is available for the students in an organized manner fr their ease of access.

3. Should I solve the NCERT Exemplar Maths Class 11 for exams?

The NCERT Exemplar textbooks play an important role in the preparation for the Class 11 exams as well as competitive examinations like JEE Mains and advanced, NEET, and other boards. To make the student’s concepts strong and comprehend the topics smoothly and quickly, it is recommended that the students start their preparation with NCERT books and move on to solve the NCERT Exemplar books. Covering all the chapters for the exam will help the students to get a variety of challenging questions in different formats asked for in the NCERT Exemplar Mathematics at the end of every chapter. Solving the NCERT Exemplar questions will surely help the students in mastering the subject with ease.

4. Does Vedantu provide the NCERT Maths Exemplar Class 11 solutions?

The students of CBSE Class 11 can access the NCERT Maths Exemplar Class 11 solutions here on our website. We at Vedantu provide solutions on our online platform for the students. The solutions available on Vedantu are designed by experts after thorough research and understanding of the concepts. The students can use them as reliable answers and also understand their weak areas and start working on them. The solutions for the NCERT Exemplar are based entirely on the latest syllabus, where the students can find the complete set of answers-questions in the solutions in a well-structured format for their study.

5. Does Vedantu provide the NCERT Exemplar Solutions for Class 11 Maths in PDF for free?

Yes, Vedantu provides its students with the free pdf for the NCERT Exemplar solutions for class 11 Maths. The students can click on the links provided on the website and download chapter-wise Exemplar questions and answers in PDF format. The pdf format will help the students to save the answers for future reference and easily look at them at the time of revision. The NCERT Exemplar solutions will also help the students to learn, practice, and work on their maths effectively to score well in the final exams.