
\[{{N}_{2}}{{H}_{4}}\] is a strong baser than \[N{{H}_{3}}\]and \[{{N}_{3}}H\] is weaker acid than \[N{{H}_{3}}COOH.\]
(A) True
(B) False
Answer
221.1k+ views
Hint: To answer this question, we can use the concept of conjugate acid. For the correct answer of this question, we should know that conjugate acids are a type of acid that is formed when a base accepts a proton in solution.
Step by step answer:
We have to state that, whether \[{{N}_{2}}{{H}_{4}}\] is a strong baser than \[N{{H}_{3}}\] or not. We can answer this question by the concept conjugate acid-base pair. We should note that whenever an acid donates a proton, the acid changes into a base, and whenever a base accepts a proton, an acid is formed. An acid and a base which differ only by the presence or absence of a proton conjugate acid-base pair.
We should know about the theory of Bronsted-Lowry. It states that an acid is a proton donor and a base is a proton acceptor. We should know that, if an acid has given up a proton, the remaining part can be a proton acceptor, and thus a base. So, after this we say, an acid and a base are closely related to one another.
\[{{H}^{+}}+Base\rightleftarrows Conjugate\,acid\,ofBas{{e}^{+}}\]
\[Acid\rightleftarrows {{H}^{+}}+ConjugatebaseofAci{{d}^{-}}\]
We should know that \[N{{H}_{3}}\] is a weak base. In other words, when it donates a proton, the weak acid NH4+ is transformed into a weak base\[N{{H}_{3}}\].
And by using the above theory of conjugate acid base we can describe the above statement. By using conjugate base concept we can say that \[{{N}_{2}}{{H}_{4}}\] is not stronger base than \[N{{H}_{3}}\]. Because, \[N{{H}_{3}}\] conjugate acid \[N{{H}_{3}}^{+}~\] is more stable and acidic than \[{{N}_{2}}{{H}_{5}}^{+}.\] In the same way we can say that \[{{N}_{3}}H\] is not weaker acid than \[N{{H}_{3}}COOH.\]. It is stronger acid that \[N{{H}_{3}}COOH.\]
So, the above statement that is given in question is not true. It is a false statement.
Note:
The first concept on acid and base was given in 1884. Arrhenius stated that all acids have \[{{\text{H}}^{+}}\] ions and bases have \[\text{O}{{\text{H}}^{-}}\] ions. Thus, he considered all substances giving \[{{\text{H}}^{+}}\] and \[\text{O}{{\text{H}}^{-}}\] ions are acids and bases respectively. And then Bronsted, Lowry and Lewis give different concepts about acid and base.
We should know that Bronsted-Lowry's concept focused on the proton and he stated that:
(i) Acids as proton donors,
(ii) Bases as proton acceptors,
We should also know about Lewis theory, he focused on the electrons and defined that:
(i) Acids as electrophiles,
(ii) Bases as nucleophiles.
Step by step answer:
We have to state that, whether \[{{N}_{2}}{{H}_{4}}\] is a strong baser than \[N{{H}_{3}}\] or not. We can answer this question by the concept conjugate acid-base pair. We should note that whenever an acid donates a proton, the acid changes into a base, and whenever a base accepts a proton, an acid is formed. An acid and a base which differ only by the presence or absence of a proton conjugate acid-base pair.
We should know about the theory of Bronsted-Lowry. It states that an acid is a proton donor and a base is a proton acceptor. We should know that, if an acid has given up a proton, the remaining part can be a proton acceptor, and thus a base. So, after this we say, an acid and a base are closely related to one another.
\[{{H}^{+}}+Base\rightleftarrows Conjugate\,acid\,ofBas{{e}^{+}}\]
\[Acid\rightleftarrows {{H}^{+}}+ConjugatebaseofAci{{d}^{-}}\]
We should know that \[N{{H}_{3}}\] is a weak base. In other words, when it donates a proton, the weak acid NH4+ is transformed into a weak base\[N{{H}_{3}}\].
And by using the above theory of conjugate acid base we can describe the above statement. By using conjugate base concept we can say that \[{{N}_{2}}{{H}_{4}}\] is not stronger base than \[N{{H}_{3}}\]. Because, \[N{{H}_{3}}\] conjugate acid \[N{{H}_{3}}^{+}~\] is more stable and acidic than \[{{N}_{2}}{{H}_{5}}^{+}.\] In the same way we can say that \[{{N}_{3}}H\] is not weaker acid than \[N{{H}_{3}}COOH.\]. It is stronger acid that \[N{{H}_{3}}COOH.\]
So, the above statement that is given in question is not true. It is a false statement.
Note:
The first concept on acid and base was given in 1884. Arrhenius stated that all acids have \[{{\text{H}}^{+}}\] ions and bases have \[\text{O}{{\text{H}}^{-}}\] ions. Thus, he considered all substances giving \[{{\text{H}}^{+}}\] and \[\text{O}{{\text{H}}^{-}}\] ions are acids and bases respectively. And then Bronsted, Lowry and Lewis give different concepts about acid and base.
We should know that Bronsted-Lowry's concept focused on the proton and he stated that:
(i) Acids as proton donors,
(ii) Bases as proton acceptors,
We should also know about Lewis theory, he focused on the electrons and defined that:
(i) Acids as electrophiles,
(ii) Bases as nucleophiles.
Recently Updated Pages
The hybridization and shape of NH2 ion are a sp2 and class 11 chemistry JEE_Main

What is the pH of 001 M solution of HCl a 1 b 10 c class 11 chemistry JEE_Main

Aromatization of nhexane gives A Benzene B Toluene class 11 chemistry JEE_Main

Show how you will synthesise i 1Phenylethanol from class 11 chemistry JEE_Main

The enolic form of acetone contains a 10sigma bonds class 11 chemistry JEE_Main

Which of the following Compounds does not exhibit tautomerism class 11 chemistry JEE_Main

Trending doubts
Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Average and RMS Value in Electrical Circuits

Understanding Entropy Changes in Different Processes

What Are Elastic Collisions in One Dimension?

Understanding Geostationary and Geosynchronous Satellites

Understanding How a Current Loop Acts as a Magnetic Dipole

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions For Class 11 Chemistry Chapter 8 Redox Reactions in Hindi - 2025-26

NCERT Solutions For Class 11 Chemistry Chapter 7 Equilibrium in Hindi - 2025-26

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Common Ion Effect: Concept, Applications, and Problem-Solving

Devuthani Ekadashi 2025: Correct Date, Shubh Muhurat, Parana Time & Puja Vidhi

