
The hybridization and shape of $N{H}_{2}^{-}$ ion are:
(a) $s{p}^{2}$ and angular
(b) $s{p}^{3}$ and angular
(c) $s{p}^{3}$ and linear
(d) $sp$ and linear
Answer
218.1k+ views
Hint: Hybridization is the notion that newly hybridized orbitals are formed from the fusion of atomic orbitals. This in turn, influences the molecular bonding and geometry properties of the compound.
Complete answer:
* The energy of the hybridized orbitals are lower than the energy compared to their separated, unhybridized counterparts. Due to this more stable compounds are formed.
* The hybridization also has a greater role in determining the shape or the molecular geometry of the compound. the shapes can be: linear, angular or V or bent, tetrahedral, seesaw, square pyramidal and many more.
* Hybridization is an expansion of valence bond theory.
* The Hybridization of any compound can be calculated as follows:
* Now, in the case of $N{H}_{2}^{-}$, V=5, M=2, A=1. Substituting these values in the above equation, we get,
Therefore, the hybridization of $N{H}_{2}^{-}$ is $s{p}^{3}$ and has the shape bent or angular .
Thus, the correct option is (b).
Note: In the above mentioned case the compound does not have any cationic charge and therefore, C=0 but has an anionic charge thus A=1. And note that the shape of $N{H}_{2}^{-}$ is an angular shape even though the hybridization is $s{p}^{3}$, this is due to the lone pair-bonding pair repulsion which as a result pushes the two bonding pairs closer together.
Complete answer:
* The energy of the hybridized orbitals are lower than the energy compared to their separated, unhybridized counterparts. Due to this more stable compounds are formed.
* The hybridization also has a greater role in determining the shape or the molecular geometry of the compound. the shapes can be: linear, angular or V or bent, tetrahedral, seesaw, square pyramidal and many more.
* Hybridization is an expansion of valence bond theory.
* The Hybridization of any compound can be calculated as follows:
$H\quad =\quad \cfrac { 1 }{ 2 } \left[ V+M-C+A \right]$
where,
H = Number of orbitals involved in hybridization.
V = Valence electrons of the central atom.
M = Number of monovalent atoms linked to the central atom.
C = Charge of the cation.
A = Charge of the anion.
* Now, in the case of $N{H}_{2}^{-}$, V=5, M=2, A=1. Substituting these values in the above equation, we get,
$H\quad =\quad \cfrac { 1 }{ 2 } \left[ 5+2+1 \right]$
$\implies H = 4$
Therefore, the hybridization of $N{H}_{2}^{-}$ is $s{p}^{3}$ and has the shape bent or angular .
Thus, the correct option is (b).
Note: In the above mentioned case the compound does not have any cationic charge and therefore, C=0 but has an anionic charge thus A=1. And note that the shape of $N{H}_{2}^{-}$ is an angular shape even though the hybridization is $s{p}^{3}$, this is due to the lone pair-bonding pair repulsion which as a result pushes the two bonding pairs closer together.
Recently Updated Pages
Mulliken scale of electronegativity uses the concept class 11 chemistry JEE_Main

Anhydrous calcium chloride is often used as a desiccant class 11 chemistry JEE_Main

A mixture of oil and water can be separated by using class 11 chemistry JEE_Main

A functional isomer of 1butyne is A 2 butyne B 1butene class 11 chemistry JEE_Main

The number of d p bonds present respectively in SO2 class 11 chemistry JEE_Main

Calculate CFSE of the following complex FeCN64 A 04Delta class 11 chemistry JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

NCERT Solutions ForClass 11 Chemistry Chapter Chapter 5 Thermodynamics

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

