JEE 2022 | Class 12
JEE

JEE - Matrices and Determinants

Get interactive courses taught by top teachers
What are Matrices and Determinants?

What are Matrices and Determinants?

Matrix and Determinant is one of the most intriguing, simple, and significant subjects in mathematics. Every year, at least 1 - 3 problems from this chapter will appear in JEE Main and other entrance examinations. This chapter is completely new from the student's perspective, as it will be covered in 12th grade. 


Determinants and matrices are used to solve linear equations by applying Cramer's rule to a collection of non-homogeneous linear equations. Only square matrices are used to calculate determinants. When a matrix's determinant is zero, it's known as a singular determinant, and when it's one, it's known as unimodular. The determinant of the matrix must be nonsingular (i.e., its value must be non-zero) for the system of equations to have a unique solution. Let us look at the definitions of determinants and matrices, as well as the various types of matrices and their properties, using examples.


Important Topics of Matrices and Determinants

  • Matrices

  • Matrix Addition

  • Square Matrix

  • Matrix Operations

  • Matrix Multiplication

  • Elementary Operation of Matrix

  • Properties of Determinant

  • Determinant of a 3 x 3 Matrix

 


Important Concepts of Matrices and Determinants

Definition of Matrix

Matrices are a type of ordered rectangular array of numbers used to represent linear equations. There are rows and columns in a matrix. On matrices, we can execute mathematical operations such as addition, subtraction, and multiplication. The number of rows and columns in a matrix represents the order of the matrix. Let there are m rows and n columns in a matrix, then its order will be m x n.


$A=\begin{bmatrix} a_{11} & a_{12} & a_{13} \cdots & a_{1 n} \\ a_{21} & a_{22} & a_{23} \cdots & a_{2 n} \\ a_{31} & a_{32} & a_{33} \cdots & a_{3 n} \\ : & : & : & : \\ a_{m 1} & a_{m 2} & a_{m 3} \cdots & a_{m n} \end{bmatrix}$


Types of Matrices

  • Column Matrix – A matrix having only one column.

Example: $\begin{bmatrix} 3 \\ 5 \\ 2 \end{bmatrix}$

  • Row Matrix – A matrix having only one row.

Example: $\begin{bmatrix} 3 & 5 & 2 \end{bmatrix}$

  • Rectangular Matrix – A matrix that has an unequal number of columns and rows.

Example: $\begin{bmatrix} 6 & 8 \\ 0 & 1 \\ 3 & 2 \end{bmatrix}$

  • Square Matrix – A matrix having an equal number of columns and rows.

Example: $\begin{bmatrix} 5 & 0 \\ 3 & 1 \end{bmatrix}$

  • Null/Zero Matrix – Matrix that has all its elements equal to zero.

Example: $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

  • Identity Matrix – A square matrix with 1’s on the main diagonal and other elements are zero.

Example: $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

  • Scalar Matrix – A square matrix whose one diagonal (main diagonal) elements are equal and all elements except those in the main diagonal are zero. An identity matrix is also scalar matrix.

Example: $\begin{bmatrix} 7 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 7 \end{bmatrix}$

  • Diagonal Matrix – A square matrix whose all elements except those in the main diagonal are zero.

Example: $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 3 \end{bmatrix}$

  • Upper Triangular Matrix – A square matrix in which all entries above the main diagonal are 0.

Example: $\begin{bmatrix} 2 & -6 & 3 \\ 0 & 4 & 9 \\ 0 & 0 & 7 \end{bmatrix}$

  • Lower Triangular Matrix – A square matrix in which all entries below the main diagonal are 0.

Example: $\begin{bmatrix} 2 & 0 & 0 \\ 4 & 9 & 0 \\ 3 & -6 & 7 \end{bmatrix}$

  • Inverse of a Matrix – The inverse of a matrix mainly applies to square matrices, and every m x n square matrix has an inverse matrix. If A denotes the square matrix, then $A^{-1}$ denotes its inverse, and it satisfies the property.

$A A^{-1}=A^{-1}{A}={I}$, where I is the identity matrix

Note: The determinant of the square matrix should be non-zero.


Operations on Matrices

Addition, subtraction and multiplication are algebraic operations on matrices; there is no division in matrices. In addition, the Transpose and Conjugate of the matrix are two of the most essential operations that will be included in determinants.

  • Transpose of the Matrix: If A is a matrix, the transpose of the matrix is the matrix formed by replacing the columns of a matrix with rows or rows with columns.

Example: If $A=\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$, Then transpose of the matrix A will be, ${A}^{\prime}=\begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{bmatrix}$

  • Conjugate of the Matrix: If an element of a matrix A is a complex number, the matrix formed by replacing that complex number with its conjugate is known as the conjugate of the matrix A and is represented by ${\overline A}$.

Example:  If $A=\begin{bmatrix}i & 2+3 i & 4 \\3 i & 6 & 4+5 i \\4+5 i & 4 i & 2+3 i\end{bmatrix}$, Then conjugate of the matrix A will be, $\overline{A}=\begin{bmatrix}- i & 2-3 i & 4 \\-3 i & 6 & 4-5 i \\4-5 i & -4 i & 2-3 i\end{bmatrix}$


Definition of Determinant

Determinants take a square matrix as input and produce a single number as output.

For any square matrix, M = $\left[a_{ij}\right]$ of order n x n, a determinant can be defined as a real scalar value or a complex number, where $a_{ij}$ is the (i, j)th element of the matrix C.


Method to Solve Determinant by Considering the Top Row Items and Their Minors

Consider 3 x 3 square matrix

$A=\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \\ a_4 & b_4 & c_4 \end{bmatrix}$

  1. Determinant represents, $|A|$ or $\text{det}(A)=\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$

  2. The anchor number $a_1$ is fixed, as is the 3 x 3 determinant of its sub-matrix (minor of $a_1$). Calculate the minors of $b_1$ and $c_1$ in the same way.

  3. Multiply the small determinant by the anchor number and the sign of the anchor number.

$\begin{vmatrix} + & - & + \\ - & + & - \\ + & - & + \end{vmatrix}$

  1. Plus $a_1$ times the 2 x 2 matrix's determinant obtained by deleting the row and column containing $a_1$.

  2. Minus $b_1$ times the 2 x 2 matrix determinant obtained by deleting the row and column containing $b_1$ 

  3. Plus $c_1$ times the 2 x 2 matrix's determinant obtained by deleting the row and column containing $c_1$

  4. Minus $d_1$ times the determinant of the 2 x 2 matrix obtained by deleting the row and column containing $d_1$

  5. We finally get,

$|A|=a_{1} \cdot\begin{vmatrix} b_{2} & c_{2} \\ b_{3} & c_{3} \end{vmatrix} - b_{1} \cdot \begin{vmatrix} a_{2} & c_{2} \\ a_{3} & c_{3} \end{vmatrix} + c_{1} \cdot\begin{vmatrix}a_{2} & b_{2} \\ a_{3} & b_{3} \end{vmatrix}$

$\Rightarrow |A|=a_{1}\left(b_{2} c_{3}-b_{3} c_{2}\right)-b_{1}\left(a_{2} c_{3}-a_{3} c_{2}\right)+c_{1}\left(a_{2} b_{3}-a_{3} b_{2}\right)$


Trick Used: Multiply the first element in the top row by its minor, then subtract the product of the second element and its minor from the result. Continue to add and subtract the product of each element of the top row with its respective minor until all of the top row's constituents have been taken into account.


Difference between Matrices and Determinants

Matrices

Determinants

A matrix is an array of integers.

A determinant is a single numeric value found after a matrix has been computed.

Matrix cannot be evaluated from a determinant.

It is possible to evaluate the determinant value of a matrix.

There is no restriction on the order of the matrices.

A determinant can only be calculated for a square matrix i.e., an equal number of rows and columns.

Matrix's rows and columns cannot be interchanged/swapped.

A determinant's rows and columns can be interchanged/swapped.

Matrix with identical rows or columns is not a null matrix.

A determinant's value is 0 if any two rows or columns are identical.


Elementary Transformation

Elementary transformation of matrices is very important. It's used to find equivalent matrices and the inverse of a matrix, among other things. Playing with the rows and columns of a matrix is an elementary transformation.


Elementary Row Transformation

Only the rows of the matrices are transformed, with no changes to the columns. These row operations are carried out in accordance with a set of rules that ensure the transformed matrix is equivalent to the original matrix.

Without using any formula like $A^{-1} = \dfrac{adj A}{det A}$, the elementary row transformations are also used to find the inverse of a matrix A.

We usually refer to the first row as $R_1$, the second row as $R_2$, and so on when performing elementary row operations. There are three different types of basic row operations:

1. Interchanging two rows.

$R_1 \leftrightarrow  R_2$ represents swapping the first and second rows.

2. Multiplying/dividing a row by a scalar.

Suppose if the first row is multiplied with all the rows by a scalar, say 2, then it is represented as $R_1 \rightarrow 2R$.

3. Adding/subtracting to the corresponding elements of another row after multiplying/dividing a row by some scalar.

Suppose the first row is multiplied by 4, and then added to the second row, we represent it as $R_1 \rightarrow 4R_1+R_2$ or $R_2 \rightarrow R_2+3R_1$.


Elementary Column Operation

Because we've already gone over row transformation in depth, we'll only go over column transformation briefly. The basic column transformation rules are as follows: 

1. When any two columns are interchanged, $C_1 \leftrightarrow  C_2$

2. Any non-zero number can be multiplied by all the elements of any column, $C_1 \rightarrow 3C$

3. All the column's elements can be multiplied by any non-zero constant and added to corresponding elements of another column, $R_1 \rightarrow R_1+3R_2$ 


Properties of Determinant - Types of Determinants

Property 1: If $I_n$ is the identity matrix of the order n x n, then det(I) = 1.

$I = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1(1) - 0 = 1$

Property 2: If $A^{T}$ is a transpose of a matrix A, then det($A^{T}$) = det(A).

$A = \begin{vmatrix} 1 & 3 \\ 5 & 7 \end{vmatrix} = 1(7) - 3(5) = -8$

$A^{T} = \begin{vmatrix} 1 & 5 \\ 3 & 7 \end{vmatrix} = 1(7) - 3(5) = -8$

Property 3: If there is a zero row or column in any square matrix B of order n x n, then det(B) = 0.

$B = \begin{vmatrix} 2 & 5 \\ 0 & 0 \end{vmatrix} = 2(0) - 5(0) = 0$

Property 4: If M is an upper-triangular matrix or a lower-triangular matrix, det(M) is the product of all of its diagonal entries.

$M = \begin{vmatrix} 3 & 6 & 9 \\ 0 & 2 & 4 \\ 0 & 0 & 1\end{vmatrix} = 3 \times 2 \times 1 = 6$.

Property 5: If the column or row of two square matrices is expressed as a sum of terms, it can be expressed as a sum of two determinants.

$\begin{vmatrix} a_{1}+b_{1} & a_{2}+b_{2} & a_{3}+b_{3} \\ c_{1} & c_{2} & c_{3} \\ d_{1} & d_{2} & d_{3} \end{vmatrix} = \begin{vmatrix} a_{1} & a_{2} & a_{3} \\ c_{1} & c_{2} & c_{3} \\ d_{1} & d_{2} & d_{3} \end{vmatrix} = \begin{vmatrix} b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3} \\ d_{1} & d_{2} & d_{3} \end{vmatrix}$

Property 6: If the size of matrix M is n x n and k is a constant then each element of a given row or column is then multiplied by a constant i.e., Det(kM) = k x Det(M)

$\begin{vmatrix} ka_{1} & kb_{1} & kc_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3} \end{vmatrix} = k \times \begin{vmatrix} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3} \end{vmatrix}$

Property 7: The Adjugate Matrix (Adjoint of a Matrix) and Laplace's Formula

Adjugate Matrix: It is determined by transposing the matrix that contains the cofactors and is calculated using the equation:

$(Adj (M))_{x,y} = (-1)^{x+y} N_{x,y}$

Laplace’s Formula: Using this formula, the determinant of a matrix is expressed in terms of its minors. If the matrix $N_{x y}$  is the minor of matrix M, obtained by eliminating the xth and yth column and has a size of ( j-1 × j-1), then the determinant of the matrix M will be given as:

$|M| = \sum_{y=1}^{i} (−1)^{x+y} a_{x,y} N_{x,y}$ where $(−1)^{x+y} N_{x,y}$ is the cofactor.


Definition of Determinant of a Matrix

A scalar value that may be computed from the elements of a square matrix is known as the determinant of a matrix. It is denoted as det A, det (A), or |A| and encodes some of the properties of the linear transformation that the matrix describes.


Determinant of 2 x 2 Matrix

Consider a matrix $A=\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$

Then, determinant is $|A|=\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$

Therefore $|A|=a_{11} a_{22}-a_{21} a_{12}$


Determinant of 3 x 3 Matrix

Consider a matrix $A=\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$

Then, determinant is $|A|=\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$

Therefore $|A| =a_{11}\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} -a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} +a_{13}\begin{vmatrix}a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$


Application of Matrices and Determinants

One of the applications of Matrix and Determinant is the solution of linear equations in two or three variables. Matrices and determinants are also used to determine whether or not a system is consistent.


Examples of Determinants and Matrices

Example 1: Find the multiplication AB of a matrix A and B where $A = \begin{bmatrix} -5 & 1 & 3 \\ 7 & 1 & -5 \\ 1 & -1 & 1 \end{bmatrix} $ and $B = \begin{bmatrix} -5 & 1 & 3 \\ 7 & 1 & -5 \\ 1 & -1 & 1 \end{bmatrix} $

Solution: Given $A = \begin{bmatrix} -5 & 1 & 3 \\ 7 & 1 & -5 \\ 1 & -1 & 1 \end{bmatrix} $ and $B = \begin{bmatrix} -5 & 1 & 3 \\ 7 & 1 & -5 \\ 1 & -1 & 1 \end{bmatrix} $

To find AB multiply both the matrices and add the product of the terms

$AB = \begin{bmatrix} -5 & 1 & 3 \\ 7 & 1 & -5 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 \\3 & 2 & 1 \\2 & 1 & 3 \end{bmatrix}$

$AB = \begin{bmatrix} (-5+3+6) & (-5+2+3) & (-10+1+9) \\(7+3-10) & (7+2-5) & (14+1-15) \\ (1-3+2) & (1-2+1) & (2-1+3) \end{bmatrix}$

$\therefore AB =\begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4\end{bmatrix}$


Example 2: Find the determinant of a matrix $\begin{vmatrix} 2 & -3 \\ 4 & 5 \end{vmatrix} $

Solution: Let us assume the determinant of matrix be $|A|$

So, $|A| = \begin{vmatrix} 2 & -3 \\ 4 & 5 \end{vmatrix}$

W.K.T $\text{det }A = a_{11} a_{22}-a_{21} a_{12}$

On substituting the values, we get

$|A|= 2 \times 5 - (-3) \times 4$

$\Rightarrow 10 + 12 = 22$


Example 3: Find the determinant of a matrix $M = \begin{vmatrix} 1 & 3 & 2 \\ -3 & -1 & -3 \\ 2 & 3 & 1 \end{vmatrix} $

Solution: Given, $|M| = \begin{vmatrix} 2 & -3 \\ 4 & 5 \end{vmatrix}$

As it is a 3 x 3 matrix W.K.T the determinant will be $|M|=a_{1} \cdot\begin{vmatrix} b_{2} & c_{2} \\ b_{3} & c_{3} \end{vmatrix} - b_{1} \cdot \begin{vmatrix} a_{2} & c_{2} \\ a_{3} & c_{3} \end{vmatrix} + c_{1} \cdot\begin{vmatrix}a_{2} & b_{2} \\ a_{3} & b_{3} \end{vmatrix}$

$|M|=a_{1}\left(b_{2} c_{3}-b_{3} c_{2}\right)-b_{1}\left(a_{2} c_{3}-a_{3} c_{2}\right)+c_{1}\left(a_{2} b_{3}-a_{3} b_{2}\right)$

On substituting the values, we get

$|M|= 1 \cdot \begin{vmatrix} -1 & -3 \\ 3 & 1 \end{vmatrix} - 3 \cdot \begin{vmatrix} -3 & -3 \\ 2 & 1 \end{vmatrix} + 2 \cdot \begin{vmatrix} -3 & -1 \\ 2 & 3 \end{vmatrix}$

Using determinants rule we get,

$|M|=1 \cdot(-1-(-9)-3 \cdot(-3-(-6)+2 \cdot(-9-(-2)) \\ \Rightarrow 1 \cdot(-1+9)-3 \cdot(-3+6)+2 \cdot(-9+2) \\ \Rightarrow 8-9-14 \\ \therefore |M|=-15$


Solved Problems of Previous Years’ Questions

1. If $A = \begin{bmatrix}a & b \\ b & a\end{bmatrix}$ the find $A^2$

Ans: Given $A = \begin{bmatrix}a & b \\ b & a\end{bmatrix}$

Then, $A^2 = \begin{bmatrix} a & b \\ b & a \end{bmatrix} \begin{bmatrix} a & b \\ b & a \end{bmatrix}$

$\Rightarrow \begin{bmatrix} a^{2}+b^{2} & 2 a b \\ 2 a b & a^{2}+b^{2} \end{bmatrix}$

$\therefore \alpha=a^{2}+b^{2}, \beta=2ab$


2. Find ${c}^{2}+{x}^{2}+{y}^{2}$ if the matrix A given by ${A}= \begin{bmatrix}{a} & \dfrac{2}{3} & \dfrac{2}{3} \\ \dfrac{2}{3} & \dfrac{1}{3} & {b} \\ {c} & {x} & {y}\end{bmatrix}$ is orthogonal.

Ans: Given matrix $A$ is orthogonal.

Therefore, $\begin{bmatrix}{a} & \dfrac{2}{3} & \dfrac{2}{3} \\ \dfrac{2}{3} & \dfrac{1}{3} & {b} \\ {c} & {x} & {y}\end{bmatrix}$

$\begin{bmatrix} {a} & \dfrac{2}{3} & {c} \\ \dfrac{2}{3} & \dfrac{1}{3} & x \\ \dfrac{2}{3} & b & y \end{bmatrix} $

As we can see that the diagonal matrix are same, so the given matrix can be written as,

$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$


3. The system of equations $\alpha x+y+z=\alpha-1, x+\alpha y+z=\alpha-1 $ and $x+y+\alpha z=\alpha-1$ has no solution, if $\alpha$ is

Ans: The given equations can be written in the determinant form,

$A=\begin{vmatrix} \alpha & 1 & 1 \\ 1 & \alpha & 1 \\ 1 & 1 & \alpha\end{vmatrix}=0$

On solving the determinant we get,

$\alpha\left(\alpha^{2}-1\right)-1(\alpha-1)+1(1-\alpha)=0$ 

$\Rightarrow \alpha(\alpha-1)(\alpha+1)-1(\alpha-1)-1(\alpha-1)=0$ 

$\Rightarrow(\alpha-1)\left[\alpha^{2}+\alpha-1-1\right]=0$

$\Rightarrow(\alpha-1)\left[\alpha^{2}+\alpha-2\right]=0$

$\Rightarrow \left[\alpha^{2}+2 \alpha-\alpha-2\right]=0$

$\Rightarrow(\alpha-1)[\alpha(\alpha+2)-1(\alpha+2)]=0$

$\Rightarrow(\alpha-1)=0, \alpha+2=0$ 

$\Rightarrow \alpha=-2,1: \text { but } \alpha \neq 1$


Practice Question

1. Find the multiplication of the two matrices $A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \\ 1 & 1 \end{bmatrix} $ and $B = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} $

Answer: $\begin{bmatrix} 3 & 4 \\ 4 & 4 \\ 3 & 4 \end{bmatrix}$

Trick to Solve: Take the elements from the first row of the first matrix and the elements from the first column of the second matrix. Multiply the corresponding elements and add all the products.


2. Find the determinant of $\begin{vmatrix}1 & 4 & 20 \\ 1 & -2 & 5 \\ 1 & -2 & 5 \end{vmatrix}$

Answer: 0


Conclusion

In this article, we have elaborated on concepts and solutions to questions on the topic Determinants and Matrices. We have also learn how to find determinant of a matrix (determinant of a matrix formula) and properties of matrices and determinants. Everything you're looking for is available in a single location. Students can carefully read through the concepts, definitions and questions in the PDFs, which are also free to download and understand the concepts used to solve these questions. This will be extremely beneficial to the students in their exams.

See More
JEE Main Important Dates

JEE Main Important Dates

View All Dates
JEE Main 2022 June and July Session exam dates and revised schedule have been announced by the NTA. JEE Main 2022 June and July Session will now be conducted on 20-June-2022, and the exam registration closes on 5-Apr-2022. You can check the complete schedule on our site. Furthermore, you can check JEE Main 2022 dates for application, admit card, exam, answer key, result, counselling, etc along with other relevant information.
See More
June
July
View All Dates
JEE Main Information

JEE Main Information

Application Form
Eligibility Criteria
Reservation Policy
Admit Card
NTA has announced the JEE Main 2022 June session application form release date on the official website https://jeemain.nta.nic.in/. JEE Main 2022 June and July session Application Form is available on the official website for online registration. Besides JEE Main 2022 June and July session application form release date, learn about the application process, steps to fill the form, how to submit, exam date sheet etc online. Check our website for more details. July Session's details will be updated soon by NTA.
JEE Main 2022 applicants should be aware of the eligibility criteria before applying to the exam. NTA has released all the relevant information on the official website, i.e. https://jeemain.nta.nic.in/. JEE Main 2022 aspirants should have passed Class 12th or any other equivalent qualifying examination in 2021, 2020, or students appearing in the Class 12th final exam in 2022 can also apply. For further details, visit our website.
As per the union government’s norms, NTA has released the JEE Main 2022 June and July session reservation criteria for different candidates’ categories (SC/ST/OBC/PwD), All India Quota, State Government Quota, Deemed Universities, and more. You can check more details on NTA website.
NTA will release the admit card for JEE Main 2022 June and July Session at https://jeemain.nta.nic.in/, 15 days prior to the exam date for the registered candidates. The admit card will contain information such as the name and contact details of the candidate, the exam centre, reporting time, and examination schedule along with other important instructions for JEE Main 2022 June and July Session.
It is crucial for the the engineering aspirants to know and download the JEE Main 2022 syllabus PDF for Maths, Physics and Chemistry. Check JEE Main 2022 syllabus here along with the best books and strategies to prepare for the entrance exam. Download the JEE Main 2022 syllabus consolidated as per the latest NTA guidelines from Vedantu for free.
See More
Download full syllabus
Paper 1
syllabus
Chemistry
Section 3
Download full syllabus
View JEE Main Syllabus in Detail
JEE Main 2022 Study Material

JEE Main 2022 Study Material

View all study material for JEE Main
JEE Main 2022 Study Materials: Strengthen your fundamentals with exhaustive JEE Main Study Materials. It covers the entire JEE Main syllabus, DPP, PYP with ample objective and subjective solved problems. Free download of JEE Main study material for Physics, Chemistry and Maths are available on our website so that students can gear up their preparation for JEE Main exam 2022 with Vedantu right on time.
See More
All
Mathematics
Physics
Chemistry
study-material
Sets, Relations and Functions
Grade 1225.8k views
study-material
Complex Numbers and Quadratic Equations
Grade 1231.8k views
study-material
Matrices and Determinants
Grade 1227.6k views
See All
JEE Main Question Papers

JEE Main Question Papers

see all
Download JEE Main Question Papers & ​Answer Keys of 2021, 2020, 2019, 2018 and 2017 PDFs. JEE Main Question Paper are provided language-wise along with their answer keys. We also offer JEE Main Sample Question Papers with Answer Keys for Physics, Chemistry and Maths solved by our expert teachers on Vedantu. Downloading the JEE Main Sample Question Papers with solutions will help the engineering aspirants to score high marks in the JEE Main examinations.
See More
PYQP
Sample Paper
2020
2021
2022
2022
January
06th January 2020 - Maths, Physics and Chemistry
English  •   Shift 1
Download PDF
downloads
06th January 2020 - Maths, Physics and Chemistry
English  •   Shift 2
Download PDF
downloads
07th January 2020 - Maths, Physics and Chemistry
English  •   Shift 1
Download PDF
downloads
07th January 2020 - Maths, Physics and Chemistry
English  •   Shift 2
Download PDF
downloads
08th January 2020 - Maths, Physics and Chemistry
English  •   Shift 1
Download PDF
downloads
08th January 2020 - Maths, Physics and Chemistry
English  •   Shift 2
Download PDF
downloads
September
01st September 2020 - Maths, Physics and Chemistry
English  •   Shift 1
Download PDF
downloads
01st September 2020 - Maths, Physics and Chemistry
English  •   Shift 2
Download PDF
downloads
02nd September 2020 - Maths, Physics and Chemistry
English  •   Shift 1
Download PDF
downloads
02nd September 2020 - Maths, Physics and Chemistry
English  •   Shift 2
Download PDF
downloads
03rd September 2020 - Maths, Physics and Chemistry
English  •   Shift 1
Download PDF
downloads
03rd September 2020 - Maths, Physics and Chemistry
English  •   Shift 2
Download PDF
downloads
04th September 2020 - Maths, Physics and Chemistry
English  •   Shift 1
Download PDF
downloads
04th September 2020 - Maths, Physics and Chemistry
English  •   Shift 2
Download PDF
downloads
05th September 2020 - Maths, Physics and Chemistry
English  •   Shift 1
Download PDF
downloads
05th September 2020 - Maths, Physics and Chemistry
English  •   Shift 2
Download PDF
downloads
February
23rd February 2021 - Maths, Physics and Chemistry
English  •   Shift 1
Download PDF
downloads
23rd February 2021 - Maths, Physics and Chemistry
English  •   Shift 2
Download PDF
downloads
24th February 2021 - Maths, Physics and Chemistry
English  •   Shift 1
Download PDF
downloads
24th February 2021 - Maths, Physics and Chemistry
English  •   Shift 2
Download PDF
downloads
25th February 2021 - Maths, Physics and Chemistry
English  •   Shift 1
Download PDF
downloads
25th February 2021 - Maths, Physics and Chemistry
English  •   Shift 2
Download PDF
downloads
March
15th March 2021 - Maths, Physics and Chemistry
English  •   Shift 1
Download PDF
downloads
15th March 2021 - Maths, Physics and Chemistry
English  •   Shift 2
Download PDF
downloads
16th March 2021 - Maths, Physics and Chemistry
English  •   Shift 1
Download PDF
downloads
16th March 2021 - Maths, Physics and Chemistry
English  •   Shift 2
Download PDF
downloads
17th March 2021 - Maths, Physics and Chemistry
English  •   Shift 1
Download PDF
downloads
17th March 2021 - Maths, Physics and Chemistry
English  •   Shift 2
Download PDF
downloads
July
19th July 2021 - Maths, Physics and Chemistry
English  •   Shift 1
Download PDF
downloads
19th July 2021 - Maths, Physics and Chemistry
English  •   Shift 2
Download PDF
downloads
21st July 2021 - Maths, Physics and Chemistry
English  •   Shift 2
Download PDF
downloads
24th July 2021 - Maths, Physics and Chemistry
English  •   Shift 1
Download PDF
downloads
24th July 2021 - Maths, Physics and Chemistry
English  •   Shift 2
Download PDF
downloads
26th July 2021 - Maths, Physics and Chemistry
English  •   Shift 1
Download PDF
downloads
August
25th August 2021 - Maths, Physics and Chemistry
English  •   Shift 1
Download PDF
downloads
25th August 2021 - Maths, Physics and Chemistry
English  •   Shift 2
Download PDF
downloads
26th August 2021 - Maths, Physics and Chemistry
English  •   Shift 1
Download PDF
downloads
26th August 2021 - Maths, Physics and Chemistry
English  •   Shift 2
Download PDF
downloads
30th August 2021 - aptitude
English  •   Shift 1
Download PDF
downloads
30th August 2021 - Maths, Physics and Chemistry
English  •   Shift 2
Download PDF
downloads
June
23rd June 2022 - Maths, Physics and Chemistry
English  •   Shift 1
Download PDF
downloads
23rd June 2022 - mathematics
English  •   Shift 1
Download PDF
downloads
23rd June 2022 - physics
English  •   Shift 1
Download PDF
downloads
23rd June 2022 - chemistry
English  •   Shift 1
Download PDF
downloads
23rd June 2022 - Maths, Physics and Chemistry
English  •   Shift 2
Download PDF
downloads
23rd June 2022 - mathematics
English  •   Shift 2
Download PDF
downloads
23rd June 2022 - physics
English  •   Shift 2
Download PDF
downloads
23rd June 2022 - chemistry
English  •   Shift 2
Download PDF
downloads
24th June 2022 - Maths, Physics and Chemistry
English  •   Shift 1
Download PDF
downloads
24th June 2022 - mathematics
English  •   Shift 1
Download PDF
downloads
24th June 2022 - physics
English  •   Shift 1
Download PDF
downloads
24th June 2022 - chemistry
English  •   Shift 1
Download PDF
downloads
24th June 2022 - Maths, Physics and Chemistry
English  •   Shift 2
Download PDF
downloads
24th June 2022 - mathematics
English  •   Shift 2
Download PDF
downloads
24th June 2022 - physics
English  •   Shift 2
Download PDF
downloads
24th June 2022 - chemistry
English  •   Shift 2
Download PDF
downloads
25th June 2022 - Maths, Physics and Chemistry
English  •   Shift 1
Download PDF
downloads
25th June 2022 - mathematics
English  •   Shift 1
Download PDF
downloads
25th June 2022 - physics
English  •   Shift 1
Download PDF
downloads
25th June 2022 - chemistry
English  •   Shift 1
Download PDF
downloads
25th June 2022 - general
English  •   Shift 2
Download PDF
downloads
25th June 2022 - mathematics
English  •   Shift 2
Download PDF
downloads
25th June 2022 - physics
English  •   Shift 2
Download PDF
downloads
25th June 2022 - chemistry
English  •   Shift 2
Download PDF
downloads
26th June 2022 - general
English  •   Shift 1
Download PDF
downloads
26th June 2022 - mathematics
English  •   Shift 1
Download PDF
downloads
26th June 2022 - physics
English  •   Shift 1
Download PDF
downloads
26th June 2022 - chemistry
English  •   Shift 1
Download PDF
downloads
26th June 2022 - exam-strategy
English  •   Shift 2
Download PDF
downloads
26th June 2022 - mathematics
English  •   Shift 2
Download PDF
downloads
26th June 2022 - physics
English  •   Shift 2
Download PDF
downloads
26th June 2022 - chemistry
English  •   Shift 2
Download PDF
downloads
27th June 2022 - exam-strategy
English  •   Shift 1
Download PDF
downloads
27th June 2022 - mathematics
English  •   Shift 1
Download PDF
downloads
27th June 2022 - physics
English  •   Shift 1
Download PDF
downloads
27th June 2022 - chemistry
English  •   Shift 1
Download PDF
downloads
27th June 2022 - general
English  •   Shift 2
Download PDF
downloads
27th June 2022 - mathematics
English  •   Shift 2
Download PDF
downloads
27th June 2022 - physics
English  •   Shift 2
Download PDF
downloads
27th June 2022 - chemistry
English  •   Shift 2
Download PDF
downloads
28th June 2022 - general
English  •   Shift 1
Download PDF
downloads
28th June 2022 - mathematics
English  •   Shift 1
Download PDF
downloads
28th June 2022 - physics
English  •   Shift 1
Download PDF
downloads
28th June 2022 - chemistry
English  •   Shift 1
Download PDF
downloads
28th June 2022 - general
English  •   Shift 2
Download PDF
downloads
28th June 2022 - mathematics
English  •   Shift 2
Download PDF
downloads
28th June 2022 - physics
English  •   Shift 2
Download PDF
downloads
28th June 2022 - chemistry
English  •   Shift 2
Download PDF
downloads
23rd June 2022 - Maths, Physics and Chemistry
English  •   Shift 1
Download PDF
downloads
23rd June 2022 - Maths, Physics and Chemistry
English  •   Shift 1
Download PDF
downloads
23rd June 2022 - mathematics
English  •   Shift 1
Download PDF
downloads
23rd June 2022 - physics
English  •   Shift 1
Download PDF
downloads
23rd June 2022 - chemistry
English  •   Shift 1
Download PDF
downloads
23rd June 2022 - Maths, Physics and Chemistry
English  •   Shift 2
Download PDF
downloads
23rd June 2022 - mathematics
English  •   Shift 2
Download PDF
downloads
23rd June 2022 - physics
English  •   Shift 2
Download PDF
downloads
23rd June 2022 - chemistry
English  •   Shift 2
Download PDF
downloads
24th June 2022 - Maths, Physics and Chemistry
English  •   Shift 1
Download PDF
downloads
24th June 2022 - Maths, Physics and Chemistry
English  •   Shift 1
Download PDF
downloads
24th June 2022 - mathematics
English  •   Shift 1
Download PDF
downloads
24th June 2022 - physics
English  •   Shift 1
Download PDF
downloads
24th June 2022 - chemistry
English  •   Shift 1
Download PDF
downloads
24th June 2022 - Maths, Physics and Chemistry
English  •   Shift 2
Download PDF
downloads
24th June 2022 - mathematics
English  •   Shift 2
Download PDF
downloads
24th June 2022 - physics
English  •   Shift 2
Download PDF
downloads
24th June 2022 - chemistry
English  •   Shift 2
Download PDF
downloads
25th June 2022 - Maths, Physics and Chemistry
English  •   Shift 1
Download PDF
downloads
25th June 2022 - Maths, Physics and Chemistry
English  •   Shift 1
Download PDF
downloads
25th June 2022 - mathematics
English  •   Shift 1
Download PDF
downloads
25th June 2022 - physics
English  •   Shift 1
Download PDF
downloads
25th June 2022 - chemistry
English  •   Shift 1
Download PDF
downloads
25th June 2022 - general
English  •   Shift 2
Download PDF
downloads
25th June 2022 - mathematics
English  •   Shift 2
Download PDF
downloads
25th June 2022 - physics
English  •   Shift 2
Download PDF
downloads
25th June 2022 - chemistry
English  •   Shift 2
Download PDF
downloads
26th June 2022 - general
English  •   Shift 1
Download PDF
downloads
26th June 2022 - general
English  •   Shift 1
Download PDF
downloads
26th June 2022 - mathematics
English  •   Shift 1
Download PDF
downloads
26th June 2022 - physics
English  •   Shift 1
Download PDF
downloads
26th June 2022 - chemistry
English  •   Shift 1
Download PDF
downloads
26th June 2022 - exam-strategy
English  •   Shift 2
Download PDF
downloads
26th June 2022 - mathematics
English  •   Shift 2
Download PDF
downloads
26th June 2022 - physics
English  •   Shift 2
Download PDF
downloads
26th June 2022 - chemistry
English  •   Shift 2
Download PDF
downloads
27th June 2022 - exam-strategy
English  •   Shift 1
Download PDF
downloads
27th June 2022 - exam-strategy
English  •   Shift 1
Download PDF
downloads
27th June 2022 - mathematics
English  •   Shift 1
Download PDF
downloads
27th June 2022 - physics
English  •   Shift 1
Download PDF
downloads
27th June 2022 - chemistry
English  •   Shift 1
Download PDF
downloads
27th June 2022 - general
English  •   Shift 2
Download PDF
downloads
27th June 2022 - mathematics
English  •   Shift 2
Download PDF
downloads
27th June 2022 - physics
English  •   Shift 2
Download PDF
downloads
27th June 2022 - chemistry
English  •   Shift 2
Download PDF
downloads
28th June 2022 - general
English  •   Shift 1
Download PDF
downloads
28th June 2022 - general
English  •   Shift 1
Download PDF
downloads
28th June 2022 - mathematics
English  •   Shift 1
Download PDF
downloads
28th June 2022 - physics
English  •   Shift 1
Download PDF
downloads
28th June 2022 - chemistry
English  •   Shift 1
Download PDF
downloads
28th June 2022 - general
English  •   Shift 2
Download PDF
downloads
28th June 2022 - mathematics
English  •   Shift 2
Download PDF
downloads
28th June 2022 - physics
English  •   Shift 2
Download PDF
downloads
28th June 2022 - chemistry
English  •   Shift 2
Download PDF
downloads
July
24th July 2022 - Maths, Physics and Chemistry
English  •   Shift 1, 2
Download PDF
downloads
24th July 2022 - Maths, Physics and Chemistry
English  •   Shift 1
Download PDF
downloads
24th July 2022 - mathematics
English  •   Shift 1
Download PDF
downloads
24th July 2022 - physics
English  •   Shift 1
Download PDF
downloads
24th July 2022 - chemistry
English  •   Shift 1
Download PDF
downloads
24th July 2022 - Maths, Physics and Chemistry
English  •   Shift 2
Download PDF
downloads
24th July 2022 - mathematics
English  •   Shift 2
Download PDF
downloads
24th July 2022 - physics
English  •   Shift 2
Download PDF
downloads
24th July 2022 - chemistry
English  •   Shift 2
Download PDF
downloads
25th July 2022 - Maths, Physics and Chemistry
English  •   Shift 1, 2
Download PDF
downloads
25th July 2022 - Maths, Physics and Chemistry
English  •   Shift 1
Download PDF
downloads
25th July 2022 - mathematics
English  •   Shift 1
Download PDF
downloads
25th July 2022 - physics
English  •   Shift 1
Download PDF
downloads
25th July 2022 - chemistry
English  •   Shift 1
Download PDF
downloads
25th July 2022 - Maths, Physics and Chemistry
English  •   Shift 2
Download PDF
downloads
25th July 2022 - mathematics
English  •   Shift 2
Download PDF
downloads
25th July 2022 - physics
English  •   Shift 2
Download PDF
downloads
25th July 2022 - chemistry
English  •   Shift 2
Download PDF
downloads
26th July 2022 - Maths, Physics and Chemistry
English  •   Shift 1, 2
Download PDF
downloads
26th July 2022 - Maths, Physics and Chemistry
English  •   Shift 1
Download PDF
downloads
26th July 2022 - mathematics
English  •   Shift 1
Download PDF
downloads
26th July 2022 - physics
English  •   Shift 1
Download PDF
downloads
26th July 2022 - chemistry
English  •   Shift 1
Download PDF
downloads
26th July 2022 - Maths, Physics and Chemistry
English  •   Shift 2
Download PDF
downloads
26th July 2022 - mathematics
English  •   Shift 2
Download PDF
downloads
26th July 2022 - physics
English  •   Shift 2
Download PDF
downloads
26th July 2022 - chemistry
English  •   Shift 2
Download PDF
downloads
27th July 2022 - Maths, Physics and Chemistry
English  •   Shift 1, 2
Download PDF
downloads
27th July 2022 - Maths, Physics and Chemistry
English  •   Shift 1
Download PDF
downloads
27th July 2022 - mathematics
English  •   Shift 1
Download PDF
downloads
27th July 2022 - physics
English  •   Shift 1
Download PDF
downloads
27th July 2022 - chemistry
English  •   Shift 1
Download PDF
downloads
27th July 2022 - Maths, Physics and Chemistry
English  •   Shift 2
Download PDF
downloads
27th July 2022 - mathematics
English  •   Shift 2
Download PDF
downloads
27th July 2022 - physics
English  •   Shift 2
Download PDF
downloads
27th July 2022 - chemistry
English  •   Shift 2
Download PDF
downloads
28th July 2022 - Maths, Physics and Chemistry
English  •   Shift 1, 2
Download PDF
downloads
28th July 2022 - Maths, Physics and Chemistry
English  •   Shift 1
Download PDF
downloads
28th July 2022 - mathematics
English  •   Shift 1
Download PDF
downloads
28th July 2022 - physics
English  •   Shift 1
Download PDF
downloads
28th July 2022 - chemistry
English  •   Shift 1
Download PDF
downloads
28th July 2022 - Maths, Physics and Chemistry
English  •   Shift 2
Download PDF
downloads
28th July 2022 - mathematics
English  •   Shift 2
Download PDF
downloads
28th July 2022 - physics
English  •   Shift 2
Download PDF
downloads
28th July 2022 - chemistry
English  •   Shift 2
Download PDF
downloads
June, July
  mathematics
English  •   Shift 1, 2
Download PDF
downloads
  mathematics
English  •   Shift 1, 2
Download PDF
downloads
  mathematics
English  •   Shift 1, 2
Download PDF
downloads
  mathematics
English  •   Shift 1, 2
Download PDF
downloads
  mathematics
English  •   Shift 1, 2
Download PDF
downloads
  chemistry
English  •   Shift 1, 2
Download PDF
downloads
  mathematics
English  •   Shift 1, 2
Download PDF
downloads
JEE Main 2022 Book Solutions and PDF Download

JEE Main 2022 Book Solutions and PDF Download

View all JEE Main Important Books
In order to prepare for JEE Main 2022, candidates should know the list of important books i.e. RD Sharma Solutions, NCERT Solutions, RS Aggarwal Solutions, HC Verma books and RS Aggarwal Solutions. They will find the high quality readymade solutions of these books on Vedantu. These books will help them in order to prepare well for the JEE Main 2022 exam so that they can grab the top rank in the all India entrance exam.
See More
books
Maths
NCERT Book for Class 12 Maths
books
Physics
NCERT Book for Class 12 Physics
See All
JEE Main Mock Tests

JEE Main Mock Tests

View all mock tests
JEE Main 2022 free online mock test series for exam preparation are available on the Vedantu website for free download. Practising these mock test papers of Physics, Chemistry and Maths prepared by expert teachers at Vedantu will help you to boost your confidence to face the JEE Main 2022 examination without any worries. The JEE Main test series for Physics, Chemistry and Maths that is based on the latest syllabus of JEE Main and also the Previous Year Question Papers.
See More
JEE MAIN MOCK TEST - 1
3 hr  • 75 questions • OBJECTIVE
JEE MAIN MOCK TEST - 3
3 hr  • 75 questions • OBJECTIVE
JEE MAIN MOCK TEST - 2
3 hr  • 75 questions • OBJECTIVE
Toppers

Toppers

Master Teachers

Master Teachers

From IITs & other top-tier colleges with 5+ years of experience
You can count on our specially-trained teachers to bring out the best in every student.
They have taught over 4.5 crore hours to 10 lakh students in 1000+ cities in 57 countries
Shreyas
11+ years exp

Shreyas

Physics master teacher

NIT Nagpur

Nidhi Sharma
4+ years exp

Nidhi Sharma

Chemistry master teacher

Jamia Hamdard

Luv Mehan
2+ years exp

Luv Mehan

Chemistry Master Teacher

IISc Bangalore

JEE Main 2022 Cut-Off

JEE Main 2022 Cut-Off

JEE Main Cut Off
NTA is responsible for the release of the JEE Main 2022 June and July Session cut off score. The qualifying percentile score might remain the same for different categories. According to the latest trends, the expected cut off mark for JEE Main 2022 June and July Session is 50% for general category candidates, 45% for physically challenged candidates, and 40% for candidates from reserved categories. For the general category, JEE Main qualifying marks for 2021 ranged from 87.8992241 for general-category, while for OBC/SC/ST categories, they ranged from 68.0234447 for OBC, 46.8825338 for SC and 34.6728999 for ST category.
See More
JEE Main 2022 Results

JEE Main 2022 Results

JEE Main 2022 June and July Session Result - NTA has announced JEE Main result on their website. To download the Scorecard for JEE Main 2022 June and July Session, visit the official website of JEE Main NTA.
See More
Rank List
Counselling
Cutoff
JEE Main 2022 state rank lists will be released by the state counselling committees for admissions to the 85% state quota and to all seats in NITs and CFTIs colleges. JEE Main 2022 state rank lists are based on the marks obtained in entrance exams. Candidates can check the JEE Main 2022 state rank list on the official website or on our site.
The NTA will conduct JEE Main 2022 counselling at https://josaa.nic.in/. There will be two rounds of counselling for admission under All India Quota (AIQ), deemed and central universities, NITs and CFTIs. A mop-up round of JEE Main counselling will be conducted excluding 15% AIQ seats, while the dates of JEE Main 2022 June and July session counselling for 85% state quota seats will be announced by the respective state authorities.
NTA is responsible for the release of the JEE Main 2022 June and July Session cut off score. The qualifying percentile score might remain the same for different categories. According to the latest trends, the expected cut off mark for JEE Main 2022 June and July Session is 50% for general category candidates, 45% for physically challenged candidates, and 40% for candidates from reserved categories. For the general category, JEE Main qualifying marks for 2021 ranged from 87.8992241 for general category, while for OBC/SC/ST categories, they ranged from 68.0234447 for OBC, 46.8825338 for SC and 34.6728999 for ST category.
Want to know which Engineering colleges in India accept the JEE Main 2022 scores for admission to Engineering? Find the list of Engineering colleges accepting JEE Main scores in India, compiled by Vedantu. There are 1622 Colleges that are accepting JEE Main. Also find more details on Fees, Ranking, Admission, and Placement.
See More
Counselling

Counselling

Happy to help you!
Need more details? Our expert academic counsellors will be happy to patiently explain everything that you want to know.
Speak to an expert

FAQs on JEE - Matrices and Determinants

FAQ

1. What is the order of matrices and determinants?

A matrix has an order of m x n because it has m rows and n columns, whereas a determinant has an order of n x n because it has n rows and n columns( it should have an equal number of rows and columns).

2. Who is the father of matrices?

Arthur Cayley, known as the "Father of Matrices," was a brilliant mathematician. On August 16, 1821, he was born. In 1858, Arthur Cayley presented the conceptual explanation of the matrix in his Memoir on the Theory of Matrices. As a result, matrices became one of the most important branches of mathematics in the research. He primarily worked on Algebra and was instrumental in the establishment of the modern British pure mathematics school.

3. What are the unique uses of matrices and determinants?

The matrix has numerous applications in data science and artificial intelligence. The matrix inversion method can be used to solve a large number of algebraic equations. A matrix's transpose, adjoint, and inverse can also be found.