Courses
Courses for Kids
Free study material
Free LIVE classes
More
JEE 2022 | Class 12

JEE - Limit, Continuity and Differentiability

Get interactive courses taught by top teachers
What is Limit, Continuity and Differentiability?

What is Limit, Continuity and Differentiability?


Last updated date: 15th Mar 2023
Total views: 87.9k
Views today: 10

When we talk about calculus, we frequently notice that limits and continuity have a distinct and essential position due to their extremely different and important notions. The term limit, on the one hand, refers to the number that a function approaches, whereas the term function can be continuous or discontinuous. Positive discontinuity, Jump discontinuity, and Infinite discontinuity are the three types of discontinuity that fit into this category. We'll go through this topic in-depth with the help of solved examples in this part.


JEE Main Maths Chapter-wise Solutions 2022-23 


Important Topics of Limit, Continuity and Differentiability

  • Limits and Derivatives

  • Evaluating Limit

  • Algebra of limits

  • L’Hospital Rule

  • Function

  • Continuity and Differentiability

  • Continuity and Differentiability Properties and Formula

  • Limits Properties and Formula

  • Intermediate Value Theorem

  • Application of Derivatives

  • Maxima and Minima

  • Rolle’s Theorem and Lagrange’s Mean Value Theorem


Important Concepts of Limit, Continuity and Differentiability

What are Limits?

The value obtained by a function f(x) at a point x=a is the value obtained by the function at a point very close to x=a.

Consider the limit of a real-valued function ‘f’ and a real number ‘a’, which is generally say that, \[\underset{x \to a}{\lim} f(x) = L\] if there is a number $\delta$ for every number $\epsilon$ such that $|f(x)-L| < \epsilon$ whenever $0 < |x-a| < \delta$





Existence of Limit, Left Hand Limit and Right Hand Limit - Types of Limits

Left Hand Limit - When a limit is described in terms of a number smaller than a, it is referred to as a left hand limit. It's written as $x \to a^{-}$, which is the same as $x=a-h$ with $h > 0$ and $h \to 0$.


Right Hand Limit - When a limit is described in terms of a number greater than a, it is referred to as a right hand limit. It is written as $x \to a^{+}$, which is the same as $x=a+h$ with $h > 0$ and $h \to 0$.


Existence of Limit - A function's limit at $x = a$ exists only if both its left and right hand limits exist, are equal, and have a finite value, i.e., $\underset{x \to a^{-}}{\lim} f(x) = \underset{x \to a^{+}}{\lim} f(x)$


Limits and Functions

A function may reach one of two limits. One in which the variable approaches its limit by taking values that are greater than the limit, and the other in which the variable approaches its limit by taking values that are smaller. The limit is not stated in this situation, although the right and left-hand limitations do exist.

  • When the $\underset{x \to a}{\lim} f(x) = A^{+}$ is used, the values of f near x to the right of ‘a’ are used. The right hand limit of f(x) at ‘a’ is stated to be this value.

  • When the $\underset{x \to a}{\lim} f(x) = A^{-}$ is used, the values of f near x to the left of ‘a’ are used. The left hand limit of f(x) at ‘a’ is referred to as this value.

  • The function’s limit exists if and only if the left-hand limit is equal to the right-hand limit.


Important Limits Formula

  1. $\underset{x \to 0}{\lim} \dfrac{\sin x}{x}=1$

  2. $\underset{x \to 0}{\lim} \cos x=1$

  3. $\underset{x \to 0}{\lim} \dfrac{\tan x}{x}=1$

  4. $\underset{x \to 0}{\lim} \dfrac{1-\cos x}{x}=0$

  5. $\underset{x \to 0}{\lim} \dfrac{\sin x^{\circ}}{x}=\dfrac{\pi}{180}$

  6. $\underset{x \to a}{\lim} \dfrac{x^{n}-a^{n}}{x-a}=n a^{n-1}$

  7. $\underset{x \to \infty}{\lim}\left(1+\dfrac{k}{x}\right)^{m x}=e^{m k}$

  8. $\underset{x \to 0}{\lim}(1+x)^{\dfrac{1}{x}}=e$

  9. $\underset{x \to 0}{\lim} \dfrac{\left(a^{x}-1\right)}{x}=\ln a$

  10. $\underset{x \to 0}{\lim} \dfrac{e^{x}-1}{x}=1$

  11.  $\underset{x \to 0}{\lim} \dfrac{\ln (1+x)}{x}=1$

  12.  $\underset{x \to \infty}{\lim} x^{\dfrac{1}{x}}=1$


L’Hospital Rule

If the supplied limit $\underset{x \to a}{\lim} \dfrac{f(x)}{g(x)}$ is of the form $\dfrac{0}{0}$ or $\dfrac{\infty}{\infty}$, that is, both f(x) and g(x) are 0 or both f(x) and g(x) are infinity, then the limit can be solved using the L'Hospital Rule that is,

$\underset{x \to a}{\lim} \dfrac{f(x)}{g(x)} = \underset{x \to a}{\lim} \dfrac{f^\prime(x)}{g^\prime(x)}$, where $f^\prime(x)$ and $g^\prime(x)$ is obtained by differentiating f(x) and g(x).


What is Continuity and Differentiability?

The continuity of a function and the differentiability of a function are mutually exclusive. Before it can be shown for its differentiability at x = a, the function y = f(x) must first be proved for its continuity at x = a. Both continuity and differentiability can be demonstrated geometrically and algebraically.


Continuity of a Function

The graph y = f(x) of a function is said to be continuous over a range if it is a single unbroken curve (the graph can be drawn easily without lifting the pencil at a point).


Graph of function y = f(x)


Image: Graph of function y = f(x)

Technically we can say that, a continuous real valued function f(x) exists and is equal to $f(x_0)$ at a point $x=x_0$ in the domain if $\underset{x \to x_0}{\lim} f(x)$ exists and is equal to $f(x_0)$.

If a function f(x) is continuous at $x=x_0$, then $\underset{x \to x_0^{+}}{\lim} f(x) = \underset{x \to x_0^{-}}{\lim} f(x) = \underset{x \to x_0}{\lim} f(x)$

Discontinuous functions are those that are not continuous.


Differentiability of A Function

The derivative of a real valued function f(x) with respect to x if the derivative $f^\prime(a)$ exists at every point in its domain, which is defined as

$\underset{h\to 0}{\lim} \dfrac{f(x+h)-f(x)}{h}$


Derivative of a function


Image: Derivative of a function f(x)

If the derivative of a function exists at all points in its domain, the function is said to be differentiable. To test the differentiability of a function at x=c, $\underset{h\to 0}{\lim} \dfrac{f(c+h)-f(c)}{h}$ must exist.

Thus we can say that every differentiable function is continuous


Note: If a function is differentiable at a given point, it is also continuous at that same point. But just because a function is continuous at a point doesn't mean it's also differentiable at that point.


Important Differentiation of the Functions

Derivative of Composite Function

In Layman’s terms, to differentiate a composite function at any point in its domain, first differentiate the outer part (i.e., the function enclosing some other function) and then multiply it with the inner function’s derivative function. This will provide us with the desired differentiation.


Derivatives of Implicit Functions

When the dependent variable in a function is not explicitly isolated on either side of the equation, the function is referred to as an implicit function.


Derivatives of Inverse Trigonometric Functions

The derivatives of inverse trigonometric functions are known as inverse trigonometric derivatives. The inverses of the six basic trigonometric functions are called inverse trigonometric functions. Inverse trigonometric derivatives are defined only in the domain of inverse trigonometric functions, as follows:

Inverse Trigonometric Function

Domain

arcsin x

$\left[-1, 1\right]$

arccos x

$\left[-1, 1\right]$

arctan x

R

arccosec x

$(-\infty, -1] \cup [1, \infty)$

arcsec x

$(-\infty, -1] \cup [1, \infty)$

arccot x

R


Derivatives of Exponential Functions

The product of the exponential function ax and the natural log of a, $f^\prime(x) = ax~ln ~a$, is the derivative of the exponential function $f(x) = ax$, $a > 0$. The exponential function's derivative is written as $\dfrac{d(ax)}{dx} = (ax)^\prime = ax~ln~a$. The first principle of differentiation and the formulas of limits can be used to calculate the derivative of an exponential function. When $a > 1$ and when $a < 1$, the graph of the exponential function's derivative changes direction.

Formula for derivative of exponential function is given as,

$f(x) = ax, f^\prime(x) = ax~ln~a$ or $\dfrac{d(ax)}{dx} = ax~ln~a$

$f(x) = ex, f^\prime(x) = ex$ or $\dfrac{d(ex)}{dx} = ex$


Derivatives of Logarithmic Functions

The slope of the tangent to the curve representing the logarithmic function is determined by the logarithmic function's derivation. The following is the formula for the derivative of the common and natural logarithmic functions.

$\dfrac{1}{x}$ is the derivative of $ln x$. For example, $\dfrac{d}{dx} \dfrac{1}{x} = ln x$

$\dfrac{1}{x(x ~log~ a)}$ is the derivative of $log_a x$


Derivatives of Functions in Parametric Forms

There are times when we define a function using the third variable rather than explicitly or implicitly defining it. This is a parametric form, which is when a function y(x) is represented by a third variable called the parameter.

$\dfrac{d^2y}{dx^2} = \dfrac{d}{dx}\left(\dfrac{dy}{dx}\right) = \dfrac{\dfrac{d}{dt} \left(\dfrac{dy}{dx}\right)} {\dfrac{dx}{dt}}$


Important Formulae of Continuity and Differentiability

1. $f(x)$ is continuous at $x=a$ if $\lim _{x \rightarrow a-} f(x)=\lim _{x \rightarrow a+} f(x)=f(a)$

2. $\dfrac{d}{d x}\left(x^{n}\right)=n x^{n-1}$ i.e $\dfrac{d}{d x}(\mathrm{x})=1$.

3. $\dfrac{d}{d x}(\sin x)=\cos x$.

4. $\dfrac{d}{d x}(\cos x)=-\sin x$.

5. $\cdot \dfrac{d}{d x}(\tan x)=\sec ^{2} x .$

6. $\dfrac{d}{d x}(\cot x)=-\operatorname{cosec}^{2} x$.

7. $\dfrac{d}{d x}(\sec x)=\sec x \tan x$.

8. $\dfrac{d}{d x}(\operatorname{cosec} x)=-\operatorname{cosec} x \cot x$.

9. $\dfrac{d}{d x}\left(\sin ^{-1} x\right)=\dfrac{1}{\sqrt{1-x^{2}}}$

10. $\dfrac{d}{d x}\left(\cos ^{-1} x\right)=-\dfrac{1}{\sqrt{1-x^{2}}}$

11. $\dfrac{d}{d x}\left(\tan ^{-1} x\right)=\dfrac{1}{1+x^{2}}$

12. $\dfrac{d}{d x}\left(\cot ^{-1} x\right)=-\dfrac{1}{1+x^{2}}$.

13. $\dfrac{d}{d x}\left(\sec ^{-1} x\right)=\dfrac{1}{x \sqrt{x^{2}-1}}$

14. $\dfrac{d}{d x}\left(\operatorname{cosec}^{-1} x\right)=-\dfrac{1}{x \sqrt{x^{2}-1}}$


Theorems on Continuity and Differentiability

Theorem 1: If two functions f(x) and g(x) are continuous at a real valued function and continuous at a point x = c, we have:

At the point $c = c$, $f(x) + g(x)$ is continuous.

At $x = c$, $f(x) - g(x)$ is continuous.

Also at $x = c$, $g(x) \cdot g(x)$ is continuous.

At $x = c$, $\dfrac{f(x)}{g(x)}$ is continuous if $g(c) \neq 0$.


Theorem 2: The composite function fog(x) is defined at x = c for two real-valued functions f(x) and g(x). If the function f(x) is continuous at g(c) and g(x) is continuous at x = c, then fog(x) is continuous at x = c.


Theorem 3: If a function f(x) is differentiable at x = c, it is also continuous at that point. Every differentiable function is continuous, in other words.

 

Theorem 4: Chain Rule - $f = vou$ for a real-valued function f(x) is a composite of two functions u and v. Also, if $t = u(x)$ and both $\dfrac{dt}{dx}$ and $\dfrac{dv}{dt}$ exist, then $\dfrac{df}{dx} = \dfrac{dv}{dt}\cdot dt \cdot dx$ is obtained.


Theorem 5: The derivative of $e^x$ with respect to $x$ is $e^x$. And the derivative of $log x$ with respect to $x$ is $\dfrac{1}{x}$.


Theorem 6: Rolle's Theorem - If a function f(x) is continuous across the interval $\left[a, b\right]$ and differentiable across the interval (a, b), such that f(a) = f(b), and a, b are some real numbers. Then there exists a point c in the interval $\left[a, b\right]$ such that $f^\prime(c) = 0$.


Theorem 7: Mean Value Theorem - If a function f(x) is continuous across the interval $\left[a, b\right]$ and differentiable across the interval (a, b), then there exists a point c in the interval $\left[a, b\right]$ such that $f^\prime(c) = \dfrac{f(b) - f(a)}{b - a}$.


Applications of Derivatives:

1. Rate of Change Formula

The rate of change function represents the rate at which one quantity changes in relation to another. Simply put, the rate of change is the difference between the amount of change in one item and the corresponding amount of change in another.

i.e., $\dfrac{\Delta y}{\Delta x} = \dfrac{y_2 - y_1}{x_2 - x_1}$

For a linear function

$\dfrac{\Delta y}{\Delta x} = \dfrac{f(b) - f(a)}{b - a}$


Note:

The rate of change of quantity, $\dfrac{dy}{dx}$, is represented by a positive sign when it increases.

The rate of change of quantity, $\dfrac{dy}{dx}$, is represented by a negative sign when it decreases.


2. Increasing and Decreasing Functions

If the value of y increases as the value of x increases, then the function $y = F(x)$ is known as an increasing function, and if the value of y decreases as the value of x increases, then the function $y = F(x)$ is known as a decreasing function.


Increasing and Decreasing Function


Image: Increasing and Decreasing Function

3. Maxima and Minima of Functions

The extrema of a function are its maximum and minimum values. The maximum and minimum values of a function within a given set of ranges are known as maxima and minima. The maximum value of the function under the entire range is known as the absolute maxima, and the minimum value is known as the absolute minima.

In the diagram below, we get maximum values of the function at x = a and x = 0, and minimum values of the function at x = b and x = c. The maxima are all the peaks, and the minima are all the valleys.


Maxima and Minima


Image: Maxima and Minima


4. Tangents and Normals

A tangent to a curve is a line that touches it at one point and has the same slope as the curve.

A line perpendicular to a tangent to the curve is called a normal to the curve.




Image: Tangent and Normal


Examples on Limit and Continuity

Example on Limit: 

Evaluate $\underset{x\to 0}{\lim} \dfrac{x\cos{(x)}-\sin{(x)}}{x^2\sin{(x)}}$

Solution: Here the given limit is of the form $\dfrac{0}{0}$

Using L’Hospital Rule and differentiating, we get

$\Rightarrow \underset{x \to 0}{\lim} \dfrac{\cos{(x)}-x\sin{(x)}-\cos{(x)}}{x^2\cos{(x)} + 2x\sin{(x)}}$

$\Rightarrow \underset{x \to 0}{\lim} \dfrac{-\sin{(x)}}{x\cos{(x)} + 2\sin{(x)}}$

$\Rightarrow \underset{x \to 0}{\lim} \dfrac{\dfrac{-\sin{(x)}}{x}}{\cos{(x)} + \dfrac{2\sin{(x)}}{x}}$

$\Rightarrow \dfrac{-1}{1 + 2(1)}$

$\Rightarrow \dfrac{-1}{3}$


Example on Continuity:

Find the continuity of the function f(x) = 3x + 4 at the point x = 5.

Solution: The given function is f(x) = 3x + 4, and its value at the point x = 5 is f(5) = 19.

Let us find the limit of the function at the point x = 5.

$\underset{x \to 5}{\lim}f(x)$ 

$\Rightarrow \underset{x \to 5}{\lim} (3x + 4) $

$\Rightarrow 3(5) + 4 $

$\Rightarrow 15 + 4 = 19 = f(5)$

Therefore, the function f(x) is continuous at the point x = 5.


Solved problems of Previous Year’s Question

1. If $f(1)=1, f^{\prime}(1)=2$ then $\underset{x \rightarrow 1}{\lim} \dfrac{\sqrt{f(x)}-1}{\sqrt{x}-1}$ is

Ans: Given function is $\underset{x \rightarrow 1}{\lim} \dfrac{\sqrt{f(x)}-1}{\sqrt{x}-1}$ and the limit is of the form (0/0)

Using L’Hospital's rule we get,

$\Rightarrow \underset{x \rightarrow 1}{\lim} \dfrac{\dfrac{1}{2 \sqrt{f(x)}} f^{\prime}(x)}{\dfrac{1}{2 \sqrt{x}}}$

$\Rightarrow \dfrac{f^{\prime}(1)}{\sqrt{f(1)}}$

As it is given that $f(1)=1, f^{\prime}(1)=2$

Hence $ \dfrac{f^{\prime}(1)}{\sqrt{f(1)}}=2$


2. $f(x)$ and $g(x)$ are two differentiable functions on $\left[0,2\right]$ such that $f^{\prime \prime}(x)-g^{\prime \prime}(x)=0$, $f^{\prime \prime}(1)=2 g^{\prime}(1)=4 f(2)=3 g(2)=9$ then $f(x)-g(x)$ at $x=3 / 2$ is

Ans: Given $f^{\prime \prime}(x)-g^{\prime \prime}(x)=0$ 

On Integrating the above equation we get, 

$f^{\prime}(x)-g^{\prime}(x)=c$; $

$ \Rightarrow f^{\prime}(1)-g^{\prime}(1)=c$

$\Rightarrow 4-2 = c  \Rightarrow c=2$

$\therefore f^{\prime}(x)-g^{\prime}(x)=2$

Again Integrating the above equation to reduce to f(x) and g(x) we get,

$f(x)-g(x)=2 x+c_{1}$

$\Rightarrow f(2)-g(2)=4+c_{1}$ 

$\Rightarrow 9-3=4+c_{1} ; \Rightarrow c_{1}=2$

$\therefore f(x)-g(x)=2 x+2$ at $x= \dfrac{3}{2}, f(x)-g(x)=3+2=5$.


3. Solve the limit $\underset{x \rightarrow \alpha}{\lim} \dfrac{1-\cos a(x-\alpha)(x-\beta)}{(x-\alpha)^{2}}$

Ans: Given, $\underset{x \rightarrow \alpha}{\lim} \dfrac{1-\cos a(x-\alpha)(x-\beta)}{(x-\alpha)^{2}}$

We know that $1-cos\theta = 2sin^2\theta$

Thus the given equation will become,

$\Rightarrow \lim _{x \rightarrow \alpha} \dfrac{2 \sin ^{2}\left(a \dfrac{(x-\alpha)(x-\beta)}{2}\right)}{(x-\alpha)^{2}}$

$\Rightarrow \lim _{x \rightarrow \alpha} \dfrac{2}{(x-\alpha)^{2}} \times \dfrac{\sin ^{2}\left(a\dfrac{(x-\alpha)(x-\beta)}{2}\right)} {\dfrac{a^{2}(x-\alpha)^{2}(x-\beta)^{2}}{4}}\times \dfrac{a^{2}(x-\alpha)^{2}(x-\beta)^{2}}{4}$

$\Rightarrow \dfrac{a^{2}(\alpha-\beta)^{2}}{2}$


Practice Questions

1. Let $f(x)=4$ and $f^{\prime}(x)=4$. Then $\underset{x \rightarrow 2}{\lim} \dfrac{x f(2)-2 f(x)}{x-2}$ is given by

Ans: - 4

Hint: Apply L’Hospital rule


2. If $f(x+y)=f(x) . f(y) \forall x, y$ and $f(5)=2, f^{\prime}(0)=$ 3 then $f^{\prime}(5)$ is

Ans: 6

Hint: Differentiate with respect to x, treating y as constant


Conclusion

Some of the important concepts covered in this chapter include limits, functions, differentiability, continuity, and L’Hospital Rule. It is one of the important chapters in class 12 and it can be continued in higher classes also. Many questions will be asked from this chapter in JEE Main and JEE Advanced both. So the students preparing for JEE must practice the questions from this chapter.


Important Related Links for JEE Main 2022-23

See More
JEE Main Important Dates

JEE Main Important Dates

View all JEE Main Exam Dates
JEE Main 2023 January and April Session exam dates and revised schedule have been announced by the NTA. JEE Main 2023 January and April Session will now be conducted on 24-Jan-2023 to 31-Jan-2023 and 6-Apr-2023 to 12-Apr-2023, and the exam registration closes on 12-Jan-2023 and Apr-2023. You can check the complete schedule on our site. Furthermore, you can check JEE Main 2023 dates for application, admit card, exam, answer key, result, counselling, etc along with other relevant information.
See More
View all JEE Main Exam Dates
JEE Main Information

JEE Main Information


Last updated date: 15th Mar 2023
Total views: 87.9k
Views today: 10

Application Form
Eligibility Criteria
Reservation Policy
Admit Card
Exam Centres
NTA has announced the JEE Main 2023 January session application form release date on the official website https://jeemain.nta.nic.in/. JEE Main 2023 January and April session Application Form is available on the official website for online registration. Besides JEE Main 2023 January and April session application form release date, learn about the application process, steps to fill the form, how to submit, exam date sheet etc online. Check our website for more details. April Session's details will be updated soon by NTA.
JEE Main 2023 applicants should be aware of the eligibility criteria before applying to the exam. NTA has released all the relevant information on the official website, i.e. https://jeemain.nta.nic.in/. JEE Main 2023 aspirants should have passed Class 12th or any other equivalent qualifying examination in 2022, 2021, or students appearing in the Class 12th final exam in 2023 can also apply. For further details, visit our website.
As per the union government’s norms, NTA has released the JEE Main 2023 January and April session reservation criteria for different candidates’ categories (SC/ST/OBC/PwD), All India Quota, State Government Quota, Deemed Universities, and more. You can check more details on Vedantu website.
NTA will release the admit card for JEE Main 2023 January and April Sessions at https://jeemain.nta.nic.in/ 15 days prior to the exam date for the registered candidates. The admit card will contain information such as the name and contact details of the candidate, the exam centre, reporting time, and examination schedule along with other important instructions for JEE Main 2023 January and April Sessions.
The NTA releases the list of JEE Main exam centres on its official website. Check JEE Main Test Centres List including states, cities here as well. We provide the complete list of JEE Main exam centres for 2023 along with the exam city & code at Vedantu. Also, check the list of documents allowed at the JEE Main exam test centres. Find all about the JEE Main 2023 exam centres, cities, location, address and code here.

Last updated date: 15th Mar 2023
Total views: 87.9k
Views today: 10

It is crucial for the the engineering aspirants to know and download the JEE Main 2023 syllabus PDF for Maths, Physics and Chemistry. Check JEE Main 2023 syllabus here along with the best books and strategies to prepare for the entrance exam. Download the JEE Main 2023 syllabus consolidated as per the latest NTA guidelines from Vedantu for free.
See More
Download full syllabus
Download full syllabus
View JEE Main Syllabus in Detail
JEE Main 2023 Study Material

JEE Main 2023 Study Material

View all study material for JEE Main
JEE Main 2023 Study Materials: Strengthen your fundamentals with exhaustive JEE Main Study Materials. It covers the entire JEE Main syllabus, DPP, PYP with ample objective and subjective solved problems. Free download of JEE Main study material for Physics, Chemistry and Maths are available on our website so that students can gear up their preparation for JEE Main exam 2023 with Vedantu right on time.
See More
All
Mathematics
Physics
Chemistry
See All
JEE Main Question Papers

JEE Main Question Papers

see all
Download JEE Main Question Papers & ​Answer Keys of 2022, 2021, 2020, 2019, 2018 and 2017 PDFs. JEE Main Question Paper are provided language-wise along with their answer keys. We also offer JEE Main Sample Question Papers with Answer Keys for Physics, Chemistry and Maths solved by our expert teachers on Vedantu. Downloading the JEE Main Sample Question Papers with solutions will help the engineering aspirants to score high marks in the JEE Main examinations.
See More
JEE Main 2023 Book Solutions and PDF Download

JEE Main 2023 Book Solutions and PDF Download

View all JEE Main Important Books

Last updated date: 15th Mar 2023
Total views: 87.9k
Views today: 10

In order to prepare for JEE Main 2023, candidates should know the list of important books i.e. RD Sharma Solutions, NCERT Solutions, RS Aggarwal Solutions, HC Verma books and RS Aggarwal Solutions. They will find the high quality readymade solutions of these books on Vedantu. These books will help them in order to prepare well for the JEE Main 2023 exam so that they can grab the top rank in the all India entrance exam.
See More
Maths
NCERT Book for Class 12 Maths
Physics
NCERT Book for Class 12 Physics
Chemistry
NCERT Book for Class 12 Chemistry
Physics
H. C. Verma Solutions
Maths
R. D. Sharma Solutions
Maths
R.S. Aggarwal Solutions
See All
JEE Main Mock Tests

JEE Main Mock Tests

View all mock tests
JEE Main 2023 free online mock test series for exam preparation are available on the Vedantu website for free download. Practising these mock test papers of Physics, Chemistry and Maths prepared by expert teachers at Vedantu will help you to boost your confidence to face the JEE Main 2023 examination without any worries. The JEE Main test series for Physics, Chemistry and Maths that is based on the latest syllabus of JEE Main and also the Previous Year Question Papers.
See More
JEE Main 2023 Cut-Off

JEE Main 2023 Cut-Off

JEE Main Cut Off

Last updated date: 15th Mar 2023
Total views: 87.9k
Views today: 10

NTA is responsible for the release of the JEE Main 2023 January and April Session cut off score. The qualifying percentile score might remain the same for different categories. According to the latest trends, the expected cut off mark for JEE Main 2023 January and April Session is 50% for general category candidates, 45% for physically challenged candidates, and 40% for candidates from reserved categories. For the general category, JEE Main qualifying marks for 2021 ranged from 87.8992241 for general-category, while for OBC/SC/ST categories, they ranged from 68.0234447 for OBC, 46.8825338 for SC and 34.6728999 for ST category.
See More
JEE Main 2023 Results

JEE Main 2023 Results


Last updated date: 15th Mar 2023
Total views: 87.9k
Views today: 10

NTA will release the JEE Main 2023 January and April sessions exam dates on the official website, i.e. {official-website}. Candidates can directly check the date sheet on the official website or https://jeemain.nta.nic.in/. JEE Main 2023 January and April sessions is expected to be held in February and May. Visit our website to keep updates of the respective important events of the national entrance exam.
See More
Rank List
Counselling
Cutoff
JEE Main 2023 state rank lists will be released by the state counselling committees for admissions to the 85% state quota and to all seats in IIT colleges. JEE Main 2023 state rank lists are based on the marks obtained in entrance exams. Candidates can check the JEE Main 2023 state rank list on the official website or on our site.
The NTA will conduct JEE Main 2023 counselling at https://josaa.nic.in/. There will be two rounds of counselling for admission under All India Quota (AIQ), deemed and central universities, NITs and CFTIs. A mop-up round of JEE Main counselling will be conducted excluding 15% AIQ seats, while the dates of JEE Main 2023 June and July session counselling for 85% state quota seats will be announced by the respective state authorities.
NTA is responsible for the release of the JEE Main 2023 June and July Session cut off score. The qualifying percentile score might remain the same for different categories. According to the latest trends, the expected cut off mark for JEE Main 2023 June and July Session is 50% for general category candidates, 45% for physically challenged candidates, and 40% for candidates from reserved categories. For the general category, JEE Main qualifying marks for 2021 ranged from 87.8992241 for general category, while for OBC/SC/ST categories, they ranged from 68.0234447 for OBC, 46.8825338 for SC and 34.6728999 for ST category.

Last updated date: 15th Mar 2023
Total views: 87.9k
Views today: 10

Want to know which Engineering colleges in India accept the JEE Main 2023 scores for admission to Engineering? Find the list of Engineering colleges accepting JEE Main scores in India, compiled by Vedantu. There are 1622 Colleges that are accepting JEE Main. Also find more details on Fees, Ranking, Admission, and Placement.
See More
question-image

FAQs on JEE - Limit, Continuity and Differentiability

FAQ

1. Mention the most important differentiation of the functions f(x) based on the type of functions.

Some of the most important differentiation of the functions f(x) based on the type of functions are given below:

  • Derivative of Composite Function

  • Derivatives of Implicit Functions

  • Derivatives of Inverse Trigonometric Functions

  • Derivatives of Exponential Functions

  • Derivatives of Logarithmic Functions

  • Derivatives of Functions in Parametric Forms

2. What Are the Applications of Calculus Limits in Real Life?

Limits are also utilized in practice to approximate the calculation of derivatives. Engineers will estimate a function using small changes in the function and then try to determine the derivative of the function using smaller spacing in the function following sample intervals in order to do computations.

3. Mention two of the most important theorems on continuity and differentiability

Rolle's Theorem - If a function f(x) is continuous across the interval $\left[a, b\right]$ and differentiable across the interval (a, b), such that f(a) = f(b), and a, b are some real numbers. Then there exists a point c in the interval $\left[a, b\right]$ such that  $f^\prime(c) = 0$.


Mean Value Theorem - If a function f(x) is continuous across the interval $\left[a, b\right]$ and differentiable across the interval (a, b), then there exists a point c in the interval $\left[a, b\right]$ such that $f^\prime(c) = \dfrac{f(b) - f(a)}{b - a}$.

JEE Main Upcoming Dates

JEE Main Upcoming Dates

Vedantu offers free live Master Classes for CBSE Class 6 to 12, ICSE, JEE Main, JEE 2023, & more by India’s best teachers. Learn all the important concepts concisely along with amazing tricks to score high marks in your class and other competitive exams.
See More
date
JEE Main Exam April Session Starts
06 May 202346 days remaining
date
JEE Main Exam April Session Ends
12 May 202353 days remaining