JEE

# JEE Important Chapter - Complex Numbers and Quadratic Equations

Get interactive courses taught by top teachers

## Why Complex Numbers and Quadratic Equations?

Complex Numbers and Quadratic Equations is a fascinating and essential topic in mathematics. Every year, at least 1 to 3 problems from this chapter appear in IIT JEE and other exams. The concept of this chapter will be used in many other chapters, such as functions and coordinate geometry.

Begin by grasping fundamental ideas such as the definition of a complex number, integral powers of iota, and various representations of a complex number. Then go on to complex number algebra. The Argand plane, modulus, and argument of a complex number, as well as the triangle, are all fundamental concepts. Go over the concepts of solved problems again, and then do the same with the quadratic equation. Refer to the complex numbers and quadratic equations Class 11 solutions provided by Vedantu and download the complex numbers and quadratic equations Class 11 PDF to prepare for the exams.

### Important Topics of Complex Numbers and Quadratic Equations

• Algebra of complex numbers

• Properties of complex numbers

• Modulus and conjugate of a complex numbers

• Argument of complex number

• Polar form of complex numbers

• Euler's Formula and De Moiver’s Theorem

• Geometry of Complex Numbers

• Cube root of unity

• Vector representation and rotation of complex numbers

• Nature of roots (in quadratic equations), the relation of coefficient and roots

• Transformation of quadratic equations and condition of common roots

• The discriminant of quadratic equations

### Complex Number

A complex number is one that can be written as p + iq, where p and q are real values and i represents a solution to the x2-1 equation.

$\sqrt{i}=-1$ or, i2 = -1.

Some of the examples of complex numbers are: 8 – 2i, 2 +31i, etc, and the Complex numbers are denoted by ‘z’.

The general form of the complex number is z=p+iq

Here,

• p is known as the real part and is denoted by Re z.

• q is known as the imaginary part and it is denoted by Im z.

• If z = 12 + 35i, then the value Re z = 12 and Im z = 35. If z1 and z2 are two complex numbers such that z1 = p + iq and z2 = r + is , z1 and z2 are equal if p = r and q = s.

### Modulus of a Complex Number

Consider the complex number z = x + iy. The modulus (absolute values) of z is thus defined as the positive square root of the sum of the squares of the real and imaginary parts, indicated by |z|  i.e. $|\text{z}|=\sqrt{{x^2}+{y^2}}$

It represents the distance of z from the origin in the set of complex number c, where the order relation is not defined

i.e. z1 > z2 or z1 < z2 has no meaning but when |z1| > |z2| or |z1|<|z2| has got its meaning since |z1| and |z2| are the real numbers.

### Argand Plane

Any complex number z = x + iy can be represented geometrically by a point (x, y) in a plane, called the argand plane or gaussian plane. A purely number x, i.e. (x + 0i) is represented by the point (x, 0) on the x-axis. Therefore, the x-axis is called the real axis. A purely imaginary number iy i.e. (0 + iy) is represented by the point (0, y) on the y-axis. Therefore, the y-axis is known as the imaginary axis.

### Argument of a Complex Number

The angle made by a line joining point z to the origin, with the positive direction of the x-axis in an anti-clockwise sense is called the argument or amplitude of a complex number. It is denoted by the symbol arg(z) or amp(z).

arg(z) = θ = $\tan^{-1}\left ( \dfrac{x}{y} \right )$

Image: Argument of complex number

The argument of z is not unique, and its general value of the argument of z is 2nπ + θ, but arg(0) is not defined. The unique value of θ such that -π < θ ≤ π is called the principal value of the amplitude or principal argument.

### Principal Value of Argument

• if x > 0 and y > 0, then arg(z) = θ.

• if x < 0 and y > 0, then arg(z) = π – θ.

• if x < 0 and y < 0, then arg(z) = -(π – θ).

• if x > 0 and y < 0, then arg(z) = -θ.

### Polar Form of a Complex Number

If z = x + iy is a complex number, then  z = |z| (cosθ + i sinθ), where θ = arg(z). This is called polar form. If the general value of the argument is θ, then the polar form of z is z = |z| [cos (2nπ + θ) + i sin(2nπ + θ)], where n is an integer.

### What Is a Quadratic Equation?

A quadratic equation is a second-degree equation. The general form of the quadratic equation is ax2+bx+c = 0, where a, b, c are real numbers and a ≠ 0. For example, x2+2x+1 = 0.

An algebraic expression with several terms is called a polynomial. A polynomial of degree two of the form ax2+bx+c (a≠0) is called a quadratic expression in x. When a quadratic polynomial f(x) is equated to zero, we can term it a quadratic equation.

The quadratic equation ax2 + bx + c = 0 with real coefficients has two roots given by $\dfrac{-b+\sqrt{D}}{2a}$ and $\dfrac{-b-\sqrt{D}}{2a}$, where D = b2 – 4ac, called the discriminant of the equation.

Note:

(i) When D = 0, roots are real and equal. When D > 0 roots are real and unequal. Further, if a,b, c ∈ Q and D is a perfect square, then the roots of the quadratic equation are real and unequal and if a, b, c ∈ Q and D is not a perfect square, then the roots are irrational and occur in pairs. When D < 0, the roots of the equation are non-real (or complex).

(ii) Let α, β be the roots of quadratic equation ax2 + bx + c = 0, then the sum of roots α + β =$\dfrac{-b}{a}$ and the product of roots αβ = $\dfrac{c}{a}$.

### Important Formulae

 Sl.no Topic Formulae 1 Addition of complex number z1+z2 = (a+bi)+(c+di)         = (a+c)+(b+d)i 2 Subtraction of complex number z1-z2 = (a+bi)-(c+di)         = (a-c)+(b-d)i 3 Multiplication of complex number z1.z2 = (a+bi)(c+di)        = ac-bd+(ad+bc)i 4. Division $\dfrac{z_1}{z_2}=\dfrac{a+bi}{c+di}$$=\left ( \dfrac{ac+bd}{c^2+d^2} \right )=\left ( \dfrac{bc-da}{c^2+d^2} \right )i$ 5. Solution of Quadratic Equation where b2- 4ac < 0 $x=\dfrac{-b\pm \sqrt{4ac-b^2}i}{2a}$

### Solved Examples

1. Express the question in the form of a + bi: $\left ( -5i \right )\left ( \dfrac{1}{8}i \right )$

Solution: $\left ( -5i \right )\left ( \dfrac{1}{8}i \right )$

Solving the above equation, we get:

= $\left ( \dfrac{-5}{8} i^2 \right )$ = $\left ( \dfrac{-5}{8} (-1) \right )$ = $\left ( \dfrac{5}{8}\right )$

Now, write the final answer in the form of a+ib

=$\left ( \dfrac{5}{8}+0i\right )$

Question 2: (cos θ + i sin θ)4 / (sin θ + i cos θ)5 is equal to ____________.

Solution:

(cos θ + i sin θ)4 / (sin θ + i cos θ)5

= (cos θ + i sin θ)4 / i5 ([1 / i] sin θ + cos θ)5

= (cosθ + i sin θ)4 / i (cos θ − i sin θ)5

= (cos θ + i sin θ)4 / i (cos θ + i sin θ)−5 (By property) = 1 / i (cos θ + i sin θ)9

= sin(9θ) − i cos (9θ).

### Solved Questions of Previous Years Question Papers

Question 1: If z is a complex number, then the minimum value of |z| + |z − 1| is ______.

Solution:

First, note that |−z|=|z| and |z1 + z2| ≤ |z1| + |z2|

Now |z| + |z − 1| = |z| + |1 − z| ≥ |z + (1 − z)|

= |1|

= 1

Hence, minimum value of |z| + |z − 1| is 1.

Question 2: Find the complex number z satisfying the equations $\dfrac{\left | z-12 \right |}{\left | z-8i \right |}=\dfrac{8}{3}$, $\dfrac{\left | z-4 \right |}{\left | z-8 \right |}=1$

Solution:

We have

$\dfrac{\left | z-12 \right |}{\left | z-8i \right |}=\dfrac{8}{3}$,

$\dfrac{\left | z-4 \right |}{\left | z-8 \right |}=1$

Let z = x + iy, then

$\dfrac{\left | z-12 \right |}{\left | z-8i \right |}=\dfrac{8}{3}$

⇒ 3|z − 12| = 5 |z − 8i|

3 |(x − 12) + iy| = 5 |x + (y − 8) i|

9 (x − 12)2 + 9y2 = 25x2 + 25 (y − 8)2 ….(i) and

$\dfrac{\left | z-4 \right |}{\left | z-8 \right |}=1$

⇒ |z − 4| = |z − 8|

|x − 4 + iy| = |x − 8 + iy|

(x − 4)2 + y2 = (x − 8)2 + y2

⇒ x = 6

Putting x = 6 in (i), we get y2 − 25y + 136 = 0

y = 17, 8

Hence, z = 6 + 17i or z = 6 + 8i

Question 3: If the cube roots of unity are 1, ω, ω2, find the roots of the equation (x − 1)3 + 8 = 0.

Solution:

(x − 1)3 = −8 ⇒ x − 1 = (−8)1/3

x − 1 = −2, −2ω, −2ω2

x = −1, 1 − 2ω, 1 − 2ω2

Practise Questions

1. The area of the triangle with vertices A(z), b(iz) and, c(z+iz) is

a. 1

b. $\dfrac{1}{2}$|z|2

c. $\dfrac{1}{2}$

d. $\dfrac{1}{2}$ |z+iz|2

2. Let a complex number be $W=1-\sqrt{3}i$. Let another complex number z be |zw|=1 such that and arg(z)-arg(w) = $\dfrac{\pi}{2}$. The area of the triangle with vertices origin, and is equal to:

a. 4

b. $\dfrac{1}{2}$

c. $\dfrac{1}{4}$

d. 2

### Conclusion

Students will learn about JEE Mathematics complex number and quadratic equations by reading the articles. They will know about its wide range of applications in real-life problems. For example, in physics, when dealing with a circuit involving capacitors and inductance, we use complex numbers to find the circuit's impedance. To do so, we use complex numbers to represent the capacitor and inductance quantities responsible for the contribution of impedance. Students can also gain a thorough understanding of the concept by working through the solved problems and examples. Visit Vedantu’s website and refer to Class 11 Maths Chapter 5 miscellaneous exercise solutions, NCERT solutions for class 11 Maths Chapter 5, complex numbers and quadratic equations Class 11 solutions and download complex numbers and quadratic equations Class 11 PDF to be better prepared.

See More

## JEE Main Important Dates

View All Dates
JEE Main 2022 June and July Session exam dates and revised schedule have been announced by the NTA. JEE Main 2022 June and July Session will now be conducted on 20-June-2022, and the exam registration closes on 5-Apr-2022. You can check the complete schedule on our site. Furthermore, you can check JEE Main 2022 dates for application, admit card, exam, answer key, result, counselling, etc along with other relevant information.
See More
June
July
View All Dates

## JEE Main Information

Application Form
Eligibility Criteria
Reservation Policy
NTA has announced the JEE Main 2022 June session application form release date on the official website https://jeemain.nta.nic.in/. JEE Main 2022 June and July session Application Form is available on the official website for online registration. Besides JEE Main 2022 June and July session application form release date, learn about the application process, steps to fill the form, how to submit, exam date sheet etc online. Check our website for more details. July Session's details will be updated soon by NTA.

## JEE Main 2022 Study Material

View all study material for JEE Main
JEE Main 2022 Study Materials: Strengthen your fundamentals with exhaustive JEE Main Study Materials. It covers the entire JEE Main syllabus, DPP, PYP with ample objective and subjective solved problems. Free download of JEE Main study material for Physics, Chemistry and Maths are available on our website so that students can gear up their preparation for JEE Main exam 2022 with Vedantu right on time.
See More
All
Mathematics
Physics
Chemistry
Sets, Relations and Functions
Matrices and Determinants
See All

## JEE Main Question Papers

see all
Download JEE Main Question Papers & ​Answer Keys of 2021, 2020, 2019, 2018 and 2017 PDFs. JEE Main Question Paper are provided language-wise along with their answer keys. We also offer JEE Main Sample Question Papers with Answer Keys for Physics, Chemistry and Maths solved by our expert teachers on Vedantu. Downloading the JEE Main Sample Question Papers with solutions will help the engineering aspirants to score high marks in the JEE Main examinations.
See More
PYQP
Sample Paper
2020
2021
2022
2022
January
06th January 2020 - Maths, Physics and Chemistry
English  •   Shift 1
06th January 2020 - Maths, Physics and Chemistry
English  •   Shift 2
07th January 2020 - Maths, Physics and Chemistry
English  •   Shift 1
07th January 2020 - Maths, Physics and Chemistry
English  •   Shift 2
08th January 2020 - Maths, Physics and Chemistry
English  •   Shift 1
08th January 2020 - Maths, Physics and Chemistry
English  •   Shift 2
September
01st September 2020 - Maths, Physics and Chemistry
English  •   Shift 1
01st September 2020 - Maths, Physics and Chemistry
English  •   Shift 2
02nd September 2020 - Maths, Physics and Chemistry
English  •   Shift 1
02nd September 2020 - Maths, Physics and Chemistry
English  •   Shift 2
03rd September 2020 - Maths, Physics and Chemistry
English  •   Shift 1
03rd September 2020 - Maths, Physics and Chemistry
English  •   Shift 2
04th September 2020 - Maths, Physics and Chemistry
English  •   Shift 1
04th September 2020 - Maths, Physics and Chemistry
English  •   Shift 2
05th September 2020 - Maths, Physics and Chemistry
English  •   Shift 1
05th September 2020 - Maths, Physics and Chemistry
English  •   Shift 2
February
23rd February 2021 - Maths, Physics and Chemistry
English  •   Shift 1
23rd February 2021 - Maths, Physics and Chemistry
English  •   Shift 2
24th February 2021 - Maths, Physics and Chemistry
English  •   Shift 1
24th February 2021 - Maths, Physics and Chemistry
English  •   Shift 2
25th February 2021 - Maths, Physics and Chemistry
English  •   Shift 1
25th February 2021 - Maths, Physics and Chemistry
English  •   Shift 2
March
15th March 2021 - Maths, Physics and Chemistry
English  •   Shift 1
15th March 2021 - Maths, Physics and Chemistry
English  •   Shift 2
16th March 2021 - Maths, Physics and Chemistry
English  •   Shift 1
16th March 2021 - Maths, Physics and Chemistry
English  •   Shift 2
17th March 2021 - Maths, Physics and Chemistry
English  •   Shift 1
17th March 2021 - Maths, Physics and Chemistry
English  •   Shift 2
July
19th July 2021 - Maths, Physics and Chemistry
English  •   Shift 1
19th July 2021 - Maths, Physics and Chemistry
English  •   Shift 2
21st July 2021 - Maths, Physics and Chemistry
English  •   Shift 2
24th July 2021 - Maths, Physics and Chemistry
English  •   Shift 1
24th July 2021 - Maths, Physics and Chemistry
English  •   Shift 2
26th July 2021 - Maths, Physics and Chemistry
English  •   Shift 1
August
25th August 2021 - Maths, Physics and Chemistry
English  •   Shift 1
25th August 2021 - Maths, Physics and Chemistry
English  •   Shift 2
26th August 2021 - Maths, Physics and Chemistry
English  •   Shift 1
26th August 2021 - Maths, Physics and Chemistry
English  •   Shift 2
30th August 2021 - aptitude
English  •   Shift 1
30th August 2021 - Maths, Physics and Chemistry
English  •   Shift 2
June
23rd June 2022 - Maths, Physics and Chemistry
English  •   Shift 1
23rd June 2022 - mathematics
English  •   Shift 1
23rd June 2022 - physics
English  •   Shift 1
23rd June 2022 - chemistry
English  •   Shift 1
23rd June 2022 - Maths, Physics and Chemistry
English  •   Shift 2
23rd June 2022 - mathematics
English  •   Shift 2
23rd June 2022 - physics
English  •   Shift 2
23rd June 2022 - chemistry
English  •   Shift 2
24th June 2022 - Maths, Physics and Chemistry
English  •   Shift 1
24th June 2022 - mathematics
English  •   Shift 1
24th June 2022 - physics
English  •   Shift 1
24th June 2022 - chemistry
English  •   Shift 1
24th June 2022 - Maths, Physics and Chemistry
English  •   Shift 2
24th June 2022 - mathematics
English  •   Shift 2
24th June 2022 - physics
English  •   Shift 2
24th June 2022 - chemistry
English  •   Shift 2
25th June 2022 - Maths, Physics and Chemistry
English  •   Shift 1
25th June 2022 - mathematics
English  •   Shift 1
25th June 2022 - physics
English  •   Shift 1
25th June 2022 - chemistry
English  •   Shift 1
25th June 2022 - general
English  •   Shift 2
25th June 2022 - mathematics
English  •   Shift 2
25th June 2022 - physics
English  •   Shift 2
25th June 2022 - chemistry
English  •   Shift 2
26th June 2022 - general
English  •   Shift 1
26th June 2022 - mathematics
English  •   Shift 1
26th June 2022 - physics
English  •   Shift 1
26th June 2022 - chemistry
English  •   Shift 1
26th June 2022 - exam-strategy
English  •   Shift 2
26th June 2022 - mathematics
English  •   Shift 2
26th June 2022 - physics
English  •   Shift 2
26th June 2022 - chemistry
English  •   Shift 2
27th June 2022 - exam-strategy
English  •   Shift 1
27th June 2022 - mathematics
English  •   Shift 1
27th June 2022 - physics
English  •   Shift 1
27th June 2022 - chemistry
English  •   Shift 1
27th June 2022 - general
English  •   Shift 2
27th June 2022 - mathematics
English  •   Shift 2
27th June 2022 - physics
English  •   Shift 2
27th June 2022 - chemistry
English  •   Shift 2
28th June 2022 - general
English  •   Shift 1
28th June 2022 - mathematics
English  •   Shift 1
28th June 2022 - physics
English  •   Shift 1
28th June 2022 - chemistry
English  •   Shift 1
28th June 2022 - general
English  •   Shift 2
28th June 2022 - mathematics
English  •   Shift 2
28th June 2022 - physics
English  •   Shift 2
28th June 2022 - chemistry
English  •   Shift 2
23rd June 2022 - Maths, Physics and Chemistry
English  •   Shift 1
23rd June 2022 - Maths, Physics and Chemistry
English  •   Shift 1
23rd June 2022 - mathematics
English  •   Shift 1
23rd June 2022 - physics
English  •   Shift 1
23rd June 2022 - chemistry
English  •   Shift 1
23rd June 2022 - Maths, Physics and Chemistry
English  •   Shift 2
23rd June 2022 - mathematics
English  •   Shift 2
23rd June 2022 - physics
English  •   Shift 2
23rd June 2022 - chemistry
English  •   Shift 2
24th June 2022 - Maths, Physics and Chemistry
English  •   Shift 1
24th June 2022 - Maths, Physics and Chemistry
English  •   Shift 1
24th June 2022 - mathematics
English  •   Shift 1
24th June 2022 - physics
English  •   Shift 1
24th June 2022 - chemistry
English  •   Shift 1
24th June 2022 - Maths, Physics and Chemistry
English  •   Shift 2
24th June 2022 - mathematics
English  •   Shift 2
24th June 2022 - physics
English  •   Shift 2
24th June 2022 - chemistry
English  •   Shift 2
25th June 2022 - Maths, Physics and Chemistry
English  •   Shift 1
25th June 2022 - Maths, Physics and Chemistry
English  •   Shift 1
25th June 2022 - mathematics
English  •   Shift 1
25th June 2022 - physics
English  •   Shift 1
25th June 2022 - chemistry
English  •   Shift 1
25th June 2022 - general
English  •   Shift 2
25th June 2022 - mathematics
English  •   Shift 2
25th June 2022 - physics
English  •   Shift 2
25th June 2022 - chemistry
English  •   Shift 2
26th June 2022 - general
English  •   Shift 1
26th June 2022 - general
English  •   Shift 1
26th June 2022 - mathematics
English  •   Shift 1
26th June 2022 - physics
English  •   Shift 1
26th June 2022 - chemistry
English  •   Shift 1
26th June 2022 - exam-strategy
English  •   Shift 2
26th June 2022 - mathematics
English  •   Shift 2
26th June 2022 - physics
English  •   Shift 2
26th June 2022 - chemistry
English  •   Shift 2
27th June 2022 - exam-strategy
English  •   Shift 1
27th June 2022 - exam-strategy
English  •   Shift 1
27th June 2022 - mathematics
English  •   Shift 1
27th June 2022 - physics
English  •   Shift 1
27th June 2022 - chemistry
English  •   Shift 1
27th June 2022 - general
English  •   Shift 2
27th June 2022 - mathematics
English  •   Shift 2
27th June 2022 - physics
English  •   Shift 2
27th June 2022 - chemistry
English  •   Shift 2
28th June 2022 - general
English  •   Shift 1
28th June 2022 - general
English  •   Shift 1
28th June 2022 - mathematics
English  •   Shift 1
28th June 2022 - physics
English  •   Shift 1
28th June 2022 - chemistry
English  •   Shift 1
28th June 2022 - general
English  •   Shift 2
28th June 2022 - mathematics
English  •   Shift 2
28th June 2022 - physics
English  •   Shift 2
28th June 2022 - chemistry
English  •   Shift 2
July
24th July 2022 - Maths, Physics and Chemistry
English  •   Shift 1, 2
24th July 2022 - Maths, Physics and Chemistry
English  •   Shift 1
24th July 2022 - mathematics
English  •   Shift 1
24th July 2022 - physics
English  •   Shift 1
24th July 2022 - chemistry
English  •   Shift 1
24th July 2022 - Maths, Physics and Chemistry
English  •   Shift 2
24th July 2022 - mathematics
English  •   Shift 2
24th July 2022 - physics
English  •   Shift 2
24th July 2022 - chemistry
English  •   Shift 2
25th July 2022 - Maths, Physics and Chemistry
English  •   Shift 1, 2
25th July 2022 - Maths, Physics and Chemistry
English  •   Shift 1
25th July 2022 - mathematics
English  •   Shift 1
25th July 2022 - physics
English  •   Shift 1
25th July 2022 - chemistry
English  •   Shift 1
25th July 2022 - Maths, Physics and Chemistry
English  •   Shift 2
25th July 2022 - mathematics
English  •   Shift 2
25th July 2022 - physics
English  •   Shift 2
25th July 2022 - chemistry
English  •   Shift 2
26th July 2022 - Maths, Physics and Chemistry
English  •   Shift 1, 2
26th July 2022 - Maths, Physics and Chemistry
English  •   Shift 1
26th July 2022 - mathematics
English  •   Shift 1
26th July 2022 - physics
English  •   Shift 1
26th July 2022 - chemistry
English  •   Shift 1
26th July 2022 - Maths, Physics and Chemistry
English  •   Shift 2
26th July 2022 - mathematics
English  •   Shift 2
26th July 2022 - physics
English  •   Shift 2
26th July 2022 - chemistry
English  •   Shift 2
27th July 2022 - Maths, Physics and Chemistry
English  •   Shift 1, 2
27th July 2022 - Maths, Physics and Chemistry
English  •   Shift 1
27th July 2022 - mathematics
English  •   Shift 1
27th July 2022 - physics
English  •   Shift 1
27th July 2022 - chemistry
English  •   Shift 1
27th July 2022 - Maths, Physics and Chemistry
English  •   Shift 2
27th July 2022 - mathematics
English  •   Shift 2
27th July 2022 - physics
English  •   Shift 2
27th July 2022 - chemistry
English  •   Shift 2
28th July 2022 - Maths, Physics and Chemistry
English  •   Shift 1, 2
28th July 2022 - Maths, Physics and Chemistry
English  •   Shift 1
28th July 2022 - mathematics
English  •   Shift 1
28th July 2022 - physics
English  •   Shift 1
28th July 2022 - chemistry
English  •   Shift 1
28th July 2022 - Maths, Physics and Chemistry
English  •   Shift 2
28th July 2022 - mathematics
English  •   Shift 2
28th July 2022 - physics
English  •   Shift 2
28th July 2022 - chemistry
English  •   Shift 2
June, July
mathematics
English  •   Shift 1, 2
mathematics
English  •   Shift 1, 2
mathematics
English  •   Shift 1, 2
mathematics
English  •   Shift 1, 2
mathematics
English  •   Shift 1, 2
chemistry
English  •   Shift 1, 2
mathematics
English  •   Shift 1, 2

View all JEE Main Important Books
In order to prepare for JEE Main 2022, candidates should know the list of important books i.e. RD Sharma Solutions, NCERT Solutions, RS Aggarwal Solutions, HC Verma books and RS Aggarwal Solutions. They will find the high quality readymade solutions of these books on Vedantu. These books will help them in order to prepare well for the JEE Main 2022 exam so that they can grab the top rank in the all India entrance exam.
See More
Maths
NCERT Book for Class 12 Maths
Physics
NCERT Book for Class 12 Physics
See All

## JEE Main Mock Tests

View all mock tests
JEE Main 2022 free online mock test series for exam preparation are available on the Vedantu website for free download. Practising these mock test papers of Physics, Chemistry and Maths prepared by expert teachers at Vedantu will help you to boost your confidence to face the JEE Main 2022 examination without any worries. The JEE Main test series for Physics, Chemistry and Maths that is based on the latest syllabus of JEE Main and also the Previous Year Question Papers.
See More
JEE MAIN MOCK TEST - 1
3 hr  • 75 questions • OBJECTIVE
JEE MAIN MOCK TEST - 3
3 hr  • 75 questions • OBJECTIVE
JEE MAIN MOCK TEST - 2
3 hr  • 75 questions • OBJECTIVE

## Master Teachers

From IITs & other top-tier colleges with 5+ years of experience
You can count on our specially-trained teachers to bring out the best in every student.
They have taught over 4.5 crore hours to 10 lakh students in 1000+ cities in 57 countries
11+ years exp

### Shreyas

Physics master teacher

4+ years exp

### Nidhi Sharma

Chemistry master teacher

2+ years exp

### Luv Mehan

Chemistry Master Teacher

## JEE Main 2022 Cut-Off

JEE Main Cut Off
NTA is responsible for the release of the JEE Main 2022 June and July Session cut off score. The qualifying percentile score might remain the same for different categories. According to the latest trends, the expected cut off mark for JEE Main 2022 June and July Session is 50% for general category candidates, 45% for physically challenged candidates, and 40% for candidates from reserved categories. For the general category, JEE Main qualifying marks for 2021 ranged from 87.8992241 for general-category, while for OBC/SC/ST categories, they ranged from 68.0234447 for OBC, 46.8825338 for SC and 34.6728999 for ST category.
See More

## JEE Main 2022 Results

JEE Main 2022 June and July Session Result - NTA has announced JEE Main result on their website. To download the Scorecard for JEE Main 2022 June and July Session, visit the official website of JEE Main NTA.
See More
Rank List
Counselling
Cutoff
JEE Main 2022 state rank lists will be released by the state counselling committees for admissions to the 85% state quota and to all seats in NITs and CFTIs colleges. JEE Main 2022 state rank lists are based on the marks obtained in entrance exams. Candidates can check the JEE Main 2022 state rank list on the official website or on our site.

## JEE Top Colleges

View all JEE Main 2022 Top Colleges
Want to know which Engineering colleges in India accept the JEE Main 2022 scores for admission to Engineering? Find the list of Engineering colleges accepting JEE Main scores in India, compiled by Vedantu. There are 1622 Colleges that are accepting JEE Main. Also find more details on Fees, Ranking, Admission, and Placement.
See More

## Counselling

Need more details? Our expert academic counsellors will be happy to patiently explain everything that you want to know.
Speak to an expert

## FAQs on JEE Important Chapter - Complex Numbers and Quadratic Equations

FAQ

1. What are the contributions of the chapter Complex Numbers and Quadratic Equation?

Every year, in JEE Main and other exams, at least 1 to 3 problems from this chapter appear, and the concept of this chapter can be used in many other chapters, such as functions and coordinate geometry. One of the most significant and fundamental chapters in the preparation of competitive admission tests is Complex Numbers and Quadratic Equations.

2. How difficult is the chapter Complex Numbers and Quadratic Equation?

Complex numbers might be difficult for some pupils to comprehend and solve issues with at first. However, as you solve more problems involving complex numbers, you will get more comfortable with the subject. After that, the questions will seem simple to you. The Quadratic section is a little easier to understand and correlate than the difficult part; the notion of the Quadratic part is quite simple and logically easy to comprehend and correlate. You can refer to the NCERT solutions for Class 11 maths Chapter 5 and complex numbers and quadratic equations class 11 solutions available on Vedantu’s website for practice. Head over to our website and download the complex numbers and quadratic equations Class 11 PDF.

3. What is the meaning of modulus?

Modulus is the factor that is multiplied by a logarithm of a number to one base to get the logarithm of the number to a new base.

## JEE Main Upcoming Dates

Vedantu offers free live Master Classes for CBSE Class 6 to 12, ICSE, JEE Main, JEE 2022, & more by India’s best teachers. Learn all the important concepts concisely along with amazing tricks to score high marks in your class and other competitive exams.
See More