JEE

# JEE Important Chapter - Coordinate Geometry

Get interactive courses taught by top teachers

## Coordinate Geometry - Introduction

The study of geometric figures using coordinate axes is known as coordinate geometry. Straight lines, curves, circles, ellipses, hyperbolas, and polygons can all be conveniently drawn and represented to scale in the coordinate axes. Furthermore, using the coordinate system to work algebraically and examine the characteristics of geometric figures is referred to as coordinate geometry.

In this article, We will go through some of the important concepts of co-ordinate geometry like what is coordinate geometry - definitions, explanations and formulas. Also, we will go through some of the solved coordinate geometry problems for a better understanding of the concept.

### Important Topics of Coordinate Geometry

• Cartesian Coordinates

• Distance Formula

• Distance Between Two Points

• Slope

• Midpoint formula

• Equation of a line

• Slope-Intercept Form of a Line

• Point Slope Form

• Euclidean Distance Formula

### What is Coordinate Geometry?

Coordinate geometry is a field of mathematics that aids in the presentation of geometric shapes on a two-dimensional plane and to study their properties. To get a basic understanding of Coordinate Geometry, we will learn about the coordinate plane and the coordinates of a point initially.

### Coordinate Plane

A cartesian plane divides plane space into two dimensions, making it easier to locate points. The coordinate plane is another name for it. The horizontal X-axis and the vertical Y-axis are the two axes of the coordinate plane. The origin is the place where these coordinate axes connect, dividing the plane into four quadrants (0, 0). Furthermore, any point in the coordinate plane is represented by a point (x, y), where the x value represents the point's position relative to the X-axis and the y value represents the point's position relative to the Y-axis.

The point represented in the four quadrants of the coordinate plane has the following properties:

• The origin ‘O’ is the point of intersection of the X-axis and the Y-axis and has the coordinate points (0, 0) generally.

• The X-axis to the right of the origin ‘O’ is the positive X-axis and to the left of the origin, ‘O’ is the -(ve) X-axis. Also, the Y-axis above the origin ‘O’ is the +(ve) Y-axis, and below the origin ‘O’ is the -(ve) Y-axis.

• The point present in the first quadrant (x, y) has both +(ve) values and is plotted with reference to the +(ve) X-axis and the +(ve) Y-axis.

• The point represented in the second quadrant is (-x, y) is plotted with reference to the -(ve) X-axis and +(ve) Y-axis.

• The point represented in the third quadrant (-x, -y) is plotted with reference to the -(ve) X-axis and -(ve) Y-axis.

• The point represented in the fourth quadrant (x, -y) is plotted with reference to the +(ve) X-axis and -(ve) Y-axis.

### Coordinate Geometry Formulas

Coordinate geometry formulae make it easier to prove the various properties of lines and figures represented by coordinate axes. The distance formula, slope formula, midpoint formula, section formula, and line equation are included in the list of coordinate geometry formulas. In the below paragraph, we'll learn more about each of the formulas.

### Coordinate Geometry Distance Formula

The distance between two points $\left({x}_{1},{y}_{1}\right)$$(x_1, y_1)$ and $\left({x}_{2},{y}_{2}\right)$$(x_2, y_2)$ is equal to the square root of the sum of the squares of the difference between the X-coordinates and the Y-coordinates of the two given points. The formula for the distance between two points is as given below:

D = $\sqrt{\left({x}_{2}-{x}_{1}{\right)}^{2}+\left({y}_{2}-{y}_{1}{\right)}^{2}}$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

### Slope Formula

The inclination of a line is measured by its slope. The slope can be determined by selecting any two locations on the line and measuring the angle formed by the line with the positive X-axis. m = tanθ is the slope of a line that is inclined at an angle 'θ' with the positive X-axis.  The slope of a line joining the two points $\left({x}_{1},{y}_{1}\right)$$(x_1, y_1)$ and ${x}_{2},{y}_{2}\right)$$x_2, y_2)$ is equal to m = $\frac{\left({y}_{2}-{y}_{1}\right)}{\left({x}_{2}-{x}_{1}\right)}$$\frac {(y_2 - y_1)}{(x_2 - x_1)}$.

m = tanθ

m = $\left({y}_{2}-{y}_{1}\right)$$(y_2 - y_1)$/$\left({x}_{2}-{x}_{1}\right)$$(x_2 - x_1)$

### Mid-Point Formula

The formula for finding the midpoint of the line connecting the points $\left({x}_{1},{y}_{1}\right)$$(x_1, y_1)$ and ${x}_{2},{y}_{2}\right)$$x_2, y_2)$ is a new point, whose abscissa is the average of the x values of the two given points, and the ordinate is the average of the y values of the two given points. The midpoint is on the line that connects the two points and is right in the middle of them.

$\left(x,y\right)=\left(\frac{{x}_{1}+{x}_{2}}{2},\frac{{y}_{1}+{y}_{2}}{2}\right)$$(x, y) =\left(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\right)$

### Section Formula in Coordinate Geometry

The section formula is useful to find the coordinates of a point that divides the line segment joining the points $\left({x}_{1},{y}_{1}\right)$$(x_1, y_1)$ and $\left({x}_{2},{y}_{2}\right)$$(x_2, y_2)$ in the ratio $m:n$$m : n$. The point that divides the provided two points is located on the line that connects them and can be found either between the two points or outside the line segment between them.

$\left(x,y\right)=\left(\frac{m{x}_{2}+n{x}_{1}}{m+n},\frac{m{y}_{2}+n{y}_{1}}{m+n}\right)$$(x, y) = \left(\frac{mx_2 + nx_1}{m + n}, \frac{my_2 + ny_1}{m + n}\right)$

### The Centroid of a Triangle

The centroid of a triangle is the point of intersection of medians of a triangle. (Median is a line that joins the vertex of a triangle to the mid-point of the opposite side). The centroid of a triangle having its vertices A$\left({x}_{1},{y}_{1}\right)$$(x_1, y_1)$, B$\left({x}_{2},{y}_{2}\right)$$(x_2, y_2)$, and C$\left({x}_{3},{y}_{3}\right)$$(x_3, y_3)$ is obtained from the following formula.

$\left(x,y\right)=\left(\frac{{x}_{1}+{x}_{2}+{x}_{3}}{3},\frac{{y}_{1}+{y}_{2}+{y}_{3}}{3}\right)$$(x, y) = (\dfrac{x_1+ x_2 + x_3}{3}, \dfrac{y_1 + y_2 + y_3}{3})$

### Area of a Triangle Coordinate Geometry Formula

The area of a triangle having the vertices A$\left({x}_{1},{y}_{1}\right)$$(x_1, y_1)$, B$\left({x}_{2},{y}_{2}\right)$$(x_2, y_2)$, and C$\left({x}_{3},{y}_{3}\right)$$(x_3, y_3)$ is obtained from the following formula. This formula is used to find the area of a triangle for all types of triangles.

Area of a Triangle = $\frac{1}{2}|{x}_{1}\left({y}_{2}-{y}_{3}\right)+{x}_{2}\left({y}_{3}-{y}_{1}\right)+{x}_{3}\left({y}_{1}-{y}_{2}\right)|$$\dfrac{1}{2}|x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)|$

### How to Find Equation of a Line in Coordinate Geometry?

With the use of a simple linear equation, this line equation represents all of the points on the line, ax + by + c= 0 is the standard form of a line equation. There are several methods for determining a line's equation. The slope-intercept form of the equation of a line (y = mx + c) is another essential form of the equation of a line. The slope of the line is m, and the Y-intercept of the line is c. The equation of a line also includes other types of line equations, such as point-slope form, two-point form, intercept form, and normal form.

y = mx + c

### List of Formulae

Sl.no

Name of the Concept

Formulae

1.

Distance formula

$D=\sqrt{\left({x}_{2}-{x}_{1}{\right)}^{2}+\left({y}_{2}-{y}_{1}{\right)}^{2}}$$D=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$

2.

Slope, m of line ax+by+c=0

$m=-\frac{a}{b}$$m=-\dfrac{a}{b}$

3.

Angle between two lines is

$\theta ={\mathrm{tan}}^{-1}|\frac{{m}_{2}-{m}_{1}}{1-{m}_{2}{m}_{1}}|$$\theta = \tan^{-1}\left | \dfrac{m_2-m_1}{1-m_2m_1} \right |$

4.

Distance of a point p(x1,y1) from a line ax+by+c=0

$d=|\frac{a{x}_{1}+b{y}_{1}+c}{\sqrt{{a}^{2}+{b}^{2}}}|$$d=\left | \dfrac{ax_1+by_1+c}{\sqrt{a^2+b^2}} \right |$

5.

Distance between two parallel lines of a slope m is

$d=|\frac{{c}_{1}-{c}_{2}}{\sqrt{1+{m}^{2}}}|$$d=\left | \dfrac{c_1-c_2}{\sqrt{1+m^2}} \right |$

### Solved Examples

Question 1. Find the equation of a line passing through (-2, 3) and having a slope of -1.

Solution:

The point on the line is $\left({x}_{1},{y}_{1}\right)=\left(-2,3\right)$$(x_1, y_1) = (-2, 3)$, and the slope is $m=-1$$m = -1$.

From the coordinate geometry point and slope form of the equation of the line, we get:

$\left(y-{y}_{1}\right)=m\left(x-{x}_{1}\right)\phantom{\rule{0ex}{0ex}}\left(y-3\right)=\left(-1\right)\left(x-\left(-2\right)\right)\phantom{\rule{0ex}{0ex}}y-3=-\left(x+2\right)\phantom{\rule{0ex}{0ex}}y-3=-x-2\phantom{\rule{0ex}{0ex}}x+y=3-2\phantom{\rule{0ex}{0ex}}x+y=1$$(y - y_1) = m(x - x_1) \\ (y - 3) =(-1)(x -(-2)) \\ y - 3 = -(x + 2) \\ y - 3 = -x -2 \\ x + y = 3 - 2 \\ x + y = 1$

Therefore the equation of the line is: x + y = 1

Question 2. Find the equation of a line having a slope of -2 and $y$$y$-intercept of 1.

Solution:

The given information is $m=-2$$m = -2$ and $y$$y$-intercept is $c=1$$c = 1$

From coordinate geometry we can make use of the slope intercept form of the equation of a line.

$y=mx+c\phantom{\rule{0ex}{0ex}}y=\left(-2\right)x+1\phantom{\rule{0ex}{0ex}}y=-2x+1\phantom{\rule{0ex}{0ex}}2x+y=1$$y = mx + c \\ y = (-2)x + 1 \\ y = -2x + 1 \\ 2x + y = 1$

Therefore the equation of the line we get is 2x + y = 1.

### Solved Problem of Previous year Question Paper

Question 1. The equations of two equal sides of an isosceles triangle are 7x − y + 3 = 0 and x + y − 3 = 0 and the third side passes through the point (1, 10). Then the equation of the third side is ___________.

Solution:

Any line passing through the point (1, 10) is given by y + 10 = m (x − 1)

Since it makes an equal angle say $\alpha$$\alpha$ with the given lines 7x − y + 3 = 0 and x + y − 3 = 0, therefore tan α = $\left[$$[$m − 7$\right]$$]$ / $\left[$$[$1 + 7m$\right]$$]$

= $\left[$$[$m − (−1)$\right]$$]$ / $\left[$$[$1 + m (−1)$\right]$$]$

⇒ m = $\left[$$[$1/3$\right]$$]$ or 3

So, the two possible equations of the third side are: 3x + y + 7 = 0 and x − 3y − 31 = 0.

Question 2. The locus of a point P, which divides the line joining (1, 0) and (2cosθ, 2sinθ) internally in the ratio 2:3 for all θ, is a ________.

Solution:

Let us consider the coordinates of the point P, that divides the line joining (1, 0) and (2 cosθ, 2sinθ) in the ratio 2:3 be (h, k). Then,

h = $\left[$$[$4 cosθ + 3$\right]$$]$/$\left[$$[$5$\right]$$]$ and k = $\left[$$[$4 sinθ$\right]$$]$/$\left[$$[$5$\right]$$]$

cosθ = $\left[$$[$5h − 3$\right]$$]$/$\left[$$[$4$\right]$$]$ and sinθ = $\left[$$[$5k$\right]$$]$/$\left[$$[$4$\right]$$]$

($\left[$$[$5h − 3$\right]$$]$/$\left[$$[$4$\right]$$]$)2 + ($\left[$$[$5k$\right]$$]$/$\left[$$[$4$\right]$$]$)2 = 1

(5h − 3)2 + (5k2) = 16

Therefore, locus of (h, k) is (5x − 3)2 + (5y)2 = 16, which is a circle.

Question 3. If the slope of a line passes through the point A (3, 2) is 3/4, then the points on the line which are 5 units away from A, are ___.

Solution:

The equation of line passes through the point (3, 2) and of slope 3/4 is 3x − 4y − 1 = 0

Let the point be (h, k) then,

3h−4k−1 = 0 …………..(i)     and

(h − 3)2 + (y − 2)2 = 52 (ii)

On solving the equations above, we get h = −1, 7 and k = −1, 5.

So, the points are (1, 1) and (7, 5).

### Practise Questions

Question 1. If the coordinates of vertices of a triangle are (0, 5), (1, 4) and (2, 5) then the coordinate of the circumcentre will be.

A.  (1, 5)

B.  $\left(\frac{3}{2},\phantom{\rule{mediummathspace}{0ex}}\frac{9}{2}\right)$$\left ( \dfrac{3}{2},\: \dfrac{9}{2} \right )$

C.  (1, 4)

D.  None of these

Question 2. The equation of the image of pair of rays y = |x| by the line x = 1 is

A.  |y| = x + 2

B.  |y| + 2 = x

C.  y = |x – 2|

D.  None of these

### Conclusion

Coordinate Geometry is recognized as one of the most fascinating mathematical concepts. Coordinate Geometry topics uses graphs with curves and lines to describe the relationship between geometry and algebra. Geometric aspects are provided in Algebra, allowing students to solve geometric problems. It is a type of geometry in which the coordinate points on a plane are expressed as an ordered pair of numbers. Here, the concepts of coordinate geometry are explained along with their formulas and solved coordinate geometry examples for better understanding.

See More

## JEE Main Important Dates

View All Dates
JEE Main 2022 June and July Session exam dates and revised schedule have been announced by the NTA. JEE Main 2022 June and July Session will now be conducted on 20-June-2022, and the exam registration closes on 5-Apr-2022. You can check the complete schedule on our site. Furthermore, you can check JEE Main 2022 dates for application, admit card, exam, answer key, result, counselling, etc along with other relevant information.
See More
June
July
View All Dates

## JEE Main Information

Application Form
Eligibility Criteria
Reservation Policy
NTA has announced the JEE Main 2022 June session application form release date on the official website https://jeemain.nta.nic.in/. JEE Main 2022 June and July session Application Form is available on the official website for online registration. Besides JEE Main 2022 June and July session application form release date, learn about the application process, steps to fill the form, how to submit, exam date sheet etc online. Check our website for more details. July Session's details will be updated soon by NTA.

## JEE Main 2022 Study Material

View all study material for JEE Main
JEE Main 2022 Study Materials: Strengthen your fundamentals with exhaustive JEE Main Study Materials. It covers the entire JEE Main syllabus, DPP, PYP with ample objective and subjective solved problems. Free download of JEE Main study material for Physics, Chemistry and Maths are available on our website so that students can gear up their preparation for JEE Main exam 2022 with Vedantu right on time.
See More
All
Mathematics
Physics
Chemistry
Sets, Relations and Functions
Matrices and Determinants
See All

## JEE Main Question Papers

see all
Download JEE Main Question Papers & ​Answer Keys of 2021, 2020, 2019, 2018 and 2017 PDFs. JEE Main Question Paper are provided language-wise along with their answer keys. We also offer JEE Main Sample Question Papers with Answer Keys for Physics, Chemistry and Maths solved by our expert teachers on Vedantu. Downloading the JEE Main Sample Question Papers with solutions will help the engineering aspirants to score high marks in the JEE Main examinations.
See More
PYQP
Sample Paper
2020
2021
2022
2022
January
06th January 2020 - Maths, Physics and Chemistry
English  •   Shift 1
06th January 2020 - Maths, Physics and Chemistry
English  •   Shift 2
07th January 2020 - Maths, Physics and Chemistry
English  •   Shift 1
07th January 2020 - Maths, Physics and Chemistry
English  •   Shift 2
08th January 2020 - Maths, Physics and Chemistry
English  •   Shift 1
08th January 2020 - Maths, Physics and Chemistry
English  •   Shift 2
September
01st September 2020 - Maths, Physics and Chemistry
English  •   Shift 1
01st September 2020 - Maths, Physics and Chemistry
English  •   Shift 2
02nd September 2020 - Maths, Physics and Chemistry
English  •   Shift 1
02nd September 2020 - Maths, Physics and Chemistry
English  •   Shift 2
03rd September 2020 - Maths, Physics and Chemistry
English  •   Shift 1
03rd September 2020 - Maths, Physics and Chemistry
English  •   Shift 2
04th September 2020 - Maths, Physics and Chemistry
English  •   Shift 1
04th September 2020 - Maths, Physics and Chemistry
English  •   Shift 2
05th September 2020 - Maths, Physics and Chemistry
English  •   Shift 1
05th September 2020 - Maths, Physics and Chemistry
English  •   Shift 2
February
23rd February 2021 - Maths, Physics and Chemistry
English  •   Shift 1
23rd February 2021 - Maths, Physics and Chemistry
English  •   Shift 2
24th February 2021 - Maths, Physics and Chemistry
English  •   Shift 1
24th February 2021 - Maths, Physics and Chemistry
English  •   Shift 2
25th February 2021 - Maths, Physics and Chemistry
English  •   Shift 1
25th February 2021 - Maths, Physics and Chemistry
English  •   Shift 2
March
15th March 2021 - Maths, Physics and Chemistry
English  •   Shift 1
15th March 2021 - Maths, Physics and Chemistry
English  •   Shift 2
16th March 2021 - Maths, Physics and Chemistry
English  •   Shift 1
16th March 2021 - Maths, Physics and Chemistry
English  •   Shift 2
17th March 2021 - Maths, Physics and Chemistry
English  •   Shift 1
17th March 2021 - Maths, Physics and Chemistry
English  •   Shift 2
July
19th July 2021 - Maths, Physics and Chemistry
English  •   Shift 1
19th July 2021 - Maths, Physics and Chemistry
English  •   Shift 2
21st July 2021 - Maths, Physics and Chemistry
English  •   Shift 2
24th July 2021 - Maths, Physics and Chemistry
English  •   Shift 1
24th July 2021 - Maths, Physics and Chemistry
English  •   Shift 2
26th July 2021 - Maths, Physics and Chemistry
English  •   Shift 1
August
25th August 2021 - Maths, Physics and Chemistry
English  •   Shift 1
25th August 2021 - Maths, Physics and Chemistry
English  •   Shift 2
26th August 2021 - Maths, Physics and Chemistry
English  •   Shift 1
26th August 2021 - Maths, Physics and Chemistry
English  •   Shift 2
30th August 2021 - aptitude
English  •   Shift 1
30th August 2021 - Maths, Physics and Chemistry
English  •   Shift 2
June
23rd June 2022 - Maths, Physics and Chemistry
English  •   Shift 1
23rd June 2022 - mathematics
English  •   Shift 1
23rd June 2022 - physics
English  •   Shift 1
23rd June 2022 - chemistry
English  •   Shift 1
23rd June 2022 - Maths, Physics and Chemistry
English  •   Shift 2
23rd June 2022 - mathematics
English  •   Shift 2
23rd June 2022 - physics
English  •   Shift 2
23rd June 2022 - chemistry
English  •   Shift 2
24th June 2022 - Maths, Physics and Chemistry
English  •   Shift 1
24th June 2022 - mathematics
English  •   Shift 1
24th June 2022 - physics
English  •   Shift 1
24th June 2022 - chemistry
English  •   Shift 1
24th June 2022 - Maths, Physics and Chemistry
English  •   Shift 2
24th June 2022 - mathematics
English  •   Shift 2
24th June 2022 - physics
English  •   Shift 2
24th June 2022 - chemistry
English  •   Shift 2
25th June 2022 - Maths, Physics and Chemistry
English  •   Shift 1
25th June 2022 - mathematics
English  •   Shift 1
25th June 2022 - physics
English  •   Shift 1
25th June 2022 - chemistry
English  •   Shift 1
25th June 2022 - general
English  •   Shift 2
25th June 2022 - mathematics
English  •   Shift 2
25th June 2022 - physics
English  •   Shift 2
25th June 2022 - chemistry
English  •   Shift 2
26th June 2022 - general
English  •   Shift 1
26th June 2022 - mathematics
English  •   Shift 1
26th June 2022 - physics
English  •   Shift 1
26th June 2022 - chemistry
English  •   Shift 1
26th June 2022 - exam-strategy
English  •   Shift 2
26th June 2022 - mathematics
English  •   Shift 2
26th June 2022 - physics
English  •   Shift 2
26th June 2022 - chemistry
English  •   Shift 2
27th June 2022 - exam-strategy
English  •   Shift 1
27th June 2022 - mathematics
English  •   Shift 1
27th June 2022 - physics
English  •   Shift 1
27th June 2022 - chemistry
English  •   Shift 1
27th June 2022 - general
English  •   Shift 2
27th June 2022 - mathematics
English  •   Shift 2
27th June 2022 - physics
English  •   Shift 2
27th June 2022 - chemistry
English  •   Shift 2
28th June 2022 - general
English  •   Shift 1
28th June 2022 - mathematics
English  •   Shift 1
28th June 2022 - physics
English  •   Shift 1
28th June 2022 - chemistry
English  •   Shift 1
28th June 2022 - general
English  •   Shift 2
28th June 2022 - mathematics
English  •   Shift 2
28th June 2022 - physics
English  •   Shift 2
28th June 2022 - chemistry
English  •   Shift 2
23rd June 2022 - Maths, Physics and Chemistry
English  •   Shift 1
23rd June 2022 - Maths, Physics and Chemistry
English  •   Shift 1
23rd June 2022 - mathematics
English  •   Shift 1
23rd June 2022 - physics
English  •   Shift 1
23rd June 2022 - chemistry
English  •   Shift 1
23rd June 2022 - Maths, Physics and Chemistry
English  •   Shift 2
23rd June 2022 - mathematics
English  •   Shift 2
23rd June 2022 - physics
English  •   Shift 2
23rd June 2022 - chemistry
English  •   Shift 2
24th June 2022 - Maths, Physics and Chemistry
English  •   Shift 1
24th June 2022 - Maths, Physics and Chemistry
English  •   Shift 1
24th June 2022 - mathematics
English  •   Shift 1
24th June 2022 - physics
English  •   Shift 1
24th June 2022 - chemistry
English  •   Shift 1
24th June 2022 - Maths, Physics and Chemistry
English  •   Shift 2
24th June 2022 - mathematics
English  •   Shift 2
24th June 2022 - physics
English  •   Shift 2
24th June 2022 - chemistry
English  •   Shift 2
25th June 2022 - Maths, Physics and Chemistry
English  •   Shift 1
25th June 2022 - Maths, Physics and Chemistry
English  •   Shift 1
25th June 2022 - mathematics
English  •   Shift 1
25th June 2022 - physics
English  •   Shift 1
25th June 2022 - chemistry
English  •   Shift 1
25th June 2022 - general
English  •   Shift 2
25th June 2022 - mathematics
English  •   Shift 2
25th June 2022 - physics
English  •   Shift 2
25th June 2022 - chemistry
English  •   Shift 2
26th June 2022 - general
English  •   Shift 1
26th June 2022 - general
English  •   Shift 1
26th June 2022 - mathematics
English  •   Shift 1
26th June 2022 - physics
English  •   Shift 1
26th June 2022 - chemistry
English  •   Shift 1
26th June 2022 - exam-strategy
English  •   Shift 2
26th June 2022 - mathematics
English  •   Shift 2
26th June 2022 - physics
English  •   Shift 2
26th June 2022 - chemistry
English  •   Shift 2
27th June 2022 - exam-strategy
English  •   Shift 1
27th June 2022 - exam-strategy
English  •   Shift 1
27th June 2022 - mathematics
English  •   Shift 1
27th June 2022 - physics
English  •   Shift 1
27th June 2022 - chemistry
English  •   Shift 1
27th June 2022 - general
English  •   Shift 2
27th June 2022 - mathematics
English  •   Shift 2
27th June 2022 - physics
English  •   Shift 2
27th June 2022 - chemistry
English  •   Shift 2
28th June 2022 - general
English  •   Shift 1
28th June 2022 - general
English  •   Shift 1
28th June 2022 - mathematics
English  •   Shift 1
28th June 2022 - physics
English  •   Shift 1
28th June 2022 - chemistry
English  •   Shift 1
28th June 2022 - general
English  •   Shift 2
28th June 2022 - mathematics
English  •   Shift 2
28th June 2022 - physics
English  •   Shift 2
28th June 2022 - chemistry
English  •   Shift 2
July
24th July 2022 - Maths, Physics and Chemistry
English  •   Shift 1, 2
24th July 2022 - Maths, Physics and Chemistry
English  •   Shift 1
24th July 2022 - mathematics
English  •   Shift 1
24th July 2022 - physics
English  •   Shift 1
24th July 2022 - chemistry
English  •   Shift 1
24th July 2022 - Maths, Physics and Chemistry
English  •   Shift 2
24th July 2022 - mathematics
English  •   Shift 2
24th July 2022 - physics
English  •   Shift 2
24th July 2022 - chemistry
English  •   Shift 2
25th July 2022 - Maths, Physics and Chemistry
English  •   Shift 1, 2
25th July 2022 - Maths, Physics and Chemistry
English  •   Shift 1
25th July 2022 - mathematics
English  •   Shift 1
25th July 2022 - physics
English  •   Shift 1
25th July 2022 - chemistry
English  •   Shift 1
25th July 2022 - Maths, Physics and Chemistry
English  •   Shift 2
25th July 2022 - mathematics
English  •   Shift 2
25th July 2022 - physics
English  •   Shift 2
25th July 2022 - chemistry
English  •   Shift 2
26th July 2022 - Maths, Physics and Chemistry
English  •   Shift 1, 2
26th July 2022 - Maths, Physics and Chemistry
English  •   Shift 1
26th July 2022 - mathematics
English  •   Shift 1
26th July 2022 - physics
English  •   Shift 1
26th July 2022 - chemistry
English  •   Shift 1
26th July 2022 - Maths, Physics and Chemistry
English  •   Shift 2
26th July 2022 - mathematics
English  •   Shift 2
26th July 2022 - physics
English  •   Shift 2
26th July 2022 - chemistry
English  •   Shift 2
27th July 2022 - Maths, Physics and Chemistry
English  •   Shift 1, 2
27th July 2022 - Maths, Physics and Chemistry
English  •   Shift 1
27th July 2022 - mathematics
English  •   Shift 1
27th July 2022 - physics
English  •   Shift 1
27th July 2022 - chemistry
English  •   Shift 1
27th July 2022 - Maths, Physics and Chemistry
English  •   Shift 2
27th July 2022 - mathematics
English  •   Shift 2
27th July 2022 - physics
English  •   Shift 2
27th July 2022 - chemistry
English  •   Shift 2
28th July 2022 - Maths, Physics and Chemistry
English  •   Shift 1, 2
28th July 2022 - Maths, Physics and Chemistry
English  •   Shift 1
28th July 2022 - mathematics
English  •   Shift 1
28th July 2022 - physics
English  •   Shift 1
28th July 2022 - chemistry
English  •   Shift 1
28th July 2022 - Maths, Physics and Chemistry
English  •   Shift 2
28th July 2022 - mathematics
English  •   Shift 2
28th July 2022 - physics
English  •   Shift 2
28th July 2022 - chemistry
English  •   Shift 2
June, July
mathematics
English  •   Shift 1, 2
mathematics
English  •   Shift 1, 2
mathematics
English  •   Shift 1, 2
mathematics
English  •   Shift 1, 2
mathematics
English  •   Shift 1, 2
chemistry
English  •   Shift 1, 2
mathematics
English  •   Shift 1, 2

## JEE Main 2022 Book Solutions and PDF Download

View all JEE Main Important Books
In order to prepare for JEE Main 2022, candidates should know the list of important books i.e. RD Sharma Solutions, NCERT Solutions, RS Aggarwal Solutions, HC Verma books and RS Aggarwal Solutions. They will find the high quality readymade solutions of these books on Vedantu. These books will help them in order to prepare well for the JEE Main 2022 exam so that they can grab the top rank in the all India entrance exam.
See More
Maths
NCERT Book for Class 12 Maths
Physics
NCERT Book for Class 12 Physics
See All

## JEE Main Mock Tests

View all mock tests
JEE Main 2022 free online mock test series for exam preparation are available on the Vedantu website for free download. Practising these mock test papers of Physics, Chemistry and Maths prepared by expert teachers at Vedantu will help you to boost your confidence to face the JEE Main 2022 examination without any worries. The JEE Main test series for Physics, Chemistry and Maths that is based on the latest syllabus of JEE Main and also the Previous Year Question Papers.
See More
JEE MAIN MOCK TEST - 1
3 hr  • 75 questions • OBJECTIVE
JEE MAIN MOCK TEST - 3
3 hr  • 75 questions • OBJECTIVE
JEE MAIN MOCK TEST - 2
3 hr  • 75 questions • OBJECTIVE

## Master Teachers

From IITs & other top-tier colleges with 5+ years of experience
You can count on our specially-trained teachers to bring out the best in every student.
They have taught over 4.5 crore hours to 10 lakh students in 1000+ cities in 57 countries
11+ years exp

### Shreyas

Physics master teacher

4+ years exp

### Nidhi Sharma

Chemistry master teacher

2+ years exp

### Luv Mehan

Chemistry Master Teacher

## JEE Main 2022 Cut-Off

JEE Main Cut Off
NTA is responsible for the release of the JEE Main 2022 June and July Session cut off score. The qualifying percentile score might remain the same for different categories. According to the latest trends, the expected cut off mark for JEE Main 2022 June and July Session is 50% for general category candidates, 45% for physically challenged candidates, and 40% for candidates from reserved categories. For the general category, JEE Main qualifying marks for 2021 ranged from 87.8992241 for general-category, while for OBC/SC/ST categories, they ranged from 68.0234447 for OBC, 46.8825338 for SC and 34.6728999 for ST category.
See More

## JEE Main 2022 Results

JEE Main 2022 June and July Session Result - NTA has announced JEE Main result on their website. To download the Scorecard for JEE Main 2022 June and July Session, visit the official website of JEE Main NTA.
See More
Rank List
Counselling
Cutoff
JEE Main 2022 state rank lists will be released by the state counselling committees for admissions to the 85% state quota and to all seats in NITs and CFTIs colleges. JEE Main 2022 state rank lists are based on the marks obtained in entrance exams. Candidates can check the JEE Main 2022 state rank list on the official website or on our site.

## JEE Top Colleges

View all JEE Main 2022 Top Colleges
Want to know which Engineering colleges in India accept the JEE Main 2022 scores for admission to Engineering? Find the list of Engineering colleges accepting JEE Main scores in India, compiled by Vedantu. There are 1622 Colleges that are accepting JEE Main. Also find more details on Fees, Ranking, Admission, and Placement.
See More

## Counselling

Need more details? Our expert academic counsellors will be happy to patiently explain everything that you want to know.
Speak to an expert

## FAQs on JEE Important Chapter - Coordinate Geometry

FAQ

1. What is a Cartesian Plane?

A cartesian plane in coordinate geometry is made up of two perpendicular lines called the X-axis (horizontal axis) and the Y-axis (vertical axis). The ordered pair can be used to calculate the exact position of a point in the Cartesian plane (x, y).

2. Where is Coordinate Geometry Used in Maths?

Coordinate geometry has a wide range of applications in mathematics. Many applications of coordinate geometry may be found in math topics such as vectors, three-dimensional geometry, equations, calculus, complex numbers, and functions. All of these topics require the presentation of data graphically in a two or three-dimensional coordinate plane.

3. What is the Application of Coordinate Geometry Used in Real Life?

In real life, coordinate geometry is used in a variety of ways. The coordinate system takes into account all of the maps we use to pinpoint locations, including Google Maps and physical maps. Furthermore, drawing land maps to scale is beneficial in large-scale land projects. To pinpoint any place in the seas, naval engineers employ coordinate systems.

## JEE Main Upcoming Dates

Vedantu offers free live Master Classes for CBSE Class 6 to 12, ICSE, JEE Main, JEE 2022, & more by India’s best teachers. Learn all the important concepts concisely along with amazing tricks to score high marks in your class and other competitive exams.
See More