Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 12 Maths Chapter 7: Integrals - Exercise 7.11

ffImage
Last updated date: 23rd Apr 2024
Total views: 575.7k
Views today: 7.75k
MVSAT offline centres Dec 2023

NCERT Solutions for Class 12 Maths Chapter 7 (Ex 7.11)

Free PDF download of NCERT Solutions for Class 12 Maths Chapter 7 Exercise 7.11 (Ex 7.11) and all chapter exercises at one place prepared by expert teacher as per NCERT (CBSE) books guidelines. Class 12 Maths Chapter 7 Integrals Exercise 7.11 Questions with Solutions to help you to revise complete Syllabus and Score More marks. Register and get all exercise solutions in your emails.


Class:

NCERT Solutions for Class 12

Subject:

Class 12 Maths

Chapter Name:

Chapter 7 - Integrals

Exercise:

Exercise - 7.11

Content-Type:

Text, Videos, Images and PDF Format

Academic Year:

2024-25

Medium:

English and Hindi

Available Materials:

  • Chapter Wise

  • Exercise Wise

Other Materials

  • Important Questions

  • Revision Notes

Competitive Exams after 12th Science

Access NCERT Solution for Class 12 Maths Chapter 7 - Integrals

Exercise 7.11

1.  Integrate\[\int\limits_0^{\dfrac{\pi }{2}} {{{\cos }^2}xdx} \]

Ans: Let \[I = \int\limits_0^{\dfrac{\pi }{2}} {{{\cos }^2}xdx} \]

Then, by the property \[\int\limits_0^a {f\left( x \right)dx}  = \int\limits_0^a {f\left( {a - x} \right)dx} \]

\[I = \int\limits_0^{\dfrac{\pi }{2}} {{{\cos }^2}\left( {\dfrac{\pi }{2} - x} \right)dx} \]

\[I = \int\limits_0^{\dfrac{\pi }{2}} {{{\sin }^2}xdx} \]

Adding two values of \[I\] we get

\[2I = \int\limits_0^{\dfrac{\pi }{2}} {\left( {{{\cos }^2}x + {{\sin }^2}x} \right)dx} \]

Solving further we get,

\[2I = \int\limits_0^{\dfrac{\pi }{2}} {1dx} \]

\[2I = \left[ x \right]_0^{\dfrac{\pi }{2}}\]

Substitute the limits.

\[2I = \dfrac{\pi }{2}\]

Divide by 2 on both sides.

\[I = \dfrac{\pi }{4}\]

Therefore,

\[\int\limits_0^{\dfrac{\pi }{2}} {{{\cos }^2}xdx}  = \dfrac{\pi }{4}\]


2. Integrate \[\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x}  + \sqrt {\cos x} }}dx} \]

Ans: \[I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x}  + \sqrt {\cos x} }}dx} \]

Then, by the property

\[\int\limits_0^a {f\left( x \right)dx}  = \int\limits_0^a {f\left( {a - x} \right)dx} \]

\[I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin \left( {\dfrac{\pi }{2} - x} \right)} }}{{\sqrt {\sin \left( {\dfrac{\pi }{2} - x} \right)}  + \sqrt {\cos \left( {\dfrac{\pi }{2} - x} \right)} }}dx} \]

Solving further we get

\[I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\cos x}  + \sqrt {\sin x} }}dx} \]

Adding two values of \[I\] we get

\[2I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin x}  + \sqrt {\cos x} }}{{\sqrt {\cos x}  + \sqrt {\sin x} }}dx} \]

\[2I = \int\limits_0^{\dfrac{\pi }{2}} {1dx} \]

\[2I = \left[ x \right]_0^{\dfrac{\pi }{2}}\]

Substitute the limits.

\[2I = \dfrac{\pi }{2}\]

Divide by 2 on both sides.

\[I = \dfrac{\pi }{4}\]


3. Integrate  \[\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^{\dfrac{3}{2}}}x}}{{{{\sin }^{\dfrac{3}{2}}}x + {{\cos }^{\dfrac{3}{2}}}x}}dx} \]

Ans: Let \[I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^{\dfrac{3}{2}}}x}}{{{{\sin }^{\dfrac{3}{2}}}x + {{\cos }^{\dfrac{3}{2}}}x}}dx} \]

Then, by the property

\[\int\limits_0^a {f\left( x \right)dx}  = \int\limits_0^a {f\left( {a - x} \right)dx} \]

\[I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^{\dfrac{3}{2}}}\left( {\dfrac{\pi }{2} - x} \right)}}{{{{\sin }^{\dfrac{3}{2}}}\left( {\dfrac{\pi }{2} - x} \right) + {{\cos }^{\dfrac{3}{2}}}\left( {\dfrac{\pi }{2} - x} \right)}}dx} \]

Simplifying further we get,

\[I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{{{\cos }^{\dfrac{3}{2}}}x}}{{{{\sin }^{\dfrac{3}{2}}}x + {{\cos }^{\dfrac{3}{2}}}x}}dx} \]

Adding two values of \[I\] we get

\[2I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^{\dfrac{3}{2}}}x + {{\cos }^{\dfrac{3}{2}}}x}}{{{{\sin }^{\dfrac{3}{2}}}x + {{\cos }^{\dfrac{3}{2}}}x}}dx} \]

\[2I = \int\limits_0^{\dfrac{\pi }{2}} {1dx} \]

\[2I = \left[ x \right]_0^{\dfrac{\pi }{2}}\]

Substitute the limits.

\[2I = \dfrac{\pi }{2}\]

Divide on both sides by 2.

\[I = \dfrac{\pi }{4}\]


4. Integrate \[\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{{{\cos }^5}x}}{{{{\sin }^5}x + {{\cos }^5}x}}dx} \]

Ans: \[I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{{{\cos }^5}x}}{{{{\sin }^5}x + {{\cos }^5}x}}dx} \]

Then, by the property

\[\int\limits_0^a {f\left( x \right)dx}  = \int\limits_0^a {f\left( {a - x} \right)dx} \]

\[I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{{{\cos }^5}\left( {\dfrac{\pi }{2} - x} \right)}}{{{{\sin }^5}\left( {\dfrac{\pi }{2} - x} \right) + {{\cos }^5}\left( {\dfrac{\pi }{2} - x} \right)}}dx} \]

\[I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^5}x}}{{{{\sin }^5}x + {{\cos }^5}x}}dx} \]

Adding two values of \[I\] we get

\[2I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^5}x + {{\cos }^5}x}}{{{{\sin }^5}x + {{\cos }^5}x}}dx} \]

\[2I = \int\limits_0^{\dfrac{\pi }{2}} {1dx} \]

\[2I = \left[ x \right]_0^{\dfrac{\pi }{2}}\]

\[2I = \dfrac{\pi }{2}\]

Divide by 2 on both sides.

\[I = \dfrac{\pi }{4}\]


5. Integrate  \[\int\limits_{ - 5}^5 {|x + 2|dx} \]

Ans: Let \[I = \int\limits_{ - 5}^5 {|x + 2|dx} \]

We know that \[\left( {x + 2} \right) \leqslant 0\]

\[\left[ { - 5, - 2} \right]\] and \[\left( {x + 2} \right) \geqslant 0\] on \[\left[ { - 2,5} \right]\].

Then by the property, 

\[\int\limits_a^b {f\left( x \right)dx}  = \int\limits_a^c {f\left( x \right)dx}  + \int\limits_c^b {f\left( x \right)dx} \]

\[I = \int\limits_{ - 5}^{ - 2} { - \left( {x + 2} \right)dx}  + \int\limits_{ - 2}^5 {\left( {x + 2} \right)dx} \]

\[I =  - \left[ {\dfrac{{{x^2}}}{2} + 2x} \right]_{ - 5}^{ - 2} + \left[ {\dfrac{{{x^2}}}{2} + 2x} \right]_{ - 2}^5\]

\[ =  - \left[ {\dfrac{{{{\left( { - 2} \right)}^2}}}{2} + 2\left( { - 2} \right) - \dfrac{{{{\left( { - 5} \right)}^2}}}{2} - 2\left( { - 5} \right)} \right] + \left[ {\dfrac{{{{\left( 5 \right)}^2}}}{2} + 2\left( 5 \right) - \dfrac{{{{\left( { - 2} \right)}^2}}}{2} - 2\left( { - 2} \right)} \right]\]

\[ =  - \left[ {2 - 4 - \dfrac{{25}}{2} + 10} \right] + \left[ {\dfrac{{25}}{2} + 10 - 2 + 4} \right]\]

\[ =  - 2 + 4 + \dfrac{{25}}{2} - 10 + \dfrac{{25}}{2} + 10 - 2 + 4\]

\[ = 29\]


6. Integrate  \[\int\limits_2^8 {|x - 5|dx} \]

Ans: Let \[I = \int\limits_2^8 {|x - 5|dx} \]

We know that   \[\left( {x - 5} \right) \leqslant 0\] on \[\left[ {2,5} \right]\] and \[\left( {x - 5} \right) \geqslant 0\] on \[\left[ {5,8} \right]\].

Then by the property,

\[\int\limits_a^b {f\left( x \right)dx}  = \int\limits_a^c {f\left( x \right)dx}  + \int\limits_c^b {f\left( x \right)dx} \]

\[I = \int\limits_2^5 { - \left( {x - 5} \right)dx}  + \int\limits_5^8 {\left( {x - 5} \right)dx} \]

\[I =  - \left[ {\dfrac{{{x^2}}}{2} - 5x} \right]_2^5 + \left[ {\dfrac{{{x^2}}}{2} - 5x} \right]_5^8\]

\[ =  - \left[ {\dfrac{{{{\left( 5 \right)}^2}}}{2} - 5\left( 5 \right) - \dfrac{{{{\left( 2 \right)}^2}}}{2} + 5\left( 2 \right)} \right] + \left[ {\dfrac{{{{\left( 8 \right)}^2}}}{2} - 5\left( 8 \right) - \dfrac{{{{\left( 5 \right)}^2}}}{2} + 5\left( 5 \right)} \right]\]

\[ =  - \dfrac{{25}}{2} + 25 + 2 - 10 + 32 - 40 - \dfrac{{25}}{2} + 25\]

\[ = 9\]


7. Integrate \[\int\limits_0^1 {x{{\left( {1 - x} \right)}^n}dx} \]

Ans: Let \[I = \int\limits_0^1 {x{{\left( {1 - x} \right)}^n}dx} \]

\[\int\limits_0^a {f\left( x \right)dx}  = \int\limits_0^a {f\left( {a - x} \right)dx} \]

Apply the above property

\[I = \int\limits_0^1 {\left( {1 - x} \right){{\left( {1 - \left( {1 - x} \right)} \right)}^n}dx} \]

\[ = \int\limits_0^1 {\left( {1 - x} \right){{\left( x \right)}^n}dx} \]

\[ = \int\limits_0^1 {\left( {{x^n} - {x^{n + 1}}} \right)dx} \]

\[ = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}} - \dfrac{{{x^{n + 2}}}}{{n + 2}}} \right]_0^1\]

Substitute the values and solve the integration.

\[ = \left[ {\dfrac{1}{{n + 1}} - \dfrac{1}{{n + 2}}} \right]\]

\[ = \dfrac{{\left( {n + 2} \right) - \left( {n + 1} \right)}}{{\left( {n + 1} \right)\left( {n + 2} \right)}}\]

\[ = \dfrac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}}\]


8. Integrate  \[\int\limits_0^{\dfrac{\pi }{4}} {\log \left( {1 + \tan x} \right)dx} \]

Ans: Let  \[I = \int\limits_0^{\dfrac{\pi }{4}} {\log \left( {1 + \tan x} \right)dx} \]

Then, by the property

\[\int\limits_0^a {f\left( x \right)dx}  = \int\limits_0^a {f\left( {a - x} \right)dx} \]

Apply the property in the integration.

\[I = \int\limits_0^{\dfrac{\pi }{4}} {\log \left[ {1 + \tan \left( {\dfrac{\pi }{4} - x} \right)} \right]dx} \]

\[ = \int\limits_0^{\dfrac{\pi }{4}} {\log \left\{ {1 + \dfrac{{\tan \dfrac{\pi }{4} - \tan x}}{{1 + \tan \dfrac{\pi }{4}\tan x}}} \right\}dx} \]

\[ = \int\limits_0^{\dfrac{\pi }{4}} {\log \left\{ {1 + \dfrac{{1 - \tan x}}{{1 + \tan x}}} \right\}dx} \]

\[ = \int\limits_0^{\dfrac{\pi }{4}} {\log \dfrac{2}{{1 + \tan x}}dx} \]

\[ = \int\limits_0^{\dfrac{\pi }{4}} {\log 2dx}  - \int\limits_0^{\dfrac{\pi }{4}} {\log \left( {1 + \tan x} \right)dx} \]

From the equation (1)

\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{4}} {\log 2dx}  - I\]

\[ \Rightarrow 2I = \left[ {x\log 2} \right]_0^{\dfrac{\pi }{4}}\]

Substitute the limits in the integration and solve.

\[2I = \dfrac{\pi }{4}\log 2\]

\[I = \dfrac{\pi }{8}\log 2\]


9. Integrate  \[\int\limits_0^2 {x\sqrt {2 - x} dx} \]

Ans: Let \[I = \int\limits_0^2 {x\sqrt {2 - x} dx} \]

Integrate the expression.

\[I = \int\limits_0^2 {\left( {2 - x} \right)\sqrt x dx} \]

\[ = \int\limits_0^2 {\left( {2{x^{\dfrac{1}{2}}} - {x^{\dfrac{3}{2}}}} \right)dx} \]

\[ = \left[ {2\left( {\dfrac{{{x^{\dfrac{3}{2}}}}}{{^{\dfrac{3}{2}}}}} \right) - \left( {\dfrac{{{x^{\dfrac{5}{2}}}}}{{^{\dfrac{5}{2}}}}} \right)} \right]_0^2\]

\[ = \left[ {\dfrac{4}{3}{x^{\dfrac{3}{2}}} - \dfrac{2}{5}{x^{\dfrac{5}{2}}}} \right]_0^2\]

Apply the limits and solve.

\[I = \dfrac{{4 \times 2\sqrt 2 }}{3} - \dfrac{{2 \times 4\sqrt 2 }}{5}\]

\[ = \dfrac{{40\sqrt 2  - 24\sqrt 2 }}{{15}}\]

\[ = \dfrac{{16\sqrt 2 }}{{15}}\]


10. Integrate  \[\int\limits_0^{\dfrac{\pi }{2}} {\left( {2\log \sin x - \log \sin 2x} \right)dx} \]

Ans: Let \[I = \int\limits_0^{\dfrac{\pi }{2}} {\left( {2\log \sin x - \log \sin 2x} \right)dx} \]

Integrate the expression.

\[I = \int\limits_0^{\dfrac{\pi }{2}} {\left( {2\log \sin x - \log \left( {2\sin x\cos x} \right)} \right)dx} \]

\[I = \int\limits_0^{\dfrac{\pi }{2}} {\left( {2\log \sin x - \log \sin x - \log \cos x - \log 2} \right)dx} \]

\[I = \int\limits_0^{\dfrac{\pi }{2}} {\left( {\log \cos x - \log \sin x - \log 2} \right)dx} \]

Then by the property 

\[\int\limits_0^a {f\left( x \right)dx}  = \int\limits_0^a {f\left( {a - x} \right)dx} \]

Apply the property

\[I = \int\limits_0^{\dfrac{\pi }{2}} {\left( {\log \sin x - \log \cos x - \log 2} \right)dx} \]

Adding two values of \[I\] we get

\[2I = \int\limits_0^{\dfrac{\pi }{2}} {\left( { - \log 2 - \log 2} \right)dx} \]

\[2I =  - 2\log 2\int\limits_0^{\dfrac{\pi }{2}} {1dx} \]

Integrate and solve further.

\[I =  - \log 2\left[ {\dfrac{\pi }{2}} \right]\]\[\]

\[I = \left( {\log \dfrac{1}{2}} \right)\left[ {\dfrac{\pi }{2}} \right]\]

\[I = \dfrac{\pi }{2}\log \dfrac{1}{2}\]


11. Integrate  \[\int\limits_{\dfrac{{ - \pi }}{2}}^{\dfrac{\pi }{2}} {{{\sin }^2}xdx} \]

Ans: Let \[I = \int\limits_{\dfrac{{ - \pi }}{2}}^{\dfrac{\pi }{2}} {{{\sin }^2}xdx} \]

We know that 

\[{\sin ^2}\left( { - x} \right) = {\left( {\sin \left( { - x} \right)} \right)^2} = \left( {{{\left( {\sin x} \right)}^2}} \right) = {\sin ^2}x\]

\[{\sin ^2}x\]is an even function. Then for even function

\[\int\limits_{ - a}^a {f\left( x \right)dx = } 2\int\limits_0^a {f\left( x \right)dx} \]

Use the property and integrate further.

\[I = 2\int\limits_0^{\dfrac{\pi }{2}} {{{\sin }^2}xdx} \]

\[ = 2\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{1 - \cos 2x}}{2}dx} \]

\[ = \int\limits_0^{\dfrac{\pi }{2}} {\left( {1 - \cos 2x} \right)dx} \]

\[ = \left[ {x - \dfrac{{\sin 2x}}{2}} \right]_0^{\dfrac{\pi }{2}}\]

Apply the limits and solve.

\[I = \dfrac{\pi }{2}\]


12. Integrate  \[\int\limits_0^\pi  {\dfrac{{xdx}}{{1 + \sin x}}} \]

Ans: Let \[I = \int\limits_0^\pi  {\dfrac{{xdx}}{{1 + \sin x}}} \]

\[I = \int\limits_0^\pi  {\dfrac{{\left( {\pi  - x} \right)dx}}{{1 + \sin \left( {\pi  - x} \right)}}} \]

\[I = \int\limits_0^\pi  {\dfrac{{\left( {\pi  - x} \right)dx}}{{1 + \sin x}}} \]
Adding two values of \[I\] we get

\[2I = \int\limits_0^\pi  {\dfrac{{\pi dx}}{{1 + \sin x}}} \]

Multiply numerator and denominator by $\left( {1 - \sin x} \right)$ .

\[2I = \pi \int\limits_0^\pi  {\dfrac{{\left( {1 - \sin x} \right)}}{{\left( {1 + \sin x} \right)\left( {1 - \sin x} \right)}}dx} \]

\[2I = \pi \int\limits_0^\pi  {\dfrac{{1 - \sin x}}{{{{\cos }^2}x}}dx} \]

Integrate the expression.

\[2I = \pi \int\limits_0^\pi  {\left( {{{\sec }^2}x - \tan x\sec x} \right)dx} \]

Apply the limits.

\[2I = \pi \left( 2 \right)\]

\[I = \pi \]


13. Integrate  \[\int\limits_{\dfrac{{ - \pi }}{2}}^{\dfrac{\pi }{2}} {{{\sin }^7}xdx} \]

Ans: Let \[I = \int\limits_{\dfrac{{ - \pi }}{2}}^{\dfrac{\pi }{2}} {{{\sin }^7}xdx} \]

We know

\[{\sin ^7}\left( { - x} \right) = {\left( {\sin \left( { - x} \right)} \right)^7} = \left( {{{\left( {\sin x} \right)}^7}} \right) = {\sin ^7}x\]

\[{\sin ^7}x\] is an odd function.

 For any odd function,

\[\int\limits_{ - a}^a {f\left( x \right)dx = } 0\]

Hence, apply the property in the integration and solve.

\[I = \int\limits_{\dfrac{{ - \pi }}{2}}^{\dfrac{\pi }{2}} {{{\sin }^7}xdx} \]

\[ = 0\]


14. Integrate  \[\int\limits_0^{2\pi } {{{\cos }^5}xdx} \]

Ans: Let $I = \int\limits_0^{2\pi } {{{\cos }^5}xdx} $

We know that,

${\cos ^5}\left( {2\pi  - x} \right) = {\cos ^5}x$

It is known that

$\int\limits_0^{2a} {f\left( x \right)dx = } 2\int\limits_0^a {f\left( x \right)dx} ,{\text{   if  }}f\left( {2a - x} \right) = f\left( x \right)$

$  {\text{                  =  0,   if  }}f\left( {2a - x} \right) =  - f\left( x \right) $

$I = 2\int\limits_0^\pi  {{{\cos }^5}xdx} $

From the result,

${\cos ^5}\left( {\pi  - x} \right) =  - {\cos ^5}x$

Hence,

$I = 2 \times 0$

$I = 0$


15. Integrate  \[\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sin x - \cos x}}{{1 + \sin x\cos x}}dx} \]

Ans: Let $I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sin x - \cos x}}{{1 + \sin x\cos x}}dx} $

Then, by the property

\[\int\limits_0^a {f\left( x \right)dx}  = \int\limits_0^a {f\left( {a - x} \right)dx} \]

Hence,

$I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sin \left( {\dfrac{\pi }{2} - x} \right) - \cos \left( {\dfrac{\pi }{2} - x} \right)}}{{1 + \sin \left( {\dfrac{\pi }{2} - x} \right)\cos \left( {\dfrac{\pi }{2} - x} \right)}}dx} $

$I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\cos x - \sin x}}{{1 + \sin x\cos x}}dx} $

Adding two values of \[I\] we get

$2I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{0}{{1 + \sin x\cos x}}dx} $

Hence,

$I = 0$


16. Integrate  \[\int\limits_0^\pi  {\log \left( {1 + \cos x} \right)dx} \]

Ans:\[I = \int\limits_0^\pi  {\log \left( {1 + \cos x} \right)dx} \]

Then, by the property

\[\int\limits_0^a {f\left( x \right)dx}  = \int\limits_0^a {f\left( {a - x} \right)dx} \]

Hence,

\[I = \int\limits_0^\pi  {\log \left( {1 + \cos \left( {\pi  - x} \right)} \right)dx} \]

\[I = \int\limits_0^\pi  {\log \left( {1 - \cos x} \right)dx} \]

 Adding two values of \[I\] we get

$2I = \int\limits_0^\pi  {\left\{ {\log \left( {1 + \cos x} \right) + \log \left( {1 - \cos x} \right)} \right\}dx}$

$2I = \int\limits_0^\pi  {\left\{ {\log \left( {1 - {{\cos }^2}x} \right)} \right\}dx}$

Simplifying further we get,

\[2I = \int\limits_0^\pi  {\log {{\sin }^2}xdx} \]

Use the property, $\log {a^b} = b\log a$ 

Hence,

\[2I = 2\int\limits_0^\pi  {\log \sin xdx} \]

\[I = \int\limits_0^\pi  {\log \sin xdx} \]

We know that,

\[\sin \left( {\pi  - x} \right) = \sin x\]

Hence,

\[I=2\int\limits_{0}^{\pi /2}{\log \sin \left( \frac{\pi }{2}-x \right)}\text{ }\!\!~\!\!\text{ }dx\]

Adding two values of \[I\] we get

\[2I = 2\int\limits_0^\begin{subarray}{l} 

  \pi  \\ 

  2 

\end{subarray}  {\left( {\log \sin x + \log \cos x} \right)dx} \]

\[I = \int\limits_0^\begin{subarray}{l} 

  \pi  \\ 

  2 

\end{subarray}  {\left( {\log \sin x + \log \cos x + \log 2 - \log 2} \right)dx} \]

Use the property, $\log a + \log b = \log ab$ .

Hence,

\[I = \int\limits_0^\begin{subarray}{l} 

  \pi  \\ 

  2 

\end{subarray}  {\left( {\log 2\sin x\cos x - \log 2} \right)dx} \]

Separating the integrals we get,

\[I = \int\limits_0^\begin{subarray}{l} 

  \pi  \\ 

  2 

\end{subarray}  {\log \sin 2xdx}  - \int\limits_0^\begin{subarray}{l} 

  \pi  \\ 

  2 

\end{subarray}  {\log 2dx} \]

Let us assume,

\[2x = t\]

On differentiating both sides w.r.t. $x$  we get,

\[2dx = dt\]

Also

When \[x = 0\], then \[t = 0\]

When \[x = \dfrac{\pi }{2}\], then \[t = \pi \]

\[\therefore I = \dfrac{1}{2}\int\limits_0^\begin{subarray}{l}  \pi  \\  2 \end{subarray}  {\log \sin tdx}  - \dfrac{\pi }{2}\log 2\]

Solving further we get,

\[I = \dfrac{I}{2} - \dfrac{\pi }{2}\log 2\]

\[\dfrac{I}{2} =  - \dfrac{\pi }{2}\log 2\]

\[I =  - \pi \log 2\]


17. Integrate  \[\int\limits_0^a {\dfrac{{\sqrt x }}{{\sqrt x  + \sqrt {a - x} }}dx} \]

Ans: Let \[I = \int\limits_0^a {\dfrac{{\sqrt x }}{{\sqrt x  + \sqrt {a - x} }}dx} \]

Then, by the property

\[\int\limits_0^a {f\left( x \right)dx}  = \int\limits_0^a {f\left( {a - x} \right)dx} \]

Hence,

\[I = \int\limits_0^a {\dfrac{{\sqrt {a - x} }}{{\sqrt {a - x}  + \sqrt x }}dx} \]

Adding two values of \[I\] we get

\[2I = \int\limits_0^a {\dfrac{{\sqrt x  + \sqrt {a - x} }}{{\sqrt x  + \sqrt {a - x} }}dx} \]

\[2I = \int\limits_0^a {1dx} \]

Integrating and applying limits we get,

\[2I = \left[ x \right]_0^a\]

\[2I = a\]

Dividing by 2 on both sides we get,

\[I = \dfrac{a}{2}\]


18. Integrate  \[\int\limits_0^4 {|x - 1|dx} \]

Ans: Let \[I = \int\limits_0^4 {|x - 1|dx} \]

We know that

\[\left( {x - 1} \right) \leqslant 0\]

\[0 \leqslant x \leqslant 1\]

\[\left( {x - 1} \right) \geqslant 0\]

\[1 \leqslant x \leqslant 4\]

Hence, separate the limits to separate the integration.

\[I = \int\limits_0^1 { - \left( {x - 1} \right)dx}  + \int\limits_1^4 {\left( {x - 1} \right)dx} \]

Integrate the expression.

\[I =  - \left[ {x - \dfrac{{{x^2}}}{2}} \right]_0^1 + \left[ {\dfrac{{{x^2}}}{2} - x} \right]_1^4\]

Apply the limits and simply the expression.

\[I = 1 - \dfrac{1}{2} + \dfrac{{{4^2}}}{2} - 4 - \dfrac{1}{2} + 1\]

\[I = 2 - 1 + \dfrac{{{4^2}}}{2} - 4\]

\[I = 5\]


19. Show that \[\int\limits_0^a {f\left( x \right)g\left( x \right)dx = } 2\int\limits_0^a {f\left( x \right)dx} \], if \[f\]and \[g\]are defined as  \[f\left( x \right) = f\left( {a - x} \right)\] and \[g\left( x \right) + g\left( {a - x} \right) = 4\].

Ans: It is given that \[I = \int\limits_0^a {f\left( x \right)g\left( x \right)dx} \]

Then, by the property

\[\int\limits_0^a {f\left( x \right)dx}  = \int\limits_0^a {f\left( {a - x} \right)dx} \]

Hence,

\[I = \int\limits_0^a {f\left( {a - x} \right)g\left( {a - x} \right)dx} \]

\[I = \int\limits_0^a {f\left( x \right)g\left( {a - x} \right)dx} \]

Adding two values of \[I\] we get,

\[2I = \int\limits_0^a {\left\{ {f\left( x \right)g\left( x \right) + f\left( x \right)g\left( {a - x} \right)} \right\}dx} \]

\[2I = \int\limits_0^a {f\left( x \right)\left\{ {g\left( x \right) + g\left( {a - x} \right)} \right\}dx} \]

Substitute the value of \[g\left( x \right) + g\left( {a - x} \right) = 4\] in the integration.

\[2I = \int\limits_0^a {f\left( x \right) \times 4dx} \]

\[I = 2\int\limits_0^a {f\left( x \right)dx} \]

Hence,

\[\int\limits_0^a {f\left( x \right)g\left( x \right)dx = } 2\int\limits_0^a {f\left( x \right)dx} \]


20. The value of \[\int\limits_{\dfrac{{ - \pi }}{2}}^{\dfrac{\pi }{2}} {\left( {{x^3} + x\cos x + {{\tan }^5}x + 1} \right)} dx\] is

  1. 0

  2. 2

  3. \[\pi \]

  4. 1

Ans: \[I = \int\limits_{\dfrac{{ - \pi }}{2}}^{\dfrac{\pi }{2}} {\left( {{x^3} + x\cos x + {{\tan }^5}x + 1} \right)} dx\]

Separate the integrals to integrate separately.

\[I = \int\limits_{\dfrac{{ - \pi }}{2}}^{\dfrac{\pi }{2}} {{x^3}} dx + \int\limits_{\dfrac{{ - \pi }}{2}}^{\dfrac{\pi }{2}} {x\cos x} dx + \int\limits_{\dfrac{{ - \pi }}{2}}^{\dfrac{\pi }{2}} {{{\tan }^5}x} dx + \int\limits_{\dfrac{{ - \pi }}{2}}^{\dfrac{\pi }{2}} 1 dx\]

For any odd function,

\[\int\limits_{ - a}^a {f\left( x \right)dx = } 0\]

Hence,

\[I = 0 + 0 + 0 + 2\int\limits_0^{\dfrac{\pi }{2}} 1 dx\]

Integrating further and solving we get,

\[I = 2\left[ x \right]_0^{\dfrac{\pi }{2}}\]

\[ = \dfrac{{2\pi }}{2}\]

\[ = \pi \]


20. The value of \[\int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{{4 + 3\sin x}}{{4 + 3\cos x}}} \right)dx} \] is

  1. 2

  2. \[\dfrac{3}{4}\]

  3. 0

  4. 2

Ans:  \[I = \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{{4 + 3\sin x}}{{4 + 3\cos x}}} \right)dx} \]

Then, by the property

\[\int\limits_0^a {f\left( x \right)dx}  = \int\limits_0^a {f\left( {a - x} \right)dx} \]

Apply the property in the integration.

\[I = \int\limits_0^{\dfrac{\pi }{2}} {\log \left[ {\dfrac{{4 + 3\sin \left( {\dfrac{\pi }{2} - x} \right)}}{{4 + 3\cos \left( {\dfrac{\pi }{2} - x} \right)}}} \right]dx} \]

\[I = \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{{4 + 3\cos x}}{{4 + 3\sin x}}} \right)dx} \]

Adding two values of \[I\] we get

\[2I = \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{{4 + 3\sin x}}{{4 + 3\cos x}}} \right) + \log \left( {\dfrac{{4 + 3\cos x}}{{4 + 3\sin x}}} \right)} dx\]

\[2I = \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{{4 + 3\sin x}}{{4 + 3\cos x}} \times \dfrac{{4 + 3\cos x}}{{4 + 3\sin x}}} \right)} dx\]

\[2I = \int\limits_0^{\dfrac{\pi }{2}} {\log 1} dx\]

\[2I = \int\limits_0^{\dfrac{\pi }{2}} 0 dx\]

\[I = 0\]


NCERT Solutions for Class 12 Maths Chapter 7 Integrals Exercise 7.11

Opting for the NCERT solutions for Ex 7.11 Class 12 Maths is considered as the best option for the CBSE students when it comes to exam preparation. This chapter consists of many exercises. Out of which we have provided the Exercise 7.11 Class 12 Maths NCERT solutions on this page in PDF format. You can download this solution as per your convenience or you can study it directly from our website/ app online.


Vedantu in-house subject matter experts have solved the problems/ questions from the exercise with the utmost care and by following all the guidelines by CBSE. Class 12 students who are thorough with all the concepts from the Maths textbook and quite well-versed with all the problems from the exercises given in it, then any student can easily score the highest possible marks in the final exam. With the help of this Class 12 Maths Chapter 7 Exercise 7.11 solutions, students can easily understand the pattern of questions that can be asked in the exam from this chapter and also learn the marks weightage of the chapter. So that they can prepare themselves accordingly for the final exam.


Besides these NCERT solutions for Class 12 Maths Chapter 7 Exercise 7.11, there are plenty of exercises in this chapter which contain innumerable questions as well. All these questions are solved/answered by our in-house subject experts as mentioned earlier. Hence all of these are bound to be of superior quality and anyone can refer to these during the time of exam preparation. In order to score the best possible marks in the class, it is really important to understand all the concepts of the textbooks and solve the problems from the exercises given next to it. 


Do not delay any more. Download the NCERT solutions for Class 12 Maths Chapter 7 Exercise 7.11 from Vedantu website now for better exam preparation. If you have the Vedantu app in your phone, you can download the same through the app as well. The best part of these solutions is these can be accessed both online and offline as well. 

FAQs on NCERT Solutions for Class 12 Maths Chapter 7: Integrals - Exercise 7.11

1. What are NCERT class 12 maths chapter 7 integrals (Ex 7.11) Exercise 7.11 based on?

NCERT class 12 maths chapter 7 integrals (Ex 7.11) Exercise 7.11 are based on some properties of the definite integral. All questions used most of the properties of definite integrals systematically, then students will be able to know the properties of definite integrals. The definite integral is the antiderivative of the function f(x) to obtain the function F(x) and the upper limit a and lower limit b are applied to find the value F(b) - F(a).

2. Where can I download NCERT solutions for class 12 maths chapter 7 integrals (Ex- 7.11) Exercise 7.11?

We can download NCERT solutions for class 12 maths chapter 7 integrals (Ex- 7.11) Exercise 7.11 from the link of Vedantu. Solutions are prepared by expert teachers of Vedantu as per NCERT (CBSE) guidelines. Solutions help students to revise the complete syllabus and score more marks. We can register and get (Ex - 7.11) solutions to get some properties of the definite integral. Practicing these solutions develops problem-solving skills.

3. Mention few properties of definite integrals are used in NCERT Solutions for class 12 maths chapter 7 Integrals (Ex 7.11) Exercise 7.11?

The following are few properties:


Property 0: $ \int_{a}^{b}f(x)dx = \int_{a}^{b}f(t)dt$

Property 1: $ \int_{a}^{b}f(x)dx = -\int_{b}^{a}f(t)dt$

Property 2: $ \int_{a}^{b}f(x)dx = \int_{a}^{c}f(x)dx + \int_{c}^{a}f(x)dx$

Property 3: $ \int_{a}^{b}f(x)dx = \int_{a}^{b}f(a + b -x)dx$ 

Property 4: $ \int_{0}^{a}f(x)dx = \int_{0}^{a}f(a-x)dx$

4. How many questions are there in NCERT Solutions For Class 12 Maths Chapter 7 Integrals (Ex 7.11) Exercise 7.11?

There are 21 questions in Exercise 7.11 of class 12 maths Integral. These questions are related to the properties of definite integral. You will evaluate the given integrals using the pre-defined properties of integrals. There are seven properties of definite integral used in NCERT solutions for class 12 maths chapter 7 integrals (Ex - 7.11) Exercise 7.11.

5. Write about property 4 in NCERT Solutions For Class 12 Maths Chapter 7 Integrals (Ex 7.11) Exercise 7.11.

Property 4: $ \int_{0}^{a}f(x)dx = \int_{0}^{a}f(a-x)dx$


Property 4 is a particular case of property 3. All the above properties have their respective proofs. Property 6 and Property 7 have two results because of the even and odd function. Even functions are those functions for which f(-x) = f(x) and odd functions are those functions for which f(-x) = - f(x).