Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 12 Maths Chapter 9: Differential Equations - Exercise 9.4

ffImage
Last updated date: 25th Apr 2024
Total views: 576.3k
Views today: 17.76k
MVSAT offline centres Dec 2023

NCERT Solutions for Class 12 Maths Chapter 9 (Ex 9.4)

Free PDF download of NCERT Solutions for Class 12 Maths Chapter 9 Exercise 9.4 (Ex 9.4) and all chapter exercises at one place prepared by expert teacher as per NCERT (CBSE) books guidelines. Class 12 Maths Chapter 9 Differential Equations Exercise 9.4 Questions with Solutions to help you to revise complete Syllabus and Score More marks. Register and get all exercise solutions in your emails.


Class:

NCERT Solutions for Class 12

Subject:

Class 12 Maths

Chapter Name:

Chapter 9 - Differential Equations

Exercise:

Exercise - 9.4

Content-Type:

Text, Videos, Images and PDF Format

Academic Year:

2024-25

Medium:

English and Hindi

Available Materials:

  • Chapter Wise

  • Exercise Wise

Other Materials

  • Important Questions

  • Revision Notes



NCERT Solutions for Class 12 Math Chapter 9- Differential Equations Exercise 9.4 is based on solving first order, first-degree differential equations with variables separable. Solving differential equations using first-order equations with separable variables is one of the easiest methods. 


Here, 


The “First order” means that the highest derivative appearing in the equation is the first. 


The “Separable variables” means the equation is in the form, or can be placed in the form, \[\frac{dy}{dx} = f(x)g(y)\]. 

Competitive Exams after 12th Science

Access NCERT Solution for Class 12 Maths Chapter 9- Differential Equations

Exercise 9.4

Refer to pages 18-40 for exercise 9.4 in the PDF
1. Solve the differential equation $\dfrac{{dy}}{{dx}} = \dfrac{{1 - \cos x}}{{1 + \cos x}}$

Ans: The differential equation is given by,

$\dfrac{{dy}}{{dx}} = \dfrac{{1 - \cos x}}{{1 + \cos x}}$…(i)

We have,  $1 - \cos x = 2{\sin ^2}\dfrac{x}{2}$

$1 + \cos x = 2co{\operatorname{s} ^2}\dfrac{x}{2}$

Applying both formula in the equation (i),

$\dfrac{{dy}}{{dx}} = \dfrac{{2{{\sin }^2}\dfrac{x}{2}}}{{2{{\cos }^2}\dfrac{x}{2}}}$

By simplifying,

$\dfrac{{dy}}{{dx}} = \dfrac{{{{\sin }^2}\dfrac{x}{2}}}{{{{\cos }^2}\dfrac{x}{2}}}$

$\dfrac{{dy}}{{dx}} = {\left( {\dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}} \right)^2}$…(ii)

We have, $\dfrac{{\sin x}}{{\cos x}} = \tan x$

Now the equation (ii) becomes, 

$\dfrac{{dy}}{{dx}} = {\left( {\tan \dfrac{x}{2}} \right)^2}$

So,$\dfrac{{dy}}{{dx}} = {\tan ^2}\dfrac{x}{2}$

Since, ${\sec ^2}x - {\tan ^2}x = 1$

$\dfrac{{dy}}{{dx}} = {\sec ^2}\dfrac{x}{2} - 1$

By separating the variables,

$dy = \left( {{{\sec }^2}\dfrac{x}{2} - 1} \right)dx$

Taking integration on each side of the equation,

$\int {dy}  = \int {\left( {{{\sec }^2}\dfrac{x}{2} - 1} \right)dx} $

$\int {dy}  = \int {{{\sec }^2}\dfrac{x}{2}dx - \int {dx} } $

By integrating,

$y = 2\tan \dfrac{x}{2} - x + C$, $C$is an arbitrary constant.  

Hence, the required general solution is  $y = 2\tan \dfrac{x}{2} - x + C$  , $C$is an arbitrary constant.

2. Solve the differential equation $\dfrac{{dy}}{{dx}} = \sqrt {4 - {y^2}} \left( { - 2 < y < 2} \right)$

Ans: The differential equation is given by,

$\dfrac{{dy}}{{dx}} = \sqrt {4 - {y^2}} $

By separating variables,

$\dfrac{{dy}}{{\sqrt {4 - {y^2}} }} = dx$

Taking integration on each side of the equation,

$\int {\dfrac{{dy}}{{\sqrt {4 - {y^2}} }}}  = \int {dx} $

By integrating,

${\sin ^{ - 1}}\dfrac{y}{2} = x + C$  , $C$is an arbitrary constant.  

This implies,

$\dfrac{y}{2} = \sin \left( {x + C} \right)$, $C$is an arbitrary constant.  

$y = 2\sin \left( {x + C} \right)$, $C$is an arbitrary constant.  

Hence, the required general solution is$y = 2\sin \left( {x + C} \right)$, $C$is an arbitrary constant.

3. Solve the differential equation $\dfrac{{dy}}{{dx}} + y = 1\left( {y \ne 1} \right)$

Ans: The differential equation is given by,

$\dfrac{{dy}}{{dx}} + y = 1$

Multiplying both sides with$dx$,

$dy + ydx = dx$

$dy = dx - ydx$

$dy = \left( {1 - y} \right)dx$

By separating variables,

$\dfrac{{dy}}{{\left( {1 - y} \right)}} = dx$

Taking integration on each side of the equation,

$\int {\dfrac{{dy}}{{\left( {1 - y} \right)}}}  = \int {dx} $

By integrating,

$-\log \left( {1 - y} \right) = x + \log C$, $C$is an arbitrary constant

$\log \left( {1 - y} \right) +\log C = -x$, $C$ is an arbitrary constant.  

$\log C\left( {1 - y} \right) =  - x$

$C\left( {1 - y} \right) = {e^{ - x}}$

Dividing both sides with $C$,

$1 - y = frac{{{e^{ - x}}}}{C}$

Thus,$y = 1 - \frac{{{e^{ - x}}}}{C}$

Take  $A =  - \frac{1}{C}$,                   

$y = 1 + A{e^{ - x}}$ , $A$is an arbitrary constant.  

Hence, the required general solution is$y = 1 + A{e^{ - x}}$ , $A$is an arbitrary constant.

4. Solve the differential equation ${\sec ^2}x\tan ydx + {\sec ^2}y\tan xdy = 0$

Ans: The given differential equation is:

${{\sec }^{2}}x\tan ydx+{{\sec }^{2}}y\tan xdy=0$.

Divide both side by $\text{tan x tan y}$:

$\frac{{{\sec }^{2}}x\tan ydx+{{\sec }^{2}}y\tan xdy}{\tan x\tan y}=0$ 

\[\Rightarrow \frac{{{\sec }^{2}}x}{\tan x}dx+\frac{{{\sec }^{2}}y}{\tan y}dy=0\] 

Integrate both side:

$\int \frac{{{\sec }^{2}}x}{\tan x}dx+\int \frac{{{\sec }^{2}}y}{\tan y}dy=0$ 

$\Rightarrow \int \frac{{{\sec }^{2}}y}{\tan y}dy=-\int \frac{{{\sec }^{2}}x}{\tan x}dx$       ……(1)

Use a substitution method for integration. Substitute $\text{tan x = u}$:

For integral on RHS:

$\Rightarrow \tan x=u$ 

$\Rightarrow {{\sec }^{2}}xdx=du$ 

$\Rightarrow \int \frac{{{\sec }^{2}}x}{\tan x}dx=\int \frac{du}{u}$ 

$\Rightarrow \int \frac{{{\sec }^{2}}x}{\tan x}dx=\log u$ 

$\Rightarrow \int \frac{{{\sec }^{2}}x}{\tan x}dx=\log \left( \tan x \right)$ 

Thus evaluating result form (1):

$\Rightarrow \log \left( \tan y \right)=-\log \left( \tan x \right)+\log \left( C \right)$ 

$\Rightarrow \log \left( \tan y \right)=\log \left( \frac{C}{\tan x} \right)$ 

$\Rightarrow \tan x\tan y=C$ 

Thus the general solution of the given differential equation is $\text{tan x tan y = C}$.

5. Solve the differential equation \[\left( {{e^x} + {e^{ - x}}} \right)dy - \left( {{e^x} - {e^{ - x}}} \right)dx = 0\]

Ans: The differential equation is given by,

\[\left( {{e^x} + {e^{ - x}}} \right)dy - \left( {{e^x} - {e^{ - x}}} \right)dx = 0\]

\[\left( {{e^x} + {e^{ - x}}} \right)dy = \left( {{e^x} - {e^{ - x}}} \right)dx\]

Divided by  \[\left( {{e^x} + {e^{ - x}}} \right)\],

\[dy = \left[ {\dfrac{{{e^x} - {e^{ - x}}}}{{{e^x} + {e^{ - x}}}}} \right]dx\]

Taking integration in each side of the equation,

\[\int {dy}  = \int {\left[ {\dfrac{{{e^x} - {e^{ - x}}}}{{{e^x} + {e^{ - x}}}}} \right]dx} \]

By integrating,

\[y = \int {\left[ {\dfrac{{{e^x} - {e^{ - x}}}}{{{e^x} + {e^{ - x}}}}} \right]dx}  + C\] , $C$ is an arbitrary constant.….(i)

Assume ${e^x} + {e^{ - x}} = t$

By differentiating with respect to $x$,

$\dfrac{d}{{dx}}\left( {{e^x} + {e^{ - x}}} \right) = \dfrac{{dt}}{{dx}}$

${e^x} - {e^{ - x}} = \dfrac{{dt}}{{dx}}$

This implies,

$\left( {{e^x} - {e^{ - x}}} \right)dx = dt$

Substituting this value in the equation (i),

\[y = \int {\dfrac{1}{t}} dt + C\], $C$ is an arbitrary constant

By integrating,

\[y = \log t + C\], $C$ is an arbitrary constant

Putting value of $t$,

\[y = \log \left( {{e^x} + {e^{ - x}}} \right) + C\], $C$ is an arbitrary constant

Hence, the required general solution is\[y = \log \left( {{e^x} + {e^{ - x}}} \right) + C\], $C$ is an arbitrary constant.

6. Solve the differential equation $\dfrac{{dy}}{{dx}} = \left( {1 + {x^2}} \right)\left( {1 + {y^2}} \right)$

Ans: The given differential equation is:

$\frac{dy}{dx}=\left( 1+{{x}^{2}} \right)\left( 1+{{y}^{2}} \right)$.

Simplify the expression:

$\frac{dy}{1+{{y}^{2}}}=\left( 1+{{x}^{2}} \right)dx$ 

Integrate both side:

$\int \frac{dy}{1+{{y}^{2}}}=\int \left( 1+{{x}^{2}} \right)dx$

Use standard integration:

${{\tan }^{-1}}y=\int dx+\int {{x}^{2}}dx$ 

$\Rightarrow {{\tan }^{-1}}y=x+\frac{{{x}^{3}}}{3}+C$ 

Thus the general solution of given differential equation is $\text{ta}{{\text{n}}^{\text{-1}}}\text{y=x+}\frac{{{\text{x}}^{\text{3}}}}{\text{3}}\text{+C}$.


7. Solve the differential equation $y\log ydx - xdy = 0$

Ans: The differential equation is given by,

$y\log ydx - xdy = 0$

$y\log ydx = xdy$

By separating variables,

$\dfrac{{dy}}{{y\log y}} = \dfrac{{dx}}{x}$

Taking integration in each side of the equation,

$\int {\dfrac{{dy}}{{y\log y}}}  = \int {\dfrac{{dx}}{x}} $…(i)

Assume,$\log y = t$

By differentiating,

$\dfrac{1}{y}dy = dt$

Substituting this value in the equation (i),

$\int {\dfrac{{dt}}{t}}  = \int {\dfrac{{dx}}{x}} $

By integrating,

$\log t = \log x + \log C$ , $C$ is an arbitrary constant

$\log t = \log Cx$

So, $t = Cx$

By substituting value of $t$,

$\log y = Cx$ , $C$ is an arbitrary constant

So, $y = {e^{Cx}}$, $C$ is an arbitrary constant

Hence, the required general solution is$y = {e^{Cx}}$, $C$ is an arbitrary constant.

8. Solve the differential equation ${x^5}\dfrac{{dy}}{{dx}} =  - {y^5}$

Ans: The differential equation is given by,

${x^5}\dfrac{{dy}}{{dx}} =  - {y^5}$

By separating variables,

$\dfrac{{dy}}{{{y^5}}} =  - \dfrac{{dx}}{{{x^5}}}$

$\dfrac{{dy}}{{{y^5}}} + \dfrac{{dx}}{{{x^5}}} = 0$

Taking integration in each side of the equation,

$\int {\dfrac{{dy}}{{{y^5}}}}  + \int {\dfrac{{dx}}{{{x^5}}}}  = C$ , $C$ is an arbitrary constant.

$\int {{y^{ - 5}}} dy + \int {{x^{ - 5}}dx}  = C$

By integrating,

$\dfrac{{{y^{ - 4}}}}{{ - 4}} + \dfrac{{{x^{ - 4}}}}{{ - 4}} = C$

This implies,

${y^{ - 4}} + {x^{ - 4}} =  - 4C$

Take $ - 4C = K$

${y^{ - 4}} + {x^{ - 4}} = K$ , $K$is an arbitrary constant.

Hence, the required general solution is ${y^{ - 4}} + {x^{ - 4}} = K$, $K$ is an arbitrary constant.

9. Solve the differential equation $\dfrac{{dy}}{{dx}} = {\sin ^{ - 1}}x$

Ans: The given differential equation is:

$\frac{dy}{dx}={{\sin }^{-1}}x$.

Simplify the expression:

$dy={{\sin }^{-1}}xdx$ 

Integrate both side:

$\int dy=\int {{\sin }^{-1}}xdx$ 

\[\Rightarrow y=\int 1\times {{\sin }^{-1}}xdx\] 

Use product rule of integration:

$\int {{\sin }^{-1}}xdx={{\sin }^{-1}}x\int dx-\int \left( \frac{1}{\sqrt{1-{{x}^{2}}}}\int dx \right)dx$ 

$\Rightarrow \int {{\sin }^{-1}}xdx=x{{\sin }^{-1}}x-\int \frac{x}{\sqrt{1-{{x}^{2}}}}dx$ 

Substitute $\text{1-}{{\text{x}}^{\text{2}}}\text{=}{{\text{t}}^{\text{2}}}$ 

$\Rightarrow -2xdx=2tdt$ 

$\Rightarrow -xdx=tdt$ 

$\Rightarrow \int {{\sin }^{-1}}xdx=x{{\sin }^{-1}}x+\int \frac{tdt}{\sqrt{{{t}^{2}}}}$ 

$\Rightarrow \int {{\sin }^{-1}}xdx=x{{\sin }^{-1}}x+t+C$ 

$\Rightarrow \int {{\sin }^{-1}}xdx=x{{\sin }^{-1}}x+\sqrt{1-{{x}^{2}}}+C$ 

$\Rightarrow y=x{{\sin }^{-1}}x+\sqrt{1-{{x}^{2}}}+C$ 

Thus the general solution of given differential equation is $\text{y=xsi}{{\text{n}}^{\text{-1}}}\text{x+}\sqrt{\text{1-}{{\text{x}}^{\text{2}}}}\text{+C}$

10. Solve the differential equation ${e^x}\tan ydx + \left( {1 - {e^x}} \right){\sec ^2}ydy = 0$

Ans: The differential equation is given by,

${e^x}\tan ydx + \left( {1 - {e^x}} \right){\sec ^2}ydy = 0$

$\left( {1 - {e^x}} \right){\sec ^2}ydy =  - {e^x}\tan ydx$

By separating variables,

$\dfrac{{{{\sec }^2}y}}{{\tan y}}dy = \dfrac{{ - {e^x}}}{{\left( {1 - {e^x}} \right)}}dx$

Taking integration in each side of the equation,

$\int {\dfrac{{{{\sec }^2}y}}{{\tan y}}} dy = \int {\dfrac{{ - {e^x}}}{{\left( {1 - {e^x}} \right)}}} dx$…(i)

Let $\tan y = u$ ,

By differentiating,

${\sec ^2}ydy = du$

So, $\int {\dfrac{{{{\sec }^2}y}}{{\tan y}}} dy = \int {\dfrac{{du}}{u}} $

$\int {\dfrac{{{{\sec }^2}y}}{{\tan y}}} dy = \log u$ [Integrating]

Substituting,

$\int {\dfrac{{{{\sec }^2}y}}{{\tan y}}} dy = \log \left( {\tan y} \right)$

Also let $1 - {e^x} = t$

By differentiating,

$ - {e^x}dx = dt$

So, $\int {\dfrac{{ - {e^x}}}{{\left( {1 - {e^x}} \right)}}} dx = \int {\dfrac{{dt}}{t}} $

$\int {\dfrac{{ - {e^x}}}{{\left( {1 - {e^x}} \right)}}} dx = \log t$ [Integrating]

Substituting,

$\int {\dfrac{{ - {e^x}}}{{\left( {1 - {e^x}} \right)}}} dx = \log \left( {1 - {e^x}} \right)$

Substituting all value of $\int {\dfrac{{{{\sec }^2}y}}{{\tan y}}} dy$ and $\int {\dfrac{{ - {e^x}}}{{\left( {1 - {e^x}} \right)}}} dx$ in the equation (i),

$\log \left( {\tan y} \right) = \log \left( {1 - {e^x}} \right) + \log C$ , $C$ is an arbitrary constant.

$\log \left( {\tan y} \right) = \log \left[ {C\left( {1 - {e^x}} \right)} \right]$

$\tan y = C\left( {1 - {e^x}} \right)$ , $C$ is an arbitrary constant

Hence, the required general solution is $\tan y = C\left( {1 - {e^x}} \right)$ , $C$ is an arbitrary constant.

11. Solve the differential equation $\left( {{x^3} + {x^2} + x + 1} \right)\dfrac{{dy}}{{dx}} = 2{x^2} + x;y = 1$ when $x = 0$

Ans: The differential equation is given by, 

$\left( {{x^3} + {x^2} + x + 1} \right)\dfrac{{dy}}{{dx}} = 2{x^2} + x$

We can write,

$\dfrac{{dy}}{{dx}} = \dfrac{{2{x^2} + x}}{{\left( {{x^3} + {x^2} + x + 1} \right)}}$

By separation variables,

$dy = \dfrac{{2{x^2} + x}}{{\left( {{x^3} + {x^2} + x + 1} \right)}}dx$

Taking integration in each side of the equation,

$\int {dy}  = \int {\dfrac{{2{x^2} + x}}{{\left( {{x^3} + {x^2} + x + 1} \right)}}dx} $

By integrating,

$y = \int {\dfrac{{2{x^2} + x}}{{\left( {{x^3} + {x^2} + x + 1} \right)}}dx}  + K$ , $K$ is an arbitrary constant.

$y = \int {\dfrac{{2{x^2} + x}}{{{x^2}\left( {x + 1} \right) + 1\left( {x + 1} \right)}}dx}  + K$

$y = \int {\dfrac{{2{x^2} + x}}{{\left( {x + 1} \right)\left( {{x^2} + 1} \right)}}dx}  + K$…(i)

Let $\dfrac{{2{x^2} + x}}{{\left( {x + 1} \right)\left( {{x^2} + 1} \right)}} = \dfrac{A}{{\left( {x + 1} \right)}} + \dfrac{{Bx + C}}{{\left( {{x^2} + 1} \right)}}$…(ii)

$\dfrac{{2{x^2} + x}}{{\left( {x + 1} \right)\left( {{x^2} + 1} \right)}} = \dfrac{{A{x^2} + A + \left( {Bx + C} \right)\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {{x^2} + 1} \right)}}$

$\dfrac{{2{x^2} + x}}{{\left( {x + 1} \right)\left( {{x^2} + 1} \right)}} = \dfrac{{A{x^2} + A + B{x^2} + Bx + Cx + C}}{{\left( {x + 1} \right)\left( {{x^2} + 1} \right)}}$

By simplifying,

$2{x^2} + x = A{x^2} + A + B{x^2} + Bx + Cx + C$

$2{x^2} + x = \left( {A + B} \right){x^2} + \left( {B + C} \right)x + \left( {A + C} \right)$

Comparing coefficient of $x$and ${x^2}$ ,

$A + B = 2$…(iii)

$B + C = 1$…(iv)

$A + C = 0$…(v)

From equation (v),

$A =  - C$

Substituting $A$ in the equation (iii),

$ - C + B = 2$

$B - C = 2$…(vi)

Adding equation (iv) and (vi),

$2B = 3$

So, $B = \dfrac{3}{2}$

Substituting value of $B$ in equation (iii),

$A + \dfrac{3}{2} = 2$

$A = 2 - \dfrac{3}{2}$

So, $A = \dfrac{1}{2}$

Then $C =  - \dfrac{1}{2}$

Substituting value of $A,B$ and $C$ in the equation (ii),

$\dfrac{{2{x^2} + x}}{{\left( {x + 1} \right)\left( {{x^2} + 1} \right)}} = \dfrac{{\dfrac{1}{2}}}{{\left( {x + 1} \right)}} + \dfrac{{\dfrac{3}{2}x + \left( { - \dfrac{1}{2}} \right)}}{{\left( {{x^2} + 1} \right)}}$

$\dfrac{{2{x^2} + x}}{{\left( {x + 1} \right)\left( {{x^2} + 1} \right)}} = \dfrac{1}{2}\dfrac{1}{{\left( {x + 1} \right)}} + \dfrac{1}{2}\dfrac{{3x - 1}}{{\left( {{x^2} + 1} \right)}}$

So, the equation (i) becomes,

$y = \int {\left[ {\dfrac{1}{2}\dfrac{1}{{\left( {x + 1} \right)}} + \dfrac{1}{2}\dfrac{{3x - 1}}{{\left( {{x^2} + 1} \right)}}} \right]dx}  + K$

$y = \dfrac{1}{2}\int {\dfrac{1}{{\left( {x + 1} \right)}}dx}  + \dfrac{1}{2}\int {\dfrac{{3x - 1}}{{\left( {{x^2} + 1} \right)}}} dx + K$

$y = \dfrac{1}{2}\int {\dfrac{1}{{\left( {x + 1} \right)}}dx}  + \dfrac{1}{2}\int {\dfrac{{3x}}{{\left( {{x^2} + 1} \right)}}} dx - \dfrac{1}{2}\int {\dfrac{1}{{\left( {{x^2} + 1} \right)}}} dx + K$

$y = \dfrac{1}{2}\int {\dfrac{1}{{\left( {x + 1} \right)}}dx}  + \dfrac{3}{4}\int {\dfrac{{2x}}{{\left( {{x^2} + 1} \right)}}} dx - \dfrac{1}{2}\int {\dfrac{1}{{\left( {{x^2} + 1} \right)}}} dx + K$…(vii)

We have,

$\dfrac{d}{{dx}}\left( {{x^2} + 1} \right) = 2x$

So, $d\left( {{x^2} + 1} \right) = 2xdx$

Then the equation (vii) becomes,

$y = \dfrac{1}{2}\int {\dfrac{1}{{\left( {x + 1} \right)}}dx}  + \dfrac{3}{4}\int {\dfrac{{d\left( {{x^2} + 1} \right)}}{{\left( {{x^2} + 1} \right)}}}  - \dfrac{1}{2}\int {\dfrac{1}{{\left( {{x^2} + 1} \right)}}} dx + K$

By integrating,

$y = \dfrac{1}{2}\log \left( {x + 1} \right) + \dfrac{3}{4}\log \left( {{x^2} + 1} \right) - \dfrac{1}{2}{\tan ^{ - 1}}x + K$

$y = \dfrac{1}{4}\left[ {2\log \left( {x + 1} \right) + 3\log \left( {{x^2} + 1} \right)} \right] - \dfrac{1}{2}{\tan ^{ - 1}}x + K$

$y = \dfrac{1}{4}\left[ {\log {{\left( {x + 1} \right)}^2} + \log {{\left( {{x^2} + 1} \right)}^3}} \right] - \dfrac{1}{2}{\tan ^{ - 1}}x + K$

$y = \dfrac{1}{4}\log \left[ {{{\left( {x + 1} \right)}^2}{{\left( {{x^2} + 1} \right)}^3}} \right] - \dfrac{1}{2}{\tan ^{ - 1}}x + K$…(viii)

When$x = 0$,

Put $y = 1$ ,

$1 = \dfrac{1}{4}\log \left( 1 \right) - \dfrac{1}{2}{\tan ^{ - 1}}\left( 0 \right) + K$

$1 = 0 - 0 + K$

$K = 1$

Substituting $K$ in the equation (viii),

$y = \dfrac{1}{4}\log \left[ {{{\left( {x + 1} \right)}^2}{{\left( {{x^2} + 1} \right)}^3}} \right] - \dfrac{1}{2}{\tan ^{ - 1}}x + 1$

Hence, the required general solution is$y = \dfrac{1}{4}\log \left[ {{{\left( {x + 1} \right)}^2}{{\left( {{x^2} + 1} \right)}^3}} \right] - \dfrac{1}{2}{\tan ^{ - 1}}x + 1$ .

12. Solve the differential equation $x\left( {{x^2} - 1} \right)\dfrac{{dy}}{{dx}} = 1;y = 0$ when $x = 2$

Ans: The differential equation is given by,

$x\left( {{x^2} - 1} \right)\dfrac{{dy}}{{dx}} = 1$

By separating variables,

$dy = \dfrac{1}{{x\left( {{x^2} - 1} \right)}}dx$

We have, 

$\left( {{x^2} - {y^2}} \right) = \left( {x - y} \right)\left( {x + y} \right)$

So, $dy = \dfrac{1}{{x\left( {x - 1} \right)\left( {x + 1} \right)}}dx$

Taking integration in each side of the equation,

$\int {dy}  = \int {\dfrac{1}{{x\left( {x - 1} \right)\left( {x + 1} \right)}}} dx$…(i)

Let $\dfrac{1}{{x\left( {x - 1} \right)\left( {x + 1} \right)}} = \dfrac{A}{x} + \dfrac{B}{{x - 1}} + \dfrac{C}{{x + 1}}$…(ii)

$\dfrac{1}{{x\left( {x - 1} \right)\left( {x + 1} \right)}} = \dfrac{{A\left( {x - 1} \right)\left( {x + 1} \right) + Bx\left( {x + 1} \right) + Cx\left( {x - 1} \right)}}{{x\left( {x - 1} \right)\left( {x + 1} \right)}}$

So, $A\left( {x - 1} \right)\left( {x + 1} \right) + Bx\left( {x + 1} \right) + Cx\left( {x - 1} \right) = 1$

$A{x^2} - A + B{x^2} + Bx + C{x^2} - Cx = 1$

$\left( {A + B + C} \right){x^2} + \left( {B - C} \right)x - A = 1$

Comparing coefficient of $x$and ${x^2}$ ,

$A + B + C = 0$…(iii)

$B - C = 0$…(iv)

$ - A = 1$

So, $A =  - 1$

From equation (iv),

$B = C$

Substituting value of $A$and $B$ ,

$ - 1 + C + C = 0$

$2C = 1$

$C = \dfrac{1}{2}$

So, $B = \dfrac{1}{2}$

Substituting the value of $A,B$ and $C$ in the equation (ii),

$\dfrac{1}{{x\left( {x - 1} \right)\left( {x + 1} \right)}} = \dfrac{{ - 1}}{x} + \dfrac{{\dfrac{1}{2}}}{{x - 1}} + \dfrac{{\dfrac{1}{2}}}{{x + 1}}$

$\dfrac{1}{{x\left( {x - 1} \right)\left( {x + 1} \right)}} =  - \dfrac{1}{x} + \dfrac{1}{2}\dfrac{1}{{x - 1}} + \dfrac{1}{2}\dfrac{1}{{x + 1}}$

Substituting value of $\dfrac{1}{{x\left( {x - 1} \right)\left( {x + 1} \right)}}$ in the equation (i),

$\int {dy}  = \int {\left[ { - \dfrac{1}{x} + \dfrac{1}{2}\dfrac{1}{{x - 1}} + \dfrac{1}{2}\dfrac{1}{{x + 1}}} \right]} dx$

$\int {dy}  =  - \int {\dfrac{1}{x}dx}  + \dfrac{1}{2}\int {\dfrac{1}{{x - 1}}} dx + \dfrac{1}{2}\int {\dfrac{1}{{x + 1}}} dx$

By integrating,

$y =  - \log x + \dfrac{1}{2}\log \left( {x - 1} \right) + \dfrac{1}{2}\log \left( {x + 1} \right) + \log K$, $K$ is an arbitrary constant

$y = \dfrac{1}{2}\left[ { - 2\log x + \log \left( {x - 1} \right) + \log \left( {x + 1} \right) + 2\log K} \right]$

$y = \dfrac{1}{2}\left[ { - \log {x^2} + \log \left( {x - 1} \right) + \log \left( {x + 1} \right) + \log {K^2}} \right]$

$y = \dfrac{1}{2}\log \left[ {\dfrac{{{K^2}\left( {x - 1} \right)\left( {x + 1} \right)}}{{{x^2}}}} \right]$…(v)

When$x = 2$,

Put $y = 0$

$0 = \dfrac{1}{2}\log \left[ {\dfrac{{{K^2}\left( {2 - 1} \right)\left( {2 + 1} \right)}}{{{2^2}}}} \right]$

$\log \left[ {\dfrac{{3{K^2}}}{4}} \right] = 0$

$\dfrac{{3{K^2}}}{4} = {e^0}$

$\dfrac{{3{K^2}}}{4} = 1$

${K^2} = \dfrac{4}{3}$

Substituting value of ${K^2}$ in the equation (v),

$y = \dfrac{1}{2}\log \left[ {\dfrac{{\dfrac{4}{3}\left( {x - 1} \right)\left( {x + 1} \right)}}{{{x^2}}}} \right]$

$y = \dfrac{1}{2}\log \left[ {\dfrac{{4\left( {{x^2} - 1} \right)}}{{3{x^2}}}} \right]$

Hence, the required general solution is$y = \dfrac{1}{2}\log \left[ {\dfrac{{4\left( {{x^2} - 1} \right)}}{{3{x^2}}}} \right]$ .

13. Solve the differential equation $\cos \left( {\dfrac{{dy}}{{dx}}} \right) = a$$\left( {a \in \mathbb{R}} \right);y = 1$ when $x = 0$

Ans: The differential equation is given by,

$\cos \left( {\dfrac{{dy}}{{dx}}} \right) = a$

$\dfrac{{dy}}{{dx}} = {\cos ^{ - 1}}a$

$dy = {\cos ^{ - 1}}adx$

Taking integration in each side of the equation,

$\int {dy}  = \int {{{\cos }^{ - 1}}adx} $

$\int {dy}  = {\cos ^{ - 1}}a\int {1dx} $

By integrating,

$y = {\cos ^{ - 1}}a \cdot x + K$, $K$ is an arbitrary constant

$y = x{\cos ^{ - 1}}a + K$…(i)

When $x = 0$

Put $y = 1$,

$1 = 0 \cdot {\cos ^{ - 1}}a + K$

$K = 1$

Substituting value of $K$ in the equation (i),

$y = x{\cos ^{ - 1}}a + 1$

Subtracting $1$ from both sides,

$y - 1 = x{\cos ^{ - 1}}a$

Dividing by $x$ ,

$\dfrac{{y - 1}}{x} = {\cos ^{ - 1}}a$

This implies,

$\cos \left( {\dfrac{{y - 1}}{x}} \right) = a$

Hence, the required general solution is $\cos \left( {\dfrac{{y - 1}}{x}} \right) = a$.

14.  Solve the differential equation $\dfrac{{dy}}{{dx}} = y\tan x,y = 1$ when $x = 0$

Ans: The differential equation is given by,

$\dfrac{{dy}}{{dx}} = y\tan x$

By separating variables,

$\dfrac{{dy}}{y} = \tan xdx$

Taking integration in each side of the equation,

$\int {\dfrac{{dy}}{y}}  = \int {\tan xd} x$

$\int {\dfrac{{dy}}{y}}  = \int {\dfrac{{\sin x}}{{\cos x}}d} x$...(i)

Let $\cos x = u$

By differentiating,

$ - \sin xdx = du$

$\sin xdx =  - du$

Substituting in the equation (i),

$\int {\dfrac{{dy}}{y}}  = \int {\dfrac{{ - 1}}{u}d} u$

$\int {\dfrac{{dy}}{y}}  =  - \int {\dfrac{1}{u}d} u$

$\log y =  - \log u + \log C$, $C$is an arbitrary constant

Putting value of $u$ ,

$\log y =  - \log \left( {\cos x} \right) + \log C$

$\log y = \log \left( {\dfrac{C}{{\cos x}}} \right)$

$\log y = \log \left( {C\sec x} \right)$

$y = C\sec x$…(ii)

When$x = 0$

Put $y = 1$ ,

$1 = C\sec 0$

$C = 1$

Then the equation (ii) becomes,

$y = \sec x$

Hence, the required general solution is$y = \sec x$.

15. Find the equation of a curve passing through the point $\left( {0,0} \right)$ and whose differential equation is$y' = {e^x}\sin x$

Ans: The differential equation of the curve is given by,

$y' = {e^x}\sin x$

We have, 

$\dfrac{{dy}}{{dx}} \equiv y'$

So, $\dfrac{{dy}}{{dx}} = {e^x}\sin x$

By separating variable,

$dy = {e^x}\sin xdx$

Taking integration in each side of the equation,

$\int {dy}  = \int {{e^x}\sin xdx} $

By integrating,

$y = \int {{e^x}\sin xdx}  + C$…(i) ,$C$ is an arbitrary constant

Let $I = \int {{e^x}\sin xdx} $

By using by-parts formula $\int {u \cdot vdx = u\int {vdx - \int {\left[ {\dfrac{d}{{dx}}u\int {vdx} } \right]} } } dx$ ,

$I = \sin x\int {{e^x}dx}  - \int {\left[ {\dfrac{d}{{dx}}\left( {\sin x} \right)\int {{e^x}dx} } \right]} dx$

$I = \sin x{e^x} - \int {\cos x{e^x}} dx$

Again by using by-parts formula,

$I = \sin x{e^x} - \left[ {\cos x\int {{e^x}} dx - \int {\left( {\dfrac{d}{{dx}}\cos x\int {{e^x}dx} } \right)} dx} \right]$

$I = \sin x{e^x} - \left[ {\cos x{e^x} - \int {\left( { - \sin x} \right)} {e^x}dx} \right]$

$I = \sin x{e^x} - \left[ {\cos x{e^x} + \int {\sin x} {e^x}dx} \right]$

$I = \sin x{e^x} - \cos x{e^x} - \int {\sin x} {e^x}dx$

$I = \sin x{e^x} - \cos x{e^x} - I$

Adding $I$ to the both sides,

$2I = \sin x{e^x} - \cos x{e^x}$

$2I = {e^x}\left( {\sin x - \cos x} \right)$

Dividing by $2$ ,

$I = \dfrac{{{e^x}\left( {\sin x - \cos x} \right)}}{2}$

Substituting value in the equation (i),

$y = \dfrac{{{e^x}\left( {\sin x - \cos x} \right)}}{2} + C$…(ii)

The curve is passing through the point $\left( {0,0} \right)$,

So, $0 = \dfrac{{{e^0}\left( {\sin 0 - \cos 0} \right)}}{2} + C$

$0 = \dfrac{{1\left( {0 - 1} \right)}}{2} + C$

$0 = \dfrac{{ - 1}}{2} + C$

$C = \dfrac{1}{2}$

Now, substituting value of $C$in the equation (ii),

$y = \dfrac{{{e^x}\left( {\sin x - \cos x} \right)}}{2} + \dfrac{1}{2}$

This implies,

$2y = {e^x}\left( {\sin x - \cos x} \right) + 1$

Subtracting$\left( 1 \right)$ from both sides,

$2y - 1 = {e^x}\left( {\sin x - \cos x} \right)$

Hence, the required equation of the curve is$2y - 1 = {e^x}\left( {\sin x - \cos x} \right)$.

16. For the differential equation $xy\dfrac{{dy}}{{dx}} = \left( {x + 2} \right)\left( {y + 2} \right)$find the solution curve passing through the point $\left( {1, - 1} \right)$.

Ans: The differential equation of the curve is given by,

$xy\dfrac{{dy}}{{dx}} = \left( {x + 2} \right)\left( {y + 2} \right)$

By separating the variables,

$\left( {\dfrac{y}{{y + 2}}} \right)dy = \left( {\dfrac{{x + 2}}{x}} \right)dx$

$\left( {1 - \dfrac{2}{{y + 2}}} \right)dy = \left( {1 + \dfrac{2}{x}} \right)dx$

Taking integration in each side of the equation,

$\int {\left( {1 - \dfrac{2}{{y + 2}}} \right)dy}  = \int {\left( {1 + \dfrac{2}{x}} \right)dx} $

$\int {1dy - 2\int {\dfrac{1}{{y + 2}}} } dy = \int {1dx}  + 2\int {\dfrac{1}{x}} dx$

By integrating,

$y - 2\log \left( {y + 2} \right) = x + 2\log x + C$ , $C$is an arbitrary constant

$y - x - C = 2\log x + 2\log \left( {y + 2} \right)$

This can be written as,

$y - x - C = \log {x^2} + \log {\left( {y + 2} \right)^2}$

$y - x - C = \log \left[ {{x^2}{{\left( {y + 2} \right)}^2}} \right]$…(i)

The curve passes through the point $\left( {1, - 1} \right)$,

$ - 1 - 1 - C = \log \left[ {{1^2}{{\left( { - 1 + 2} \right)}^2}} \right]$

$ - 2 - C = \log 1$

$ - 2 - C = 0$

$C =  - 2$

Substituting value of $C$ in the equation (i),

$y - x + 2 = \log \left[ {{x^2}{{\left( {y + 2} \right)}^2}} \right]$

Hence, the required equation of the curve is$y - x + 2 = \log \left[ {{x^2}{{\left( {y + 2} \right)}^2}} \right]$.

17. Find the equation of a curve passing through the point $\left( {0, - 2} \right)$ given that at any point $\left( {x,y} \right)$ on the curve, the product of the slope of its tangent and y-coordinate of the point is equal to the $x$-coordinate of the point.

Ans: Assume $x$ and $y$ be the $x$-coordinate and $y$-coordinate of the curve respectively.
We have, the slope of a tangent to the curve in the coordinate axis which is given by 

$\dfrac{{dy}}{{dx}}$ .

According to the question,

$y\dfrac{{dy}}{{dx}} = x$

By separating the variables,

$ydy = xdx$

Taking integration in each side of the equation,

$\int {ydy}  = \int {xdx} $

By integrating,

$\dfrac{{{y^2}}}{2} = \dfrac{{{x^2}}}{2} + C$ , $C$ is an arbitrary constant

${y^2} = {x^2} + 2C$

${y^2} - {x^2} = 2C$…(i)

The curve passes through point$\left( {0, - 2} \right)$,

${\left( { - 2} \right)^2} - {\left( 0 \right)^2} = 2C$

$4 = 2C$

$C = 2$

Substituting value of $C$ in the equation (i),

${y^2} - {x^2} = 2 \cdot 2$

${y^2} - {x^2} = 4$

Hence, the required equation of the curve is${y^2} - {x^2} = 4$.

18. At any point $\left( {x,y} \right)$ of a curve, the slope of the tangent is twice the slope of the line segment joining the point of contact to the point $\left( { - 4, - 3} \right)$ . Find the equation of the curve given that it passes through $\left( { - 2,1} \right)$.

Ans: From the question we have, $\left( {x,y} \right)$ is the point of contact of the curve and its tangent.

The slope $\left( {{m_1}} \right)$ of the line segment, joining $\left( {x,y} \right)$ and $\left( { - 4, - 3} \right)$ is,

${m_1} = \dfrac{{y + 3}}{{x + 4}}$

We have, the slope of a tangent to the curve is given by  $\dfrac{{dy}}{{dx}}$ .

Therefore, the slope $\left( {{m_2}} \right)$ of the tangent is,

${m_2} = \dfrac{{dy}}{{dx}}$

According to the given question,

${m_2} = 2{m_1}$

Substituting the values,

$\dfrac{{dy}}{{dx}} = 2\left( {\dfrac{{y + 3}}{{x + 4}}} \right)$

By separating variable,

$\dfrac{{dy}}{{y + 3}} = \dfrac{{2dx}}{{x + 4}}$

Taking integration in each side of the equation,

$\int {\dfrac{{dy}}{{y + 3}}}  = 2\int {\dfrac{{dx}}{{x + 4}}} $

By integrating,

$\log \left( {y + 3} \right) = 2\log \left( {x + 4} \right) + \log C$ , $C$ is an arbitrary constant

$\log \left( {y + 3} \right) = \log {\left( {x + 4} \right)^2} + \log C$

$\log \left( {y + 3} \right) = \log C{\left( {x + 4} \right)^2}$

$\left( {y + 3} \right) = C{\left( {x + 4} \right)^2}$…(i)

This is the general equation of the curve.

The curve is passes through the point $\left( { - 2,1} \right)$ .

$\left( {1 + 3} \right) = C{\left( { - 2 + 4} \right)^2}$

$4 = C{\left( 2 \right)^2}$

$4C = 4$

$C = 1$

Substituting value of $C$ in the equation (i),

$\left( {y + 3} \right) = {\left( {x + 4} \right)^2}$

Hence, the required equation of the curve is$\left( {y + 3} \right) = {\left( {x + 4} \right)^2}$.

19. The volume of spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of balloon after t seconds.

Ans: Let us assume the rate of change of the volume of the balloon is $k$.

Where $k$ is a constant.

Also Assume volume of spherical balloon is $v$

According to the given question,

$\dfrac{{dv}}{{dt}} = k$…(i)

We know that, volume of spherical balloon with radius $r$ is,

$v = \dfrac{4}{3}\pi {r^3}$

Substituting value of $v$ in the equation (i),

$\dfrac{d}{{dt}}\left( {\dfrac{4}{3}\pi {r^3}} \right) = k$

$\dfrac{4}{3}\pi  \cdot 3{r^2} \cdot \dfrac{{dr}}{{dt}} = k$

$4\pi {r^2}dr = kdt$

Taking integration in each side of the equation,

$4\pi \int {{r^2}d} r = k\int d t$

By integrating,

$4\pi \dfrac{{{r^3}}}{3} = kt + C$ , $C$ is an arbitrary constant

$4\pi {r^3} = 3\left( {kt + C} \right)$…(i)

At $t = 0$

$r = 3$,

$4\pi {3^3} = 3\left( {k \cdot 0 + C} \right)$

$4\pi  \cdot 27 = 3C$

Divided by $3$ ,

$C = 36\pi $

At $t = 3$

$r = 6$,

$4\pi  \cdot {6^3} = 3\left( {k \cdot 3 + C} \right)$

Substituting value of $C$ ,

$4\pi  \cdot {6^3} = 3\left( {k \cdot 3 + 36\pi } \right)$

$864\pi  = 9k + 108\pi $

$864\pi  - 108\pi  = 9k$

$9k = 756\pi $

Dividing by $9$ ,

$k = 84\pi $

Substituting the values of $k$ and $C$ in equation (i),

$4\pi {r^3} = 3\left( {84\pi t + 36\pi } \right)$

$4\pi {r^3} = 3 \cdot 4\pi \left( {21t + 9} \right)$

Dividing by $4\pi $ ,

${r^3} = 3\left( {21t + 9} \right)$

${r^3} = 63t + 27$

$r = {\left( {63t + 27} \right)^{\dfrac{1}{3}}}$

Hence, the radius of the balloon after t seconds will be ${\left( {63t + 27} \right)^{\dfrac{1}{3}}}$.

20. In a bank, principal increases continuously at the rate of$r\% $ per year. Find the value of $r$ if Rs$100$ doubles itself in $10$years$\left( {{{\log }_e}2 = 0.6931} \right)$.

Ans: Let $p$ is the principle ,$t$ denotes time, and $r$ represents rate of interest.

Given that, the principal increases continuously at the rate of $r\% $per year.

We get,

$\dfrac{{dp}}{p} = \left( {\dfrac{r}{{100}}} \right)p$

By separating variables,

$\dfrac{{dp}}{p} = \left( {\dfrac{r}{{100}}} \right)dt$

Taking integration in each side of the equation,

$\int {\dfrac{{dp}}{p}}  = \int {\left( {\dfrac{r}{{100}}} \right)dt} $

$\int {\dfrac{{dp}}{p}}  = \dfrac{r}{{100}}\int {\left( 1 \right)dt} $

By integrating,

$\log p = \dfrac{{rt}}{{100}} + k$ ; $k$ is an arbitrary constant

$p = {e^{\dfrac{{rt}}{{100}} + k}}$…(i)

When $t = 0$

$p = 100$

$100 = {e^{\dfrac{{r \cdot 0}}{{100}} + k}}$

$100 = {e^k}$

If $t = 10$

Then $p = 2 \times 100$

$p = 200$

Then the equation (i) becomes,

$200 = {e^{\dfrac{{r \cdot 10}}{{100}} + k}}$

$200 = {e^{\dfrac{{r \cdot 10}}{{100}}}} \cdot {e^k}$

Substituting value of ${e^k}$ ,

$200 = {e^{\dfrac{{r \cdot 10}}{{100}}}} \cdot 100$

Simplifying,

$\dfrac{{200}}{{100}} = {e^{\dfrac{r}{{10}}}}$

$2 = {e^{\dfrac{r}{{10}}}}$

Taking logarithm to both sides,

${\log _e}2 = {\log _e}{e^{\dfrac{r}{{10}}}}$

${\log _e}2 = \dfrac{r}{{10}}{\log _e}e$

Since, ${\log _e}e = 1$

${\log _e}2 = \dfrac{r}{{10}}$

Substituting $\left( {{{\log }_e}2 = 0.6931} \right)$ ,

$0.6931 = \dfrac{r}{{10}}$

$r = 0.6931 \times 10$

$r = 6.931$

Hence, the value of $r$is $6.93\% $.

21. In a bank, principal increases continuously at the rate of $5\% $ per year. An amount of ${\text{Rs }}1000$is deposited with this bank, how much will it worth after $10$years$\left( {{e^{0.5}} = 1.648} \right)$.

Ans: Let $p$ is the principle and $t$ denotes time.

Given that the principal increases continuously at the rate of $5\% $ per year.

We get,

$\dfrac{{dp}}{{dt}} = \left( {\dfrac{5}{{100}}} \right)p$

Simplifying,

$\dfrac{{dp}}{{dt}} = \dfrac{p}{{20}}$

By separating variables,

$\dfrac{{dp}}{p} = \dfrac{{dt}}{{20}}$

Taking integration in each side of the equation,

$\int {\dfrac{{dp}}{p}}  = \int {\dfrac{{dt}}{{20}}} $

By integrating,

$\log p = \dfrac{t}{{20}} + k$

$p = {e^{\dfrac{t}{{20}} + k}}$…(i)

When $t = 0$

$p = 1000$,

$1000 = {e^{\dfrac{0}{{20}} + k}}$

${e^k} = 1000$

At $t = 10$ , the equation (i) becomes,

$p = {e^{\dfrac{{10}}{{20}} + k}}$

$p = {e^{\dfrac{{10}}{{20}}}} \cdot {e^k}$

Substituting value of ${e^k}$ ,

$p = {e^{\dfrac{{10}}{{20}}}} \cdot 1000$

Simplifying,

$p = {e^{0.5}} \cdot 1000$

Substituting  ${e^{0.5}} = 1.648$ ,

$p = 1.648 \times 1000$

$p = 1648$

Hence, the amount will worth ${\text{Rs }}1648$after 10 years.

22. In a culture, the bacteria count is$1,00,000$. The number is increased by $10\% $ in $2$ hours. In howmany hours will the count reach$2,00,000$, if the rate of growth of bacteria is proportional to thenumber present?

Ans: Let us assume $x$ be the number of bacteria at any instant $t$.

Given that, the rate of growth of the bacteria is proportional to the number present.

According to the given information,

$\dfrac{{dx}}{{dy}} \propto x$

It can be written as,

$\dfrac{{dx}}{{dy}} = kx$

By separating the variables,

$\dfrac{{dx}}{x} = kdt$ ; $k$ is a constant

Taking integration in each side of the equation,

$\int {\dfrac{{dx}}{x}}  = k\int {dt} $

By integrating,

$\log x = kt + C$ ; $C$ is an arbitrary constant …(i)

Let us assume ${x_0}$ be the number of bacteria at$t = 0$ .

So, the equation (i) becomes,

$\log {x_0} = C$

Substituting the value of $C$ in the equation (i),

$\log x = kt + \log {x_0}$

$\log x - \log {x_0} = kt$

$\log \left( {\dfrac{x}{{{x_0}}}} \right) = kt$

$kt = \log \left( {\dfrac{x}{{{x_0}}}} \right)$…(ii)

Also, given that the number of bacteria increases by$10\% $ in $2$ hours.

This means,

$x = \dfrac{{110}}{{100}}{x_0}$

Simplifying,

$\dfrac{x}{{{x_0}}} = \dfrac{{11}}{{10}}$

Substituting this in the equation (ii),

When $t = 2$

$k \cdot 2 = \log \left( {\dfrac{{11}}{{10}}} \right)$

$k = \dfrac{1}{2}\log \left( {\dfrac{{11}}{{10}}} \right)$

Substituting the value of $k$ in the equation (ii),

$\dfrac{1}{2}\log \left( {\dfrac{{11}}{{10}}} \right)t = \log \left( {\dfrac{x}{{{x_0}}}} \right)$

$t = \dfrac{{2\log \left( {\dfrac{x}{{{x_0}}}} \right)}}{{\log \left( {\dfrac{{11}}{{10}}} \right)}}$…(iii)

When the number of bacteria increases from $1,00,000$to $2,00,000$, let us assume the time is ${t_1}$ .

This means, at $t = {t_1}$

$x = 2{x_0}$

So, the equation (iii) will be,

${t_1} = \dfrac{{2\log \left( {\dfrac{{2{x_0}}}{{{x_0}}}} \right)}}{{\log \left( {\dfrac{{11}}{{10}}} \right)}}$

${t_1} = \dfrac{{2\log 2}}{{\log \left( {\dfrac{{11}}{{10}}} \right)}}$

Hence, the number of bacteria increases from $1,00,000$ to $2,00,000$in $\dfrac{{2\log 2}}{{\log \left( {\dfrac{{11}}{{10}}} \right)}}$ hours.

23. The general solution of the differential equation $\dfrac{{dy}}{{dx}} = {e^{x + y}}$ is

a. ${e^x} + {e^{ - y}} = C$

b. ${e^x} + {e^y} = C$

c. ${e^{ - x}} + {e^y} = C$

d. ${e^{ - x}} + {e^{ - y}} = C$

Ans: The differential equation is given by,

$\dfrac{{dy}}{{dx}} = {e^{x + y}}$

This can be written as,

$\dfrac{{dy}}{{dx}} = {e^x} \cdot {e^y}$

By separating the variables,

$\dfrac{{dy}}{{{e^y}}} = {e^x}dx$

This implies,

${e^{ - y}}dy = {e^x}dx$

Taking integration in each side of the equation,

$\int {{e^{ - y}}dy}  = \int {{e^x}dx} $

By integrating,

$ - {e^{ - y}} = {e^x} + k$ ; $k$is an arbitrary constant

$ - {e^{ - y}} - {e^x} = k$

Multiplying both sides with $\left( { - 1} \right)$,

${e^{ - y}} + {e^x} =  - k$

Taking$ - k = C$ , $C$is an arbitrary constant

${e^{ - y}} + {e^x} = C$

${e^x} + {e^{ - y}} = C$

Hence, the general solution of the differential equation is${e^x} + {e^{ - y}} = C$ .

The correct answer is option (A).

NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations Exercise 9.4

Opting for the NCERT solutions for Ex 9.4 Class 12 Maths is considered as the best option for the CBSE students when it comes to exam preparation. This chapter consists of many exercises. Out of which we have provided the Exercise 9.4 Class 12 Maths NCERT solutions on this page in PDF format. You can download this solution as per your convenience or you can study it directly from our website/ app online.

Vedantu in-house subject matter experts have solved the problems/ questions from the exercise with the utmost care and by following all the guidelines by CBSE. Class 12 students who are thorough with all the concepts from the Maths textbook and quite well-versed with all the problems from the exercises given in it, then any student can easily score the highest possible marks in the final exam. With the help of this Class 12 Maths Chapter 9 Exercise 9.4 solutions, students can easily understand the pattern of questions that can be asked in the exam from this chapter and also learn the marks weightage of the chapter. So that they can prepare themselves accordingly for the final exam.

Besides these NCERT solutions for Class 12 Maths Chapter 9 Exercise 9.4, there are plenty of exercises in this chapter which contain innumerable questions as well. All these questions are solved/answered by our in-house subject experts as mentioned earlier. Hence all of these are bound to be of superior quality and anyone can refer to these during the time of exam preparation. In order to score the best possible marks in the class, it is really important to understand all the concepts of the textbooks and solve the problems from the exercises given next to it. 

Do not delay any more. Download the NCERT solutions for Class 12 Maths Chapter 9 Exercise 9.4 from Vedantu website now for better exam preparation. If you have the Vedantu app in your phone, you can download the same through the app as well. The best part of these solutions is these can be accessed both online and offline as well.


NCERT Solutions for Class 12 Maths Chapter 9 All Other Exercises

Chapter 9 - Differential Equations  All Exercises in PDF Format

Exercise 9.1

12 Questions & Solutions (10 Short Answers, 2 MCQs)

Exercise 9.2

12 Questions & Solutions (10 Short Answers, 2 MCQs)

Exercise 9.3

12 Questions & Solutions (5 Short Answers, 5 Long Answers, 2 MCQs)

Exercise 9.5

17 Questions & Solutions (15 Short Answers, 2 MCQs)

Exercise 9.6

19 Questions & Solutions (15 Short Answers, 2 Long Answers, 2 MCQs)


Along with this, students can also view additional material provided by Vedantu, for CBSE Class 12 Maths Chapter 9