Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 12 Maths Chapter 3: Matrices - Exercise 3.3

ffImage
Last updated date: 17th Apr 2024
Total views: 574.5k
Views today: 13.74k

NCERT Solutions for Class 12 Maths Chapter 3 (Ex 3.3)

Solved NCERT Solutions of Ex 3.3 Class 12 Maths, are provided by Vedantu in an easy to understand way. Students appearing for the 12th Board exams generally find it difficult while revising the Mathematics chapters. To make the toughest concepts easy and understand the complex formulae, Vedantu NCERT Solutions are prepared by highly qualified teachers. Download the free PDF files and understand Exercise 3.3 Maths Class 12 from experts in an easy way. We provide solutions and study material that is prepared as per the recent NCERT guidelines.


Class:

NCERT Solutions for Class 12

Subject:

Class 12 Maths

Chapter Name:

Chapter 3 - Matrices

Exercise:

Exercise - 3.4

Content-Type:

Text, Videos, Images and PDF Format

Academic Year:

2024-25

Medium:

English and Hindi

Available Materials:

  • Chapter Wise

  • Exercise Wise

Other Materials

  • Important Questions

  • Revision Notes



Some important points to learn before solving Exercise 3.3

  • A matrix's transpose is obtained by swapping its rows and columns. A matrix is a rectangular array of numbers or functions that are arranged in rows and columns. This array of numbers is referred to as elements of a matrix.


(Image will be uploaded soon)


  • The transpose of a matrix is an operator in linear algebra that flips a matrix over its diagonal by changing the row and column indices of the matrix thereby, producing another matrix. Generally, the transpose of a matrix A is denoted by either A' or AT.

  • A matrix's order represents the number of rows and columns of the given matrix. The horizontal lines of the elements are all referred to as the rows of the matrix, denoted by n, and the vertical lines of the elements are referred to as the columns of the matrix, denoted by m. They indicate the order of a matrix, which is denoted by n x m. The order of the given matrix's transpose is expressed as m x n.

  • If we consider two matrices B & C, then the transpose of the sum (B + C)T will be the sum of transposes of the matrices B & C. This can be given as (B + C)T = BT+CT.

Competitive Exams after 12th Science

Access NCERT Solutions for Class 12 Maths Chapter 3- Matrix

Exercise 3.3

1. Find the transpose of each of the following matrices:

\[\begin{align} & \mathrm{(i)}\left[ \begin{array}{*{35}{l}} \mathrm{5} \\ \mathrm{1/2} \\ \mathrm{-1} \\ \end{array} \right] \\ & \mathrm{(ii)}\left[ \begin{matrix} \mathrm{1} & \mathrm{-1} \\ \mathrm{2} & \mathrm{3} \\ \end{matrix} \right] \\ & \mathrm{(iii)}\left[ \begin{matrix} \mathrm{-1} & \mathrm{5} & \mathrm{6} \\ \sqrt{\mathrm{3}} & \mathrm{5} & \mathrm{6} \\ \mathrm{2} & \mathrm{3} & \mathrm{-1} \\ \end{matrix} \right] \\ \end{align}\]

Ans:

Find transpose

\[(i)A=\left[ \begin{array}{*{35}{l}} 5 \\ 1/2 \\ -1 \\ \end{array} \right]\Rightarrow {{A}^{T}}=\left[ \begin{matrix} 5 & \frac{1}{2} & -1 \\ \end{matrix} \right]\] \[(ii)A=\left[ \begin{matrix} 1 & -1 \\ 2 & 3 \\ \end{matrix} \right]\Rightarrow {{A}^{T}}=\left[ \begin{matrix} 1 & 2 \\ -1 & 3 \\ \end{matrix} \right]\] \[(iii)A=\left[ \begin{matrix} -1 & 5 & 6 \\ \sqrt{3} & 5 & 6 \\ 2 & 3 & -1 \\ \end{matrix} \right]\Rightarrow {{A}^{T}}=\left[ \begin{matrix} -1 & \sqrt{3} & 2 \\ 5 & 5 & 3 \\ 6 & 6 & -1 \\ \end{matrix} \right]\]


2. If \[\mathrm{A=}\left[ \begin{matrix} \mathrm{-1} & \mathrm{2} & \mathrm{3} \\ \mathrm{5} & \mathrm{7} & \mathrm{9} \\ \mathrm{-2} & \mathrm{1} & \mathrm{1} \\ \end{matrix} \right]\] and \[\mathrm{B=}\left[ \begin{matrix} \mathrm{-4} & \mathrm{1} & \mathrm{-5} \\ \mathrm{1} & \mathrm{2} & \mathrm{0} \\ \mathrm{1} & \mathrm{3} & \mathrm{1} \\ \end{matrix} \right]\] , then verify that \[\begin{align} & \mathrm{(i)}\left( \mathrm{A+B} \right)\mathrm{ }\!\!'\!\!\text{ =A }\!\!'\!\!\text{ +B }\!\!'\!\!\text{ } \\ & \mathrm{(ii)}\left( \mathrm{A-B} \right)\mathrm{ }\!\!'\!\!\text{ =A }\!\!'\!\!\text{ -B }\!\!'\!\!\text{ } \\ \end{align}\]

Ans:

We have 

\[\begin{align} & A'=\left[ \begin{matrix} -1 & 5 & -2 \\ 2 & 7 & 1 \\ 3 & 9 & 1 \\ \end{matrix} \right]B'=\left[ \begin{matrix} -4 & 1 & 1 \\ 1 & 2 & 3 \\ -5 & 0 & 1 \\ \end{matrix} \right] \\ & (i)A+B=\left[ \begin{matrix} -5 & 3 & -2 \\ 6 & 9 & 9 \\ -1 & 4 & 2 \\ \end{matrix} \right]\Rightarrow \left( A+B \right)'=\left[ \begin{matrix} -5 & 6 & -1 \\ 3 & 9 & 4 \\ -2 & 9 & 2 \\ \end{matrix} \right] \\ & A'+B'=\left[ \begin{matrix} -1 & 5 & -2 \\ 2 & 7 & 1 \\ 3 & 9 & 1 \\ \end{matrix} \right]+\left[ \begin{matrix} -4 & 1 & 1 \\ 1 & 2 & 3 \\ -5 & 0 & 1 \\ \end{matrix} \right]=\left[ \begin{matrix} -5 & 6 & -1 \\ 3 & 9 & 4 \\ -2 & 9 & 2 \\ \end{matrix} \right] \\ \end{align}\] Hence, we have verified that \[\left( A+B \right)'=A'+B'\] \[\begin{align} & (ii)A-B=\left[ \begin{matrix} 3 & 1 & 8 \\ 4 & 5 & 9 \\ -3 & -2 & 0 \\ \end{matrix} \right]\Rightarrow \left( A-B \right)'=\left[ \begin{matrix} 3 & 4 & -3 \\ 1 & 5 & -2 \\ 8 & 9 & 0 \\ \end{matrix} \right] \\ & A'-B'=\left[ \begin{matrix} -1 & 5 & -2 \\ 2 & 7 & 1 \\ 3 & 9 & 1 \\ \end{matrix} \right]-\left[ \begin{matrix} -4 & 1 & 1 \\ 1 & 2 & 3 \\ -5 & 0 & 1 \\ \end{matrix} \right]=\left[ \begin{matrix} 3 & 4 & -3 \\ 1 & 5 & -2 \\ 8 & 9 & 0 \\ \end{matrix} \right] \\ \end{align}\]

Hence, we have verified that \[\left( A-B \right)'=A'-B'\]


3. If\[\mathrm{A }\!\!'\!\!\text{ =}\left[ \begin{matrix} \mathrm{3} & \mathrm{4} \\ \mathrm{-1} & \mathrm{2} \\ \mathrm{0} & \mathrm{1} \\ \end{matrix} \right]\] and \[\mathrm{B=}\left[ \begin{matrix} \mathrm{-1} & \mathrm{2} & \mathrm{1} \\ \mathrm{1} & \mathrm{2} & \mathrm{3} \\ \end{matrix} \right]\] , then verify that \[\begin{align} & \mathrm{(i)}\left( \mathrm{A+B} \right)\mathrm{ }\!\!'\!\!\text{ =A }\!\!'\!\!\text{ +B }\!\!'\!\!\text{ } \\ & \mathrm{(ii)}\left( \mathrm{A-B} \right)\mathrm{ }\!\!'\!\!\text{ =A }\!\!'\!\!\text{ -B }\!\!'\!\!\text{ } \\ \end{align}\]

Ans:

We have 

\[\begin{align} & A=\left[ \begin{matrix} 3 & -1 & 0 \\ 4 & 2 & 1 \\ \end{matrix} \right]B'=\left[ \begin{matrix} -1 & 1 \\ 2 & 2 \\ 1 & 3 \\ \end{matrix} \right] \\ & (i)A+B=\left[ \begin{matrix} 2 & 1 & 1 \\ 5 & 4 & 4 \\ \end{matrix} \right]\Rightarrow \left( A+B \right)'=\left[ \begin{matrix} 2 & 5 \\ 1 & 4 \\ 1 & 4 \\ \end{matrix} \right] \\ & A'+B'=\left[ \begin{matrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \\ \end{matrix} \right]+\left[ \begin{matrix} -1 & 1 \\ 2 & 2 \\ 1 & 3 \\ \end{matrix} \right]=\left[ \begin{matrix} 2 & 5 \\ 1 & 4 \\ 1 & 4 \\ \end{matrix} \right] \\ \end{align}\] Hence, we have verified that \[\left( A+B \right)'=A'+B'\] \[\begin{align} & (ii)A-B=\left[ \begin{matrix} 4 & -3 & -1 \\ 3 & 0 & -2 \\ \end{matrix} \right]\Rightarrow \left( A-B \right)'=\left[ \begin{matrix} 4 & 3 \\ -3 & 0 \\ -1 & -2 \\ \end{matrix} \right] \\ & A'-B'=\left[ \begin{matrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \\ \end{matrix} \right]-\left[ \begin{matrix} -1 & 1 \\ 2 & 2 \\ 1 & 3 \\ \end{matrix} \right]=\left[ \begin{matrix} 4 & 3 \\ -3 & 0 \\ -1 & -2 \\ \end{matrix} \right] \\ \end{align}\] Hence, we have verified that \[\left( A-B \right)'=A'-B'\]


4. If\[\mathrm{A }\!\!'\!\!\text{ =}\left[ \begin{matrix} \mathrm{-2} & \mathrm{3} \\ \mathrm{1} & \mathrm{2} \\ \end{matrix} \right]\mathrm{ }\!\!\And\!\!\text{ B=}\left[ \begin{matrix} \mathrm{-1} & \mathrm{0} \\ \mathrm{1} & \mathrm{2} \\ \end{matrix} \right]\] , then find \[\left( \mathrm{A+2B} \right)\mathrm{ }\!\!'\!\!\text{ }\]

Ans:

Solve for the condition\[\begin{align} & \therefore A=\left[ \begin{matrix} -2 & 1 \\ 3 & 2 \\ \end{matrix} \right] \\ & \therefore A+2B=\left[ \begin{matrix} -2 & 1 \\ 3 & 2 \\ \end{matrix} \right]+2\left[ \begin{matrix} -1 & 0 \\ 1 & 2 \\ \end{matrix} \right]=\left[ \begin{matrix} -2 & 1 \\ 3 & 2 \\ \end{matrix} \right]+\left[ \begin{matrix} -2 & 0 \\ 2 & 4 \\ \end{matrix} \right]=\left[ \begin{matrix} -4 & 1 \\ 5 & 6 \\ \end{matrix} \right] \\ & \therefore (A+2B)=\left[ \begin{matrix} -4 & 5 \\ 1 & 6 \\ \end{matrix} \right] \\ \end{align}\]


5. For the matrix \[\mathrm{A }\;\;\And\;\;\text{ B}\] , verify that \[\left( \mathrm{AB} \right)\mathrm{ }\!\!'\!\!\text{ =B }\!\!'\!\!\text{ A }\!\!'\!\!\text{ }\]where

\[\begin{align} & \mathrm{(i)A=}\left[ \begin{matrix} \mathrm{1} \\ \mathrm{-4} \\ \mathrm{3} \\ \end{matrix} \right]\mathrm{,B=}\left[ \begin{matrix} \mathrm{-1} & \mathrm{2} & \mathrm{1} \\ \end{matrix} \right] \\ & \mathrm{(i)A=}\left[ \begin{matrix} \mathrm{0} \\ \mathrm{1} \\ \mathrm{2} \\ \end{matrix} \right]\mathrm{,B=}\left[ \begin{matrix} \mathrm{1} & \mathrm{5} & \mathrm{7} \\ \end{matrix} \right] \\ \end{align}\] 

Ans:

\[\begin{align} & (i)~AB=\left[ \begin{matrix} 1 \\ -4 \\ 3 \\ \end{matrix} \right]\left[ \begin{matrix} -1 & 2 & 1 \\ \end{matrix} \right]=\left[ \begin{matrix} -1 & 2 & 1 \\ 4 & -8 & -4 \\ -3 & 6 & 3 \\ \end{matrix} \right] \\ & \therefore (AB{)}'=\left[ \begin{matrix} -1 & 4 & -3 \\ 2 & -8 & 6 \\ 1 & -4 & 3 \\ \end{matrix} \right] \\ & B'A'=\left[ \begin{matrix} -1 \\ 2 \\ 1 \\ \end{matrix} \right]\left[ \begin{matrix} 1 & -4 & 3 \\ \end{matrix} \right]=\left[ \begin{matrix} -1 & 4 & -3 \\ 2 & -8 & 6 \\ 1 & -4 & 3 \\ \end{matrix} \right] \\ \end{align}\] Hence, we have verified \[\left( AB \right)'=B'A'\] \[\begin{align} & (ii)~AB=\left[ \begin{matrix} 0 \\ 1 \\ 2 \\ \end{matrix} \right]\left[ \begin{matrix} 1 & 5 & 7 \\ \end{matrix} \right]=\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 5 & 7 \\ 2 & 10 & 14 \\ \end{matrix} \right] \\ & \therefore (AB{)}'=\left[ \begin{matrix} 0 & 1 & 2 \\ 0 & 5 & 10 \\ 0 & 7 & 14 \\ \end{matrix} \right] \\ & B'A'=\left[ \begin{matrix} 1 \\ 5 \\ 7 \\ \end{matrix} \right]\left[ \begin{matrix} 0 & 1 & 2 \\ \end{matrix} \right]=\left[ \begin{matrix} 0 & 1 & 2 \\ 0 & 5 & 10 \\ 0 & 7 & 14 \\ \end{matrix} \right] \\ \end{align}\]

Hence, we have verified \[\left( AB \right)'=B'A'\]


6. If \[\begin{align} & \mathrm{(i)A=}\left[ \begin{matrix} \mathrm{cos }\;\;\alpha\;\;\text{ } & \mathrm{sin }\;\;\alpha\!\!\text{ } \\ \mathrm{-sin }\;\;\alpha\;\;\text{ } & \mathrm{cos }\;\;\alpha\;\;\text{ } \\ \end{matrix} \right]\mathrm{, then verify thatA }\;\;\;\;\text{ A=I} \\ & \mathrm{(ii)A=}\left[ \begin{matrix} \mathrm{sin }\;\;\alpha\;\;\text{ } & \mathrm{cos }\;\;\alpha\!\!\text{ } \\ \mathrm{-cos }\;\;\alpha\!\!\text{ } & \mathrm{sin }\;\;\alpha\!\!\text{ } \\ \end{matrix} \right]\mathrm{, then verify thatA }\;\;'\;\;\text{ A=I} \\ \end{align}\]

Ans:

Solve for the condition 

  1. \[\begin{align} & A=\left[ \begin{matrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \\ \end{matrix} \right] \\ & \therefore A'=\left[ \begin{matrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \\ \end{matrix} \right] \\ & A'A=\left[ \begin{matrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \\ \end{matrix} \right]\left[ \begin{matrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \\ \end{matrix} \right] \\ & A'A=\left[ \begin{matrix} {{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha & \sin \alpha \cos \alpha -\sin \alpha \cos \alpha \\ \sin \alpha \cos \alpha -\sin \alpha \cos \alpha & {{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha \\ \end{matrix} \right] \\ & A'A=\left[ \begin{matrix} 1 & 0 \\ 0 & 1 \\ \end{matrix} \right]=I \\ \end{align}\] \[\begin{align} & A=\left[ \begin{matrix} \sin \alpha & \cos \alpha \\ -\cos \alpha & \sin \alpha \\ \end{matrix} \right] \\ & \therefore A'=\left[ \begin{matrix} \sin \alpha & -\cos \alpha \\ \cos \alpha & \sin \alpha \\ \end{matrix} \right] \\ & A'A=\left[ \begin{matrix} \sin \alpha & -\cos \alpha \\ \cos \alpha & \sin \alpha \\ \end{matrix} \right]\left[ \begin{matrix} \sin \alpha & \cos \alpha \\ -\cos \alpha & \sin \alpha \\ \end{matrix} \right] \\ & A'A=\left[ \begin{matrix} {{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha & \sin \alpha \cos \alpha -\sin \alpha \cos \alpha \\ \sin \alpha \cos \alpha -\sin \alpha \cos \alpha & {{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha \\ \end{matrix} \right] \\ & A'A=\left[ \begin{matrix} 1 & 0 \\ 0 & 1 \\ \end{matrix} \right]=I \\ \end{align}\]


7. (i) Show that the matrix \[\mathrm{A=}\left[ \begin{matrix} \mathrm{1} & \mathrm{-1} & \mathrm{5} \\ \mathrm{-1} & \mathrm{2} & \mathrm{1} \\ \mathrm{5} & \mathrm{1} & \mathrm{3} \\ \end{matrix} \right]\] is a symmetric matrix (ii) Show that the matrix \[\mathrm{A=}\left[ \begin{matrix} \mathrm{0} & \mathrm{1} & \mathrm{-1} \\ \mathrm{-1} & \mathrm{0} & \mathrm{1} \\ \mathrm{1} & \mathrm{-1} & \mathrm{0} \\ \end{matrix} \right]\] is a skew symmetric matrix

Ans:

(i) We have 

\[\begin{align} & A'=\left[ \begin{matrix} 1 & -1 & 5 \\ -1 & 2 & 1 \\ 5 & 1 & 3 \\ \end{matrix} \right]=A \\ & \therefore A'=A \\ \end{align}\] Hence, A is a symmetric matrix (ii) We have \[\begin{align} & A'=\left[ \begin{matrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \\ \end{matrix} \right]=-\left[ \begin{matrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \\ \end{matrix} \right]=-A \\ & \therefore A'=-A \\ \end{align}\]

Hence, A is a skew-symmetric matrix


8. For the matrix \[\mathrm{A=}\left[ \begin{matrix} \mathrm{1} & \mathrm{5} \\ \mathrm{6} & \mathrm{7} \\ \end{matrix} \right]\], verify that (i) \[\left( \mathrm{A+A }\!\!'\!\!\text{ } \right)\] is a symmetric matrix (ii) \[\left( \mathrm{A+A }\!\!'\!\!\text{ } \right)\] is a skew symmetric matrix 

Ans:

\[A=\left[ \begin{matrix} 1 & 5 \\ 6 & 7 \\ \end{matrix} \right],A'=\left[ \begin{matrix} 1 & 6 \\ 5 & 7 \\ \end{matrix} \right]\] \[\begin{align} & (i)A+A'=\left[ \begin{matrix} 1 & 5 \\ 6 & 7 \\ \end{matrix} \right]+\left[ \begin{matrix} 1 & 6 \\ 5 & 7 \\ \end{matrix} \right]=\left[ \begin{matrix} 2 & 11 \\ 11 & 14 \\ \end{matrix} \right] \\ & \left( A+A' \right)'=\left[ \begin{matrix} 2 & 11 \\ 11 & 14 \\ \end{matrix} \right]=A+A' \\ \end{align}\] Hence, \[\left( A+A' \right)\]is a symmetric matrix \[\begin{align} & (ii)A-A'=\left[ \begin{matrix} 1 & 5 \\ 6 & 7 \\ \end{matrix} \right]-\left[ \begin{matrix} 1 & 6 \\ 5 & 7 \\ \end{matrix} \right]=\left[ \begin{matrix} 0 & -1 \\ 1 & 0 \\ \end{matrix} \right] \\ & \left( A-A' \right)'=\left[ \begin{matrix} 0 & 1 \\ -1 & 0 \\ \end{matrix} \right]=-\left[ \begin{matrix} 0 & -1 \\ 1 & 0 \\ \end{matrix} \right]=A+A' \\ \end{align}\]

Hence, \[\left( A-A' \right)\]is a skew-symmetric matrix


9. Find \[\frac{\mathrm{1}}{\mathrm{2}}\left( \mathrm{A+A }\;\;'\;\;\text{ } \right)\mathrm{ }\;\;\And\!\!\text{ }\frac{\mathrm{1}}{\mathrm{2}}\left( \mathrm{A-A }\;\;'\;\;\text{ } \right)\] , when \[\mathrm{A=}\left[ \begin{matrix} \mathrm{0} & \mathrm{a} & \mathrm{b} \\ \mathrm{-a} & \mathrm{0} & \mathrm{c} \\ \mathrm{-b} & \mathrm{-c} & \mathrm{0} \\ \end{matrix} \right]\]

Ans:

The given matrix is \[A=\left[ \begin{matrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \\ \end{matrix} \right]\], then \[A'=\left[ \begin{matrix} 0 & -a & -b \\ a & 0 & -c \\ b & c & 0 \\ \end{matrix} \right]\] \[\begin{align} & \frac{1}{2}\left( A+A' \right)=\frac{1}{2}\left( \left[ \begin{matrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \\ \end{matrix} \right]+\left[ \begin{matrix} 0 & -a & -b \\ a & 0 & -c \\ b & c & 0 \\ \end{matrix} \right] \right) \\ & \frac{1}{2}\left( A+A' \right)=\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{matrix} \right] \\ \end{align}\] \[\begin{align} & \frac{1}{2}\left( A-A' \right)=\frac{1}{2}\left( \left[ \begin{matrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \\ \end{matrix} \right]-\left[ \begin{matrix} 0 & -a & -b \\ a & 0 & -c \\ b & c & 0 \\ \end{matrix} \right] \right) \\ & \frac{1}{2}\left( A-A' \right)=\left[ \begin{matrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \\ \end{matrix} \right] \\ \end{align}\]


10. Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

\[\left[ \begin{matrix} \mathrm{3} & \mathrm{5} \\ \mathrm{1} & \mathrm{-1} \\ \end{matrix} \right]\]

Ans:

\[\begin{align} & (i)\frac{1}{2}\left( A+A' \right)=\frac{1}{2}\left( \left[ \begin{matrix} 3 & 5 \\ 1 & -1 \\ \end{matrix} \right]+\left[ \begin{matrix} 3 & 1 \\ 5 & -1 \\ \end{matrix} \right] \right) \\ & \frac{1}{2}\left( A+A' \right)=\frac{1}{2}\left( \left[ \begin{matrix} 6 & 6 \\ 6 & -2 \\ \end{matrix} \right] \right) \\ & \frac{1}{2}\left( A+A' \right)=\left[ \begin{matrix} 3 & 3 \\ 3 & -1 \\ \end{matrix} \right] \\ \end{align}\] Thus, \[\frac{1}{2}\left( A+A' \right)\] is a symmetric matrix. \[\begin{align} & \frac{1}{2}\left( A-A' \right)=\frac{1}{2}\left( \left[ \begin{matrix} 3 & 5 \\ 1 & -1 \\ \end{matrix} \right]-\left[ \begin{matrix} 3 & 1 \\ 5 & -1 \\ \end{matrix} \right] \right) \\ & \frac{1}{2}\left( A-A' \right)=\frac{1}{2}\left( \left[ \begin{matrix} 0 & 4 \\ -4 & 0 \\ \end{matrix} \right] \right) \\ & \frac{1}{2}\left( A-A' \right)=\left[ \begin{matrix} 0 & 2 \\ -2 & 0 \\ \end{matrix} \right] \\ \end{align}\]

Thus, \[\frac{1}{2}\left( A-A' \right)\] is a skew-symmetric matrix.


11. If A,B are symmetric matrix of same order, then \[\mathrm{AB-BA}\] is a 

  1. Skew symmetric matrix

  2. Symmetric matrix 

  3. Zero matrix

  4. Identity matrix

Ans:

The correct answer is A

\[A\And B\] are symmetric , therefore , we have 

\[A'=A\And B'=B\]

Consider 

\[\begin{align} & \left( AB-BA \right)'=\left( AB \right)'-\left( BA \right)' \\ & =B'A'-A'B' \\ & =BA-AB \\ & =-\left( AB-BA \right) \\ & \therefore \left( AB-BA \right)'=-\left( AB-BA \right) \\ \end{align}\] Thus, \[\left( AB-BA \right)'\] is a skew-symmetric matrix


12. If\[\mathrm{A=}\left[ \begin{matrix} \mathrm{cos }\;\;\alpha\;\;\text{ } & \mathrm{-sin }\;\;\alpha\!\!\text{ } \\ \mathrm{sin }\;\;\alpha\;\;\text{ } & \mathrm{cos }\;\;\alpha\!\!\text{ } \\ \end{matrix} \right]\] , then \[\mathrm{A+A }\;\;'\;\;\text{ =I}\] , if the value of \[\mathrm{ }\;\;\alpha\!\!\text{ }\] is \[\begin{align} & \mathrm{A}\mathrm{.}\frac{\mathrm{ }\;\;\pi\;\;\text{ }}{\mathrm{6}} \\ & \mathrm{B}\mathrm{.}\frac{\mathrm{ }\;\;\pi\;\;\text{ }}{\mathrm{3}} \\ & \mathrm{C}\mathrm{. }\;\;\pi\!\!\text{ } \\ & \mathrm{D}\mathrm{.}\frac{\mathrm{3 }\;\;\pi\!\!\text{ }}{\mathrm{2}} \\ \end{align}\]

Ans:

The correct answer is B

 \[\begin{align} & A=\left[ \begin{matrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \\ \end{matrix} \right] \\ & A'=\left[ \begin{matrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \\ \end{matrix} \right] \\ & A+A'=I \\ & \therefore \left[ \begin{matrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \\ \end{matrix} \right]+\left[ \begin{matrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \\ \end{matrix} \right]=\left[ \begin{matrix} 1 & 0 \\ 0 & 1 \\ \end{matrix} \right] \\ & \left[ \begin{matrix} 2\cos \alpha & 0 \\ 0 & 2\cos \alpha \\ \end{matrix} \right]=\left[ \begin{matrix} 1 & 0 \\ 0 & 1 \\ \end{matrix} \right] \\ & \alpha =\frac{\pi }{3} \\ \end{align}\]


NCERT Solutions for Class 12 Maths Chapter 3 Other Exercises

Chapter 3 - Matrix Other Exercises in PDF Format

Exercise 3.1

10 Questions & Solutions (5 Short Answers, 5 Long Answers)

Exercise 3.2

22 Questions & Solutions (3 Short Answers, 19 Long Answers)

Exercise 3.4

18 Questions & Solutions (18 Short Answers)


Study NCERT Solutions Prepared By Highly Qualified Teachers

No doubt, Mathematics is not an easy subject and most of the students find it really hard to understand the concept and learn the formulae and theorems. But if you have relevant solutions for Class 12 to understand the chapter, your revision becomes easy. It helps you overcome the exam fear and easily attain good marks in the school examination as well as during the 12th board exams. To excel in the coming exams, download free PDF now and practice Exercise 3.3 Maths Class 12 solutions in an easy way.

Vedantu has a team of highly qualified teachers who have enough experience to clear plus two Maths Exercise 3.3 doubts. Chapter 3 of your Maths NCERT book is going to cover topics- introduction to matrices, types of matrices, operations of matrices, transpose of a matrix, symmetric and skew-symmetric matrices, elementary operation of a matrix, and invertible matrices. Our teachers have prepared the solutions after thoroughly analyzing the topics in-depth and explaining them in an easy to grab manner. As they have years of experience in the Mathematics subject and hold high certifications, they have a clear idea of the expected questions in the coming exams. So, you can easily get a close idea to the Class 12 Maths Chapter 3 Exercise 3.3 and know which are the most important questions. You can go through our NCERT Solutions and clear your doubts about any NCERT questions or examples. 

 

NCERT Class 12 Maths Revision Study Material- Free PDF

Once you are clear with the Matrices NCERT Solutions in the first place, your half preparation is complete to appear for the 12th Board exams. To enhance your Mathematics skills and for the students who are preparing for other competitive exams, we even offer other study material to prepare out of the box questions. So, you can go through our CBSE sample papers, exemplar questions, CBSE sample papers, CBSE previous year question papers, objective questions, and a lot more. Our solutions are going to cover the most important topics explained in a very easy manner and with a detailed explanation. Apart from CBSE exams, understanding NCERT questions is necessary for even the ones going for the JEE exam.

Exercise 3.3 Class 12 Maths is going to cover multiple topics, and sub-topics and Vedantu solutions will explain them in a very brief and easy way. To make it viable for the students to get access to Vedantu solutions all the time, we even offer free PDF downloads to enable you to save the notes, NCERT Solutions, or other study material. So, you can easily practice the questions of the respective exercise or chapter in the future easily. Vedantu not only offers NCERT Solutions for Exercise 3.3 Class 12, but we even have an expert teaching staff who have experience in the other chapters and subjects as well. Students can now easily download PDF files for free and clear their queries of any other chapter or subject. Apart from Ex 3.3 Class 12, our teachers even offer solutions for other Classes as well, so you can refer to those solutions.

 

Understanding NCERT Questions With an Easy Approach

Learning the difficult formulae and other concepts of Ex 3.3 Maths Class 12 becomes easy only if you have the right mentor or the right set of study material. At Vedantu, we ensure that all the study material, solved problems are prepared by following a standard and easy approach to make the most difficult topics easy to understand. We follow step by step procedure to make things clear even for the students who are studying the chapter for the very first time.

To get rid of the exam fear especially before the board examination, it is very important to have thorough NCERT Solutions in advance that can help you during your revision time. Vedantu revision Solutions are prepared precisely and in a brief way so that you don’t get bored or waste time while reading the lengthy paragraphs. We try to keep the explanation part brief, straight-forward and easy to understand.  

 

Study Material That Follows the NCERT Guidelines

Students might refer to solutions for the last year or maybe some notes that are never updated. And during the exam time, you can’t manage time to find another set of solutions to prepare. Well, referring Vedantu NCERT Solutions keep you on the safer side as we make regular additions and modifications in the study material as per the changes in the NCERT guidelines.

All the notes are updated from time to time to ensure that our solutions are prepared as per the NCERT guidelines and match the latest curriculum as set by CBSE. So, you can refer to Vedantu solutions without worrying about the topics that were recently added in the textbook.

Referring to Vedantu’s easy and brief solutions will help you understand the problems in one go and retain it in your mind for a longer period. So, this is going to help you score good marks in the unit tests, half-yearly exams at school level and even board examinations. If you have difficulty in any of the chapters or are about to begin preparing for your board exams, school level exams, or JEE exam, you must start preparing for the right solutions today itself. To download chapter-wise or exercise-wise solutions, you can anytime download the free PDF file from Vedantu and begin preparing today. We even offer solutions to all other subjects as well.