Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Exemplar for Class 12 Maths Chapter-3 (Book Solutions)

ffImage
banner

NCERT Exemplar for Class 12 Maths - Matrices - Free PDF Download

Free PDF download of NCERT Exemplar for Class 12 Maths Chapter 3 - Matrices solved by expert Maths teachers on vedantu.com as per NCERT (CBSE) Book guidelines. All Chapter 3 - Matrices Exercise questions with solutions to help you to revise the complete syllabus and score more marks in your Examinations.

The NCERT Exemplar textbooks serve a critical role in imparting comprehensive and advanced knowledge of numerous concepts in NCERT textbooks for various Classes. Students can use the NCERT Exemplar for Class 12 Maths Chapter 3 - Matrices (Book Solutions), which are organised by subject, to understand and solve problems from any Chapter. These programmes are designed to fulfil the needs of students at all levels. Furthermore, all answers are created by subject experts using the most up-to-date CBSE standards, ensuring that students receive excellent marks in their Exams.

Popular Vedantu Learning Centres Near You
centre-image
Sharjah, Sharjah
location-imgKing Abdul Aziz St - Al Mahatta - Al Qasimia - Sharjah - United Arab Emirates
Visit Centre
centre-image
Abu Dhabi, Abu-Dhabi
location-imgMohammed Al Otaiba Tower - 1401, 14th Floor - opposite to Nissan Showroom West Zone building - Al Danah - Zone 1 - Abu Dhabi - United Arab Emirates
Visit Centre
centre-image
22 No Phatak, Patiala
location-img#2, Guhman Road, Near Punjabi Bagh, 22 No Phatak-Patiala
Visit Centre
centre-image
Chhoti Baradari, Patiala
location-imgVedantu Learning Centre, SCO-144 -145, 1st & 2nd Floor, Chotti Baradari Scheme Improvement Trust, Patiala-147001
Visit Centre
centre-image
Janakpuri, Delhi
location-imgVedantu Learning Centre, A-1/173A, Najafgarh Road, Opposite Metro Pillar 613, Block A1, Janakpuri, New Delhi 110058
Visit Centre
centre-image
Tagore School, Gudha-Gorji
location-imgTagore Public School Todi, Gudha Gorji, Jhunjhunu, Rajasthan 333022
Visit Centre
View More
Courses
Competitive Exams after 12th Science

Access NCERT Exemplar Solutions for Class 12 Maths Chapter 3 – Matrices

Short Answer:

Sample Questions:

1. Construct a matrix A=[aij]2×2  whose elements aij are given by aij=e2ixsinjx.

Ans: Given: Elements aij = e2ixsinjx.

Form the elements by substituting values of i and j.Then, construct a matrix.

For the values of i and j.

i  =  1, j   =  1 gives a11 = e2xsinxi  =  1, j   =  2 gives a12 = e2xsin2xi  =  2, j   =  1 gives a21 = e4xsinxi  =  2, j   =  2 gives a22 = e4xsin2x A  = [e2xsinxe2xsin2xe4xsinxe4xsin2x]


2. If A=[2312],B=[132431],C=[12],D=[468579]then which of the sums A+B,B+C,C+DandB+D is defined?

Ans : Given: Matrices A, B and C.

The sum of two matrices is defined only when they have same order.

Since, matrices having same order can be added. 


Order of A  = [2312]2 × 2 and B  = [132431]2 × 3,


Order of B  = [132431]2 × 3 and C  = [12]2 × 1,


Order of C  = [12]2 × 1and D  = [468579]2 × 3,


Order of B  = [132431]2 × 3 and D  = [468579]2 × 3.


Therefore, B  +  D with order 2 × 3 is defined.


3. Show that a matrix which is both symmetric and skew symmetric is a zero matrix.

Ans : 

Given: Symmetric and Skew symmetric matrix.

For symmetric matrix A'  =  A and for skew symmetric matrix A'  =  A.

Let A be a matrix with elements aij.

As, A is both symmetric and skew symmetric,

 aij = aji (i) aij =  aji aij + aji =  0 (ii)from (i) and (ii),2aij =  0 aij  =  0

Therefore, A is zero matrix.


4. If [2x3][1230][x8]=0, find the value of x.

Ans:  Given: [2x3][12 30][x8] =  0.

Use matrix multiplication. Then compare the elements with the zero matrix.

Here,

[2x3][12 30][x8] =  0

 [2 94x][x8] =  [0]

 [2x2  9x  +  32x]  =  [0]

 2x2  23x  =  0  x(2x  +  23)  =  0 x  = 0, x  =  232 


5. If Ais3×3 invertible matrix, then show that for any scalark(nonzero),kA is invertible and (kA)1=1kA1.

Ans :Given: A is 3 × 3 invertible matrix.


For invertible matrix, AA 1 =  I.

Here,

(kA)(1kA 1) = (k.1k)(AA 1) 1.I  =  I (kA) is inverse of (1kA 1).


Long Answer:

6. Express the matrix A as the sum of a symmetric and a skew symmetric matrix, where A=[246735124].

Ans : Given: Matrix A.


The matrix A is expressed as A  +  A'2 +  A'2.Here A  +  A'2 is symmetric and  A'2 is skew-symmetric matrix.


Here,

A  = [24 67351 24], then A'  = [27143 2 654]now, A  +  A'2 = 12[411 51163 538]  A  +  A'2 = [2112 52112332 52324] now,  A'2 = 12[0 3 73077 7 0]  A'2 = [0 32 723207272 720] A  +  A'2 +  A'2 = [2112 52112332 52324] + [0 32 723207272 720] = [24 67351 24] =  A.


7. If A=[132201123],then shoe that Asatisfies the equation A34A23A+11I=0.

Ans: Given: Matrix A.


First, find A3 and A2. Then, substitute in the equation.


Here,

A2 =  A × A A2 = [13220 1123] × [13220 1123] A2 = [1 +  6  +  23 +  0  +  42 -  3  +  62 +  0  16 + 0  24 +  0  31 +  4  +  33 +  0  +  62  2  +  9] A2 = [975141899]Now, A3 = A2 × A A3 = [975141899] × [13220 1123] A3 = [9 +  14  +  527 +  0  +  1018  7  +  151 +  8  +  13 +  0  +  22  4  +  38 +  18  +  924 +  0  +  1816  9 +  27]A3 = [2837261051354234]


Substitute the values in the equation, A3 -  4A2 -  3A  +  11I  =  0.


 = [2837261051354234]  4[975141899]  3[13220 1123] +  11[100010000]= [28  36  3  +  1137  28  9  +  026  20  6  +  010  4  6  +  0 16  +  0  +  111  4  +  3  +  035  32  3  +  042  36  6  +  034  36  9  +  11] = [000000000] =  0


8. Let A=[2312]. Then show that A24A+7I=0.Using this result calculate A5 also.

Ans : Given: Matrix A.


First, find A2 and use A5 = A3A2.


Here,

A2 =  A × A A2 = [23 12] × [23 12] A2 = [112 41]


Substitute in the equation, A2  4A  +  7I  =  0.


= [112 41] -  4[23 12] +  7[1000]= [1  8  +  712  12  +  0 4  +  4  +  01  8  +  7]= [0000]


= 0 A2  4A  +  7I  =  0 A2 =  4A  -  7INow,


A3 =  A.A2 A3 =  A.(4A  7I) A3 =  4(4A  7I)  7A


 A3 =  16A  -  28I  7A A3 =  9A  28INow, A5 = A3A2 A5 =  (9A  28I)(4A  7I) A5 = 36A2 -  63A  -  112A  +  196I A5 = 36(4A  7I)  175A  +  196I A5 =  31A  56I A5 =  31[23 12]  56[1001] A5 =  [6293 3162]  [560056] A5 = [ 62  56 93  031 62  56] A5 = [ 118 9331 118]


Objective Type Questions:

Choose the correct answer from the given four options in Examples 9to12.

9. If AandB are matrices of same order, then (A+B)(AB) is equal to

(A)A2B2

(B)A2BAABB2

(C)A2B2+BAAB

(D)A2BA+B2+AB

Ans : Given: A and B are matrices.

Use the matrices algebra.

Here,

(A  +  B)(A  B)  =  A(A  B)  +  B(A  B) (A  +  B)(A  B)  = A2  AB  +  BA  B2.

Correct Answer: C


10. If A=[213451]andB=[234215],then

(A)Only AB is defined

(B)Only BA is defined

(C)ABandBA both are defined

(D)ABandBA both are not defined

Ans: Given: Matrices A and B.


Product of two matrices is defined when column of one matrix is equal to the row of another matrix.


The order of matrix A is 2 × 3 and order of B is 3 × 2.


Therefore, both AB and BA is defined.

Correct Answer: C


11. The matrix \[A  =  \left[ {\begin{array}{*{20}{c}}  0&0&5 \\   0&5&0 \\   5&0&0 

\end{array}} \right]\] is a

(A)Scalar matrix

(B)Diagonal matrix

(C)Unit matrix

(D)Square matrix

Ans : Given: Matrix A.

Matrix can be square, diagonal, unit depending on the order and elements of matrix.

Since, the order of matrix A is 3 × 3. The number of rows and columns are same.

Therefore, matrix A is square matrix.


Correct Answer: D


12. If AandB are symmetric matrices of the same order, then (ABBA) is a

(A)Skew symmetric matrix

(B)Null matrix

(C)Symmetric matrix

(D)None of these

Ans: Given: A and B are symmetric matrices.


For symmetric matrix A'  =  A and for skew symmetric matrix A'  =  A.


Take transpose,

(AB'  BA')'  =  (AB')'  (BA')'(AB'  BA')'  =  (BA'  AB')(AB'  BA')'  =  (AB'  BA').


Correct Answer: A


Fill in the blanks in each of the Examples 13to15.

13: If AandB are two skew symmetric matrices of same order, then AB is symmetric matrix if ______  .

Ans: Given: A and B are two skew symmetric matrices.


For symmetric matrix A'  =  A and for skew symmetric matrix A'  =  A.


Take transpose,

(AB)'  =  B'A' (AB)'  =  ( B)( A)(AB)'  =  BAif, AB  =  BA, then(AB)'  =  AB.


For AB =  BA, AB is symmetric matrix.


14. If AandB are matrices of same order, then (3A2B) is equal to ____ .

Ans: Given: A and B are matrices.


Take transpose of (3A  2B)'.


Taking transpose,

(3A  2B)'  =  3A'  2B'.


15. Addition of matrices is defined if order of the matrices is _______.

Ans: Same.

The order of must be same for addition of two matrices.


State whether the statements in each of the Examples 16 to 19  is true or false:


16. If two matrices AandB are of same order, then 2A+B=B+2A.

Ans: Given: A and B are matrices.


Matrix addition is defined only for the matrices with same order.


Since, A and B are of same order. The matrix addition is defined.


Therefore, 2A  +  B  =  B  +  2A is true.


17. Matrix subtraction is associative.

Ans : Given: Matrix.


Consider three matrices to verify the property of associativity.


Let A, B and C are matrices,

(A  B)  C  =  A  B  C   (i) (B  C)  =  A  B  +  C   (ii)(i)  (ii) False.


18. For the non-singular matrix A,(A)1=(A1).

Ans: For a non-singular matrix | A |  0. The identity A, (A') 1 =  (A 1) is always true.


19.  for any three matrices of same order.

Ans: Given: A, B and C are matrices.


It is not given that, matrix A is invertible.


It is not mentioned that matrix A is invertible. 


AB  =  AC  B  =  C is false for non-invertible matrix.

EXERCISE:

Short Answer Type :

1. If a matrix has 28 elements, what are the possible orders it can have? What if it has 13 elements?

Ans: Given: Number of elements in matrix.


The order of a matrix is represented by × n. The number of elements of order × n will be mn.


For, mn  =  28,

Possible ordered pairs,

(m x n) = {(1,28), (2,14), (4,7), (7,4), (14,2), (28,1)}

for 28 elements possible orders 1 x 28,2 x 14,4 x 7,7 x 4,14 x 2,28 x 1

for 13 elements possible orders 1 x 13 and 13 x 1.


2. In the matrix A=[a1x23x2y0525], write (i)The order of the matrix A.

Ans: First, find the order × n and then number of elements using mn. General representation of element is aij.

Order of matrix A  =  3 × 3.

(ii)The number of elements.

Ans: First, find the order × n and then number of elements using mn. General representation of element is aij.

Number of elements × 3  =  9.

(iii)Elements a23,a31anda12.

Ans: First, find the order × n and then number of elements using mn. General representation of element is aij. a23 = x2  y, a31 =  0 and a12=1.


3.  Construct a2×2 matrix, where (i)aij=(i2j)22

Ans: Given: Matrix a2 × 2.


Substitute the values of i and j for 2 × 2 matrix.

Here,

aij = ( 2j)22,for,a11 = (1  2)22 = 12

a12 = (1  2 × 2)22 = 92a21 = (2  2 × 1)22 =  0a22 = (2  2 × 2)22 =  2 A  = [129202]

(ii)aij=|2i+3j|

Ans: Given: Matrix a2 × 2.


Substitute the values of i and j for 2 × 2 matrix.


Here,

aij =  | 2i  +  3j |,fora11 =  |  2 × 1  +  3 × 1 |  =  1a12 =  |  2 × 1  +  3 × 2 |  =  4a21 =  |  2 × 2  +  3 × 1 |  =  1a22 =  |  2 × 2  +  3 × 2 |  =  2 A  = [1412]


4. Construct a 3×2matrix whose elements are given by aij=eixsinjx.

Ans: Given: Elements aij = eixsinjx.


Form the elements by substituting values of i and j. Then, construct a matrix.


For the values of i and j.


i  =  1, j   =  1 gives a11 = exsinxi  =  1, j   =  2 gives a12 = exsin2xi  =  2, j   =  1 gives a21 = e2xsinx


i  =  2, j   =  2 gives a22 = e2xsin2xi  =  3, j  =  1 gives a31 = e3xsinxi  =  3, j  = 2 gives a22 = e3xsin2x A  = [exsinxexsin2xe2xsinxe2xsin2xe3xsinxe3xsin2x]


5. Find the values of aandb,ifA=B, where A=[a+43b86]andB=[2a+2b2+28b25b]

Ans: Given: A  =  B.


If two matrices are equal, then each element of A is equal to corresponding element of B.


Since, A  =  B,[a  +  43b8 6] = [2a  +  2b2 +  28b2  5b]a11 = b11 a  +  4  =  2a  + 2 a  =  2now, a12 = b12 3b  = b2 +  2 b2 =  3b  2     - (i)and, a22 = b22  6  = b2  5b   - (ii)from (i) and (ii), we get 6  =  3b  2  5b b  =  2 a  =  2 and b  =  2.


6. If possible, find the sum of matrices AandB,whereA=[3123]andB=[xyzabc].

Ans:Given: Matrices A and B.


Two matrices are added, if they have same order.


Since, matrices A and Bare of different order. The order of matrices A and Bare× 2 and 2 × 3respectively.


Therefore, the sum of matrices A and Bis not possible.


7. If X=[311523]andY=[211724],then find(i)X+Y.

Ans: Given: X and Y are matrices.


Here,

X  +  Y  = [3 + 21 +  1 1  -  15 +  7 2  +  2 3  +  4] X  +  Y  = [52 21201]


(ii)2X3Y.

Ans: Given: X and Y are matrices.

Here,

2X  3Y  =  2[31 15 2 3]  3[21 1724]2X  3Y  = [6  62  3 2  +  310  21 4  6 6  12] 2X  3Y  = [0 11 11 10 18]


(iii) A matrix Z such that X+Y+Z is a zero matrix.

Ans: Given: X and Y are matrices.

Here,

X  +  Y  = [3 + 21 +  1 1  15 +  7 2  + 2 3  +  4]X  +  Y  = [52 21201]Since, X  +  Y  +  Z  =  0 Z  = (X  +  Y) Z  = [ 5 22  120 1]


8. Find non-zero values of x satisfying the matrix equationx[2x23x]+2[85x44x]=2[(x2+8)24106x].

Ans :Given: Matrix equation


Solve the matrix operations. Then, compare the elements of matrices.


Here,

x[2x23x] +  2[85x44x] =  2[(x2 +  8)24106x][2x22x3xx2] + [1610x88x] = [2x2 +  16482012x][2x2 +  162x  +  10x3x  +  8x2 +  8x] = [2x2 + 16482012x] 2x  +  10x  =  48 x  = 4812 x  =  4


9. If A=[0111]andB=[0110], then show that 

Ans: Given: Matrices A and B.


Substitute matrices in equation. Then use matrix algebra.


Here,

A  +  B  = [0021]  B  = [0201] (A  + B)2 × 2.(A  B)2 × 2 = [0005] .....(i)Now, A2 =  A.A A2 = [0111].[0101] A2 = [0 +  10 +  10 + 11 +  1] A2 = [1112]Now, B2 = B.B B2 = [0 110].[0 110] B2 = [ 100 1] A2 - B2 = [2113] ......(ii)from equation (i) and (ii), we get(A  +  B)(A  B)  A2  B2


10. Find the value of x,if[1x1][1322511532][12x]=0.

Ans: Given: Matrix equation.


Product of matrix is possible if number of rows of matrix is equal to number of columns of another matrix.


[1x1]1 × 3[1322511532]3 × 3[12x]3 × 1 =  0. [1 +  2x  +  153  +  5x  +  32 +  x  +  2]1 × 3[12x]3 × 1 =  0 [16 +  2x5x  + 62 +  x  +  2]1 × 3[12x]3 × 1 =  0 [16 +  2x  + 2.(5x  +  6)  +  (x  +  4).x]1 × 1 =  0 [x2 +  16x  +  28]1 × 1 =  0 x2 +  16x  +  28  =  0 (x  +  2)(x  +  14)  = 0 x  =  2,  14


11. Show that A=[5312] satisfies the equation A23A7I=0 and hence find the value of A1.

Ans: Given: Matrix A.


First, find A2. Then, substitute the values in the equation. 


Here,

A2 =  A.A A2 = [53 1 2].[53 1 2]


 A2 = [229 31]Now, A2  3A  7I, = [229 31]  3[53 1 2]  7[1001] = [22  15  79  9  0 3  +  3  01 +  6  7]  = [0000] Here, A2  3A  7I  =  0 A 1[A2  3A  7I]  = A 1(0) A 1A.A  3A 1 7A 1I  =  0 IA  3I  7A 1 =  0  7A 1 =  A  +  3I A 1 =  17[ 2 315]


12. Find the matrix A satisfying the matrix equation[2132]A[3253]=[1001].

Ans: Given: Matrix equation.


Product of matrix is possible if number of rows of matrix is equal to number of columns of another matrix.


[2132]2 × 2A[ 325 3]2 × 2 = [1001]2 × 2Let, A  = [abcd]2 × 2 [2132]2 × 2[abcd]2 × 2[ 325 3]2 × 2 = [1001]2 × 2 [2a  +  c2b +  d3a  +  2c3b  + 2d][ 325 3] = [1001] [ 6a  3c  +  10b  + 5d4a  +  2c  6b  3d 9a  6c  +  15b +  10d6a  +  4c  9b  6d] = [1001]  6a  3c  +  10b  +  5d  =  1 ......(i) 4a  +  2c  6b  3d  =  0 .......(ii)  9a  6c  +  15b  +  10d  =  0 .......(iii) 6a  +  4c  9b  6d  =  1 ......(iv)add equation (i) and (iv),c  +  b  d  =  2 d  =  c  +  b  2 ......(v)add (ii) and (iii), we get 5a  4c  +  9b  +  7d  =  0add (vi) and (iv), d  =  1  afrom equation (v) and (vii), we get a  =  3  b  c .....(viii)use a and d in equation (iii), we get 9(3  b  c)  6c  +  15b  +  10( 2  +  b  +  c)  =  0  27  +  9b  +  9c  6c  +  15b  20  + 10b  +  10c  =  0 34b  +  13c  =  47 .....(ix)use a and d in eq(ii), we get 4(3  b  c)  +  2c  6b  3(b  +  c  2)  =  0 12  4b  4c  +  2c  6b  3b  3c  +  6  =  0  13b  5c  =  18 ......(x)solving equation (ix) and (x), we get b  =  1 and c  =  1and a  =  3  1  1  =  1, d  =  1  1  =  0 A  = [1110]


13. Find A,if[413]A=[484121363].

Ans : Given: Matrix equation.


First, find the order of matrix using matrix multiplication.


Let A  = [xyz]1 × 3[413]3 ×1[xyz]1 × 3 = [ 484 121 363]3 × 3 [4x4y4zxyz3x3y3zm] = [ 484 121 363] 4x  =  4, x  =  1 4y  =  8, y  =  2 4z  =  4, z  =  1 A  = [ 121]


14. If A=[341120]andB=[212124], then verify 

Ans: Given: Matrices A and B.


Substitute the matrix A and B in the equation. Use matrix multiplication.


Here,

BA  = [212124]2 × 3[3 41120]3 × 2BA  = [11 713 2]now, (BA).(BA)  = [11 713 2].[11 713 2] (BA)2 = [30 63117 87]As, B2 is not possible.


Therefore, (BA)2  B2A2.


16. Show by an example that for 

Ans : Given:  0, B  0.


Consider matrix A and B such that  0, B  0.


Let us consider that,


A  = [0 402]  0 and B  = [3500]  0 AB  = [0000] =  0.


17. Given, A=[240396]andB=[142813].Is(AB)=BA?

Ans: Given: Matrix A and B.


Substitute the matrix A and B in the equation. Use matrix multiplication.


AB  = [240396].[142813]AB  = [104027102](AB)'  = [102740102] .....(i)now, B'  = [121483] and A'  = [234906]B'A'  = [102740102] .....(ii)from equation (i) and (ii), we get (AB)'  =  B'A'


18. Solve for xandy,x[21]+y[35]+[811]=0.

Ans: Given: Matrix equation.


Use matrix algebra to find x and y.


Here,x[21] +  y[35] + [ 8 11] =  0 [2xx] + [3y5y] + [ 8 11] = [00] [2x  +  3y  8x  +  5y  11] = [00] 2x  +  3y  =  8 .....(i) x  +  5y  =  11 .....(ii)from equation (i) and (ii), we getx  =  1 and y  =  2.


19. If XandYare2×2 matrices, then solve the following matrix equations for XandY,2X+3Y=[2340],3X+2Y=[2215].

Ans: Given: X and Y are 2 × 2 matrices.


Solve the equation using matrix algebra.


Here, 


2X  +  3Y  = [2340] .....(i) 3X  +  2Y  = [ 221 5] .....(ii)Subtract equation (i) from (ii), we get(3X  +  2Y)  (2X  +  3Y)  = [ 2  22  31  4 5  0] Y  = [ 4 1 3 5] .....(iii)now add (i) and (ii), 5X  +  5Y  = [055 5] X  +  Y  = [011 1] .....(iv)now add (iii) and (iv),(X  Y)  +  (X  +  Y)  = [ 402 6] X  = [ 20 1 3]substituting in equation (iv), we get[ 20 1 3] +  Y  = [011 1] Y  = [2122] X  = [ 20 1 3] and Y  = [2122].


20. If A=[35]andB=[73], then find a non-zero matrix C such that AC=BC.

Ans: Given: A  = [35] and B  = [73].


Consider a matrix with defined order. Then, substitute in the given condition.


Here, 


A  = [35] and B  = [73].


Let, 


C  = [xy]2 × 1AC  = [35][xy] AC  = [3x  +  5y] now, BC  = [73][xy] BC  = [7x  +  3y]Since, AC  =  BC, [3x  +  5y] = [7x  +  3y] 3x  +  5y  =  7x  +  3y x  = 12y y  =  2x C  = [x2x]


Considering the order × 1, 2 × 2, 2 × 3,.... of C


We get,C  = [x2x][xx2x2x]..In general,C  = [k2k][kk2k2k]..where, k is any real number.


21. Give an example of matrices A,BandC, such that AB=AC,whereA is non-zero matrix 

Ans: Given: Matrices A, B and C.


Consider matrices A, B and C, such that AB  =  AC and B  C.


Let us consider the matrices, A, B and C.


A = [1000], B = [2340] and C = [2343] AB = [1000][2340]


 AB = [2300]now, AC  = [1000][2343] AC = [2300] AB  =  AC.


22. If A=[1221],B=[2334]andC=[1010], verify (i)(AB)C=A(BC).

Ans: Given: Matrices A, B and C.


Consider left and right hand side of equation. Then, substitute the matrices and verify.

Here,

AB  = [12 21][233 4] AB  = [85 1 10](AB)C  = [8 5 1 10][10 10]


 (AB)C  = [13090] .....(i)Now,(BC)  = [233 4][10 10] BC  = [ 1070]A(BC)  = [12 21][ 1070] A(BC)  = [13090]


(ii)A(B+C)=AB+AC.

Ans: Given: Matrices A, B and C.


Consider left and right hand side of equation. Then, substitute the matrices and verify.

Here,

(B  +  C)  = [233 4] + [10 10] (B  +  C)  = [332 4]A.(B  +  C)  = [12 21][332 4] A.(B  +  C)  = [7 5 4 10]now,AB  = [12 21][233 4] AB  = [8 5 1 10]AC  = [12 21][10 10] AC  = [ 10 30]


AB  +  AC  = [8 5 1 10] + [ 10 30] AB  +  AC  = [7 5 4 10] .....(ii)from (i) and (ii),A.(B  +  C)  =  AB  +  AC


23. If P=[x000y000z]andQ=[a000b000c], then prove that PQ=[xa000yb000zc]=QP.

Ans: Given: Matrices P and Q.


Use matrix multiplication. Then, compare P and Q.


PQ  = [x000y000z][a000b000c] PQ  = [xa000yb000zc] .....(i)QP  = [a000b000c][x000y000z] QP  = [xa000yb000zc] .....(ii) from equation (i) and (ii),PQ =  QP.



24. If [213][101110011][101]=A, then find value of A.

Ans: Given: Matrix equation.


Solve the matrix equation using matrix multiplication.


[213][ 10 1110011][10 1] =  A [ 341][10 1] =  A A  =  [ 4]


25. If A=[21],B=[534876]andC=[121102], then verify that A(B+C)=(AB+AC).

Ans: Given: Matrices A, B and C.


Substitute the matrices in left and right hand side of matrix equation. Then, compare.


B  +  C  = [534876] + [ 121102] B  +  C  = [455978]A(B  +  C)  = [21][455978] .....(i) A(B  +  C)  = [171718]now,AB  = [21][534876] AB  = [181314] AC = [21][ 121102] AC  = [ 144]AB  +  AC  = [171718] .....(ii)from equation (i) and (ii), we get A(B  +  C)  =  AB  +  AC


26.If A=[101213011], then verify that A2+A=(A+I),whereIis3×3 unit matrix.

Ans: Given: Matrix A.


First, find A2. Then, substitute the values in the matrix equation.


A2 =  A.A  A2 = [10 1213011][10 1213011]


 A2 = [1 1 2444224] A2 +  A  = [2 1 3657235] ......(i)now,A(A  +  I)  = [10 1213011]([10 1213011] + [100010001]) A(A  +  I)  = [2 1 3657235] ......(ii)from equation (i) and (ii), we getA2 +  A  =  A(A  +  I)


27.If A=[012434]andB=[401326], then verify that 

(i)(A)=A

Ans: Given: Matrix A.


Substitute the matrix in the given equations.


Here,

A'  = [04 132 4] (A')'  = [0 1243 4] (A')'  =  A


(ii)(AB)=BA

Ans: Given: Matrix A.


Substitute the matrix in the given equations.


Here,

AB  = [3911 15] (AB)'  = [3119 15]B'A'  = [412036][04 132 4] B'A'  = [3119 15] B'A'  =  (AB)'


(iii)(kA)=(kA).

Ans: Given: Matrix A.


Substitute the matrix in the given equations.


Here,

(kA)  = [0 k2k4k3k 4k] (kA)'  = [04k k3k2k 4k]kA'  = [04k k3k2k 4k] kA'  =  (kA)'


28.If A=[124156]andB=[126473], then verify that 

(i)(2A+B)=2A+B

Ans: Given: Matrices A and B.


Substitute the matrices A and B. Then, use matrix algebra.


Here,

(2A  +  B)  = [24821012] + [126473] 2A  +  B  = [361461715] (2A  +  B)'  = [314176615]now,2A'  +  B'  =  2[145216] + [167243] 2A'  +  B'  = [314176615] 2A'  +  B =  (2A  +  B)'


(ii)(AB)=AB.

Ans: Given: Matrices A and B.


Substitute the matrices A and B. Then, use matrix algebra.


Here,

 B  = [124156]  [126473] = [00 2 3 23] (A  B)'  = [0 2 20 33]now,A'  B'  = [145216]  [167243] A'  B'  = [0 2 20 33] A'  B'  =  (A  B)'


29.Show that AAandAA are both symmetric matrices for any matrix A.

Ans: Given: Matrix A.


For symmetric matrix A'  =  A and for skew symmetric matrix A'  =  A.


Let


X  =  A'A X'  =  (A'A)' X'  =  A'(A')' X'  =  A'A  X'  =  X A'A is a symmetric matrixY  =  AA' Y'  =  (AA')' Y'  =  (A')'A' Y'  =  AA' Y'  =  Y AA' is symmetric matrix.


30.Let AandB be square matrices of order 3×3.Is(AB)2=A2B2? Give reasons.

Ans: Given: A and B are square matrices.


Use the matrix multiplication. Then find the condition for which (AB)2 = A2B2.


Here, A and B are square matrices.


(AB)2 =  AB.AB (AB)2 =  AABB (AB)2 = A2B2 (AB)2 = A2B2 is true, when AB  =  BA.


31. Show that, if A and B are square matrices such that AB=BA, then (A+B)2=A2+2AB+B2.

Ans. Given: A and B and AB =  BA.


Use (A  +  B)2 =  (A  +  B).(A  +  B). Then , use matrix algebra.


Here,AB  =  BA(A  +  B)2 =  (A  +  B)(A  +  B) (A  +  B)2 = A2 +  AB  +  BA  + B2 (A  +  B)2 = A2 +  AB  +  AB  + B2 (A  +  B)2 = A2 +  2AB  + B2


32. If A=[1213],B=[4015],C=[2012],a=4andb=2, then show that

(i)A+(B+C)=(A+B)+C

Ans: Given: Matrices A, B and C.


Substitute the matrices A, B and Cin the matrix equation.


Here,

A  +  (B  +  C)  = [1213] + [1213] A  +  (B  +  C)  = [7216](A  +  B)  +  C  = [5208] + [201 2] (A  +  B)  +  C  = [7216] A  +  (B  +  C)  =  (A  +  B)  +  C


(ii)A(BC)=(AB)C

Ans: Given: Matrices A, B and C.\


Substitute the matrices A, B and Cin the matrix equation.


Here,

BC  = [4015][2012] BC  = [807 10]A(BC)  = [12 -  13][807 10]A(BC)  = [22201330]now,(AB)  = [1213][4015] (AB)  = [610115](AB)C  = [610115][2012] (AB)C  = [22201330](iii)(a+b)B=aB+bB

Ans: Given: Matrices A, B and C.


Substitute the matrices A, B and Cin the matrix equation.


Here,

(a  +  b)B  =  (4  2)[4015] (a  +  b)B  = [80210]aB  +  bB  =  4B  2B aB  +  bB  = [160420]  [80210] aB  +  bB  = [80210] aB  +  bB  = (a  +  b)B


(iv)a(CA)=aCaA

Ans: Given: Matrices A, B and C.


Substitute the matrices A, B and Cin the matrix equation.


Here,

(C  A)  = [1 22 5] a(C  A) = [4 88 20]aC  aA  = [804 8]  [48 412] aC  aA  = [4 88 20] aC  aA  =  a(C  A)


(v)(AT)T=A

Ans: Given: Matrices A, B and C.


Substitute the matrices A, B and Cin the matrix equation.


Here,

AT = [12 13]T = [1 123](AT)T = [12 13]T =  A


(vi)(bA)T=bAT

Ans: Given: Matrices A, B and C.


Substitute the matrices A, B and Cin the matrix equation.


Here,

(bA)T = [ 2 42 6]T = [ 22 4 6]AT = [1 123] bAT = [ 224 6] bAT =  (bA)T


(vii)(AB)T=BTAT

Ans: Given: Matrices A, B and C.


Substitute the matrices A, B and Cin the matrix equation.


Here,

AB  = [12 13][4015] = [610 115] (AB)T = [611015] BTAT = [4105][1 123] = [611015] BTAT = (AB)T



(viii)(AB)C=ACBC

Ans: Given: Matrices A, B and C.


Substitute the matrices A, B and Cin the matrix equation.


Here,

(A  B)  = [ 32 2 2] (A  B)C  = [ 4 4 64]AC  = [12 13][201 2] = [4 41 6]BC  = [4015][201 2] = [807 10] AC  BC  = [ 4 4 64] AC  BC  =  (A  B)C


(ix)(AB)T=ATBT

Ans: Given: Matrices A, B and C.


Substitute the matrices A, B and Cin the matrix equation.


Here,

(A  B)T = [ 32 2 2 ]T = [ 3 22 2 ]AT  BT = [1 123 ]  [4105] AT BT = [ 3 22 2 ] AT  BT =  (A  B)T


33.If A=[cosqsinqsinqcosq], then show that A2=[cos2qsin2qsin2qcos2q].

Ans: Given: Matrix A.


Use A2 =  A.A. Then, substitute matrix A.


A2 =  A.A A2 = [cos2qsin2q sin2qcos2q][cos2qsin2q sin2qcos2q] A2 = [cos2 sin2qcosqsinq  +  sinqcosq cosqsin sinqcosq sin2q  + cos2q] A2 = [cos2q2sinqcosq 2sinqcosqcos2q] A2 = [cos2qsin2q sin2qcos2q].


34.If A=[0xx0],B=[0110]andx2=1, then show that (A+B)2=A2+B2.

Ans: Given: Matrices A, B and x2 =  1.


Substitute the matrices in equation. Use matrix algebra.


(A  +  B)  = [0 x  + 1x  +  10] (A  + B)2 = [0 x  +  1x  +  10][0 x  +  1x  +  10] (A  +  B)2 = [1  x2001  x2]now,A2 = A.A A2 = [0 xx0][0 xx0] A2 = [ x200x2]B2 =  B.B B2 = [0110][0110] B2 = [1001] A2 + B2 = [1  x200 x2] (A  +  B)2 = A2 + B2


35. Verify A2=I,whereA=[011434334].

Ans: Given: Matrix A.


First, find A2 using A2 =  A.A. 


Then, compare it with identity matrix.


A2 =  A.A A2 = [0114 343 34][0114 343 34] A2 = [100010001] A2 =  I.


36. Prove by mathematical induction that (A)n=(An)where,nI^ N for any square matrix A.

Ans: Given: Square matrix A.


Consider P(1) and P(k) be true. Then, prove that P(k  +  1) be true.

Let,

P(n) : (A')n = (An) be true.P(1) : A'  =  A P(1) be true.now, P(k) be true,P(k) : (A')k =  (Ak)now, P(k  +  1)P(k  +  1) : (A')k  +  1 = (Ak  +  1) = (Ak  +  1)P(k  +  1) : (A')k.(A')1 =  [Ak  +  1]P(k  +  1) : (Ak)'  =  (A)'  =  [Ak  + 1]P(k  +  1) : (A.Ak)'  = Ak  +  1]P(k  +  1) : [Ak  + 1] =  [Ak  +  1] P(k  +  1) is true.


37. Find inverse, by elementary row operations (if possible), of the following matrices.

(i)[1357]

Ans: Given: Matrices.


For elementary row operations use A  =  IA.


Here, 

A  = [1357]


For elementary row operation, 


A  =  IA. [1357] = [1001]A [13022] = [1051]A       [operation: R2 R2 +  5R1] [1301] = [10522122][operation: R2 122R2] [1001] = [722 322522122][operation: R1 R1  3R2]  [1001] = 122[7 351]A I  = A 1A A 1 = 122[7 351]


(ii)[1326]

Ans: Given: Matrices.


For elementary row operations use A  =  IA.


Here,

A  = [1 326]


For elementary row operation, 

A  =  IA [1 326] = [1001]A [1 300] = [1021]A       [operation: R2  R2 +  2R1]


All zeros in a row represent that A 1 does not exist.


38. If [xy4z+6x+y]=[8w06], then find the values of x,y,zandw.

Ans: Given: Matrix equation.


If two matrix are equal, then aij = bij.


Here,

[xy4z  +  6x  +  y] = [8w06] x  +  y  =  6 and xy  =  8 (6  y)y   =  8 y2  6y  +  8  =  0 y2  4y  2y  +  8  =  0 (y  2)(y  4)  =  0 y  =  2 or y  =  4 x  =  6  2  =  4 x  =  6  4  =  2now, z  +  6  =  0 and w  =  4 x  =  2, y  = 4 or x  =  4, y  =  2, z  =  6 and w  =  4.


39. If A=[15712]andB=[9178], then find a matrix C such that 3A+5B+2C is a null matrix.

Ans: Given: Matrices A and B.


Substitute the matrices A and B. Then, use matrix algebra.


Here,

Let, C  = [abcd]3A  +  5B  +  2C  =  0 [3152136] + [4553540] + [2a2b2c2d] =  0 [48 +  2a20 +  2b56 +  2c76 +  2d] = [0000] 2a  +  48  =  0 or a  =  24 20  +  2b  =  0 or b  =  10 56  +  2c  =  0 or c  =  28 76  +  2d  =  0 or d  =  38 C  = [ 24 10 28 38]


40. If A=[3542],thenA25A14I. Hence, obtain A3.

Ans: Given: Matrix  A.


First, calculate A2using A2 =  A.A and then A3.


A2 =  A.A A2 = [3 5 42][3 5 42] A2 = [29 25 2024] A2  5A  14I  = [29 25 2024]  [15 25 2010]  [140014] A2  5A  14I  = [0000] A2  5A  14I  =  0 A3  5A2  14A  =  0 A3 =  5A2 +  14A A3 = [145 125 100120] + [42 70 5628] A3 = [187 195 156148]


41. Find the values of a,b,candd,if3[abcd]=[a612d]+[4a+bc+d3]

Ans: Given: Matrix equations.


Solve the equation using matrix algebra.


3[abcd] = [a6 12d] + [4a  +  bc  +  d3] [3a3b3c3d] = [a  +  46  +  a  +  bc  +  d  12d  +  3]


 3a  =  a  +  4 or a  =  2 3b  =  6  +  a  +  b or b  =  4 2c  =  c  +  d  1 or c  =  1 a  =  2, b  =  4, c  =  1 and d  =  3


42. Find the matrix A such that [211034]A=[181012592215].

Ans: Given: Matrix equation.


Consider the matrix with defined order. Then, use matrix multiplication.


Here,

[2110 34]3 × 2A  = [1 8 101 2 592215]3 × 3


Therefore, the possible order of A is 2 × 3.


So, A  = [abcdef] [2 110 34][abcdef] = [1 8 101 2 592215] [2 d2 e2 fa  +  0.db  + 0.ec  +  0.f 3a  +  4d 3b  +  4e 3c  +  4f] = [ 1 8 101 2 592215] [2 d2 e2 fbc 3a  +  4d 3b  +  4e 3c  +  4f] = [ 1 8 101 2 592215] a  =  1, b  =  2, c  =  5and, 2a  d  =  1 or d  =  3 2 e  =  8 or e  =  4 2c  f  =  10 or f   =  0


 A  = [1 2 5340]


43. If A=[1241], then find A2+2A+7I.

Ans: Given: Matrix A.


First, find A2 using A2 =  A.A. 


Then, substitute in the equation A2 +  2A  +  7I.


A2 =  A.A A2 = [1241][1241] A2 = [9489] A2 +  2A  +  7I  = [9489] + [2482] + [7007] A2 +  2A  +  7I  = [1881618]


44. If A=[cosαsinαsinαcosα]andA1=A, then find the value of \alpha .

Ans:Given: Matrix A and A 1 =  A'.


Use basic identity AA 1 =  AA'. A1 =  A'AA 1 =  AA'


I  = [cos\alpha sin\alpha sin\alpha cos\alpha ][cos\alpha sin\alpha sin\alpha cos\alpha ][1001] = [cos2\alpha   +  sin2\alpha sin\alpha sin\alpha sin2\alpha + cos2\alpha ] cos2\alpha   +  sin2\alpha  =  1


This is true for all real values of \alpha .


45. If matrix [0a32b1c10] is a skew-symmetric matrix, then find the value of a,bandc.

Ans: Given: Skew symmetric matrix.


For skew symmetric matrix A'  =  A.


A'  =  A [02cab1310] =  [0a32b 1c10] [02cab1310] = [0 a 3 2 b 1 c 10] a  =  2, b  =  0 and c  =  3.


46. If P(x)=[cosxsinxsinxcosx], then show that P(x).P(y)=P(x+y)=P(y).P(x).

Ans: Given: Matrix P(x).


Replace x with y and (x  +  y) in matrix. Then, use matrix multiplication.


P(x)  = [cosxsinx sinxcosx], P(y)  = [cosysiny sinycosy]P(x).P(y)  = [cosxsinx sinxcosx][cosysiny sinycosy]P(x).P(y)  = [cosx.cosy  -  sinx.sinycosxsiny  +  sinx.cosy sinxcosy  -  cosx.siny sinx.siny  + cosx.cosy]P(x).P(y) = [cos(x  +  y)sin(x  +  y) sin(x   +  y)cos(x  +  y)]now,P(y).P(x)  = [cosysiny sinycosy][cosxsinx sinxcosx]P(y).P(x)  = [cosy.cosx  -  siny.sinxcosysinx  +  siny.cosx sinycosx  -  cosy.sinx siny.sinx  + cosy.cosx]P(x).P(y)  = [cos(x  +  y)sin(x  +  y) sin(x   +  y)cos(x  +  y)] P(x).P(y)  =  P(x  +  y)  =  P(y).P(x)


47. If A is square matrix such that A2=A, then show that (I+A)3=7A+I.

Ans: Given: Matrix A and A2 =  A.


Use (I  +  A)2 =  (I  +  A)(I  +  A). Then, use matrix algebra.


Here, A2 =  A(I  +  A)(I  +  A)  = I2 +  IA  +  AI  + A2 (I  +  A)(I  +  A)  = I2 +  2AI  + A2(I  +  A)(I  +  A)  = I2 +  2AI  +  A


(I  +  A)(I  +  A)  =  I  +  3ANow,


(I  +  A)(I  +  A)(I  +  A)  =  (I  +  A)(I  +  3A) (I  +  A)(I  +  A)(I  +  A)  = I2 +  3AI  +  AI  +  3A2 (I  +  A)(I  +  A)(I  +  A)  = I2 +  4AI  +  3A (I  +  A)(I  +  A)(I  +  A)  =  I  +  7A (I  +  A)3 =  7A  +  I


48. If A,B are square matrices of same order and B is a skew symmetric matrix, then show that ABA is skew-symmetric.

Ans: Given: Matrices A, B and B'  =  B.


Use transpose identities of matrix.


(A'BA)'   =  A'B'A (A'BA)'  =  A'( B)A  (A'BA)'  =  A'BA A'BA is skew - symmetric.

Long Answer Type Questions.

49. If AB=BAfor any two square matrices, then prove by mathematical induction that (AB)n=AnBn.

Ans: Given: AB  =  BA.


Consider P(n) and P(k)be true. Then, prove P(k  +  1) is true.


P(n) : (AB)n = AnBnP(1) : (AB)1 = A1B1


 P(1) : AB  =  AB P(1) is true.Now,P(k) : (AB)k = AkBk P(k) is true.also,P(k  +  1) : (AB)k  +  1 = Ak  +  1Bk  +  1P(k  +  1) : (AB)k(AB)  = Ak  +  1Bk  +  1P(k  +  1) : AkBk(BA)  = Ak  +  1Bk  +  1P(k  +  1) : Ak  +  1.Bk  +  1 = Ak  +  1Bk  +  1P(k  +  1) : (AB)k  +  1 = Ak  + 1Bk  +  1 P(k  +  1) is true for all n  N, where P(k) is true.By mathematical induction (AB)  = AnBn is true for all n  N.


50. Find x,yandz,ifA=[02yzxyzxyz]satisfiesA=A1.

Ans: Given: Matrix A and A'  = A 1.


First, find transpose matrix. Then, use AA'  =  I.


A  = [02yzxy zx yz] and A'  = [0xx2yy yz zz]A'  = A 1 AA'  =  AA 1 AA'  =  I  [02yzxy zx yz][0xx2yy yz zz] = [100010001] [4y2 + z22y2  z22y2 + z22y2  z2x2 + y2 + z2x2  y2  z2 2y2 + z2x2  y2  z2x2 + y2 + z2] = [100010001] 2y2  z2 =  0 or 2y2 = z2 4y2 + z2 =  1 2z2 + z2 =  1 z  = ± 13 y2 = z22 y  = ± 16now, x2 + y2 + z2 =  1 x2 =  1  y2  z2 x2 =  1  16  13 x  = ± 12  x  = ± 12 , y  = ± 16 and z  = ± 13.


51. If possible, using elementary row transformations, find the inverse of the following matrices.

(i)[213531323]

Ans: Given: Matrices.


For inverse of matrices use A  =  IA.


Here,

A  =  IA[2 13 531 323] = [100010001]A [2 13 324 323] = [100110001]A        [R2  R2 + R1] [2 13 32400 1] = [100110 1 11]A        [R3  R3  R2] [ 117 32400 1] = [210110 1 11]A        [R2  R2 + R1] [ 1170 1 1700 1] = [210 5 20 1 11]A        [R2  R2 -  3R1] [ 10 100 1 17001] = [ 3 10 5 2011 1]A        [R1  R1 + R2 and R3   1.R3] [ 1000 10001] = [79 101215 1711 1]A        [R1  R1 +  10R3 and R2  R2 +  17R3] [100010001] = [ 7 910 12 151711 1]A        [R1   1.R1 and R2   1.R2]

 Inverse of A  = [ 7 910 12 151711 1].


(ii)[233122111]

Ans: Given: Matrices.


For inverse of matrices use A  =  IA.


Here,

A  =  IA [23 3 1 2211 1] = [100010001]A [01 10 1111 1] = [10 2011001]A     [R2  R2 + R3 and R1  R1  2R3] [01 1000111] = [10 2212001]A        [R2  R2 + R1]


(iii)[201510003]

Ans: Given: Matrices.


For inverse of matrices use A  =  IA.


Here,

A  =  IA [20 1510003] = [100010001]A [20 1311013] = [100110001]A         [R2  R2  R1] [20 1112212] = [100210101]A         [R2  R2  R1 and R3  R3 + R1] [20 10152413] = [1005210101]A         [R3  R3 + R1 and R2  R2  12R1]


 [20 10152003] = [1005210001]A         [R3  R3  2R1] [20 101520012] = [100521052 11]A[R3  R3  R2] [10 120152001] = [120052105 22]A[R1  12R1 and R3  2R3] [100010001] = [3 1115655 2 2]A         [R1  R1 + 12R3 and R2  R2  52R3] Inverse of A is [3 1115655 2 2].


52. Express the matrix [231115412] as the sum of symmetric and skew-symmetric matrix.

Ans : Given: Matrix A.


Sum of symmetric and skew-symmetric matrix is given by A  = A  +  A'2 +  A'2.Where A  +  A'2is symmetric and  A'2is skew-symmetric matrix.


A  = [2311 1541 2] and A'  = [2143 11122] A  +  A'2 = 12[4454 23534] A  +  A'2 = [22522 13252322]also, A'2 = 12[02 3 2013 10]  A'2 = [01 32 101232 120] A  +  A'2 +  A'2 = [22522 13252322] + [01 32 101232 120].

Objective Type Questions.

53. The matrix P=[004040400] is a

(A)Square matrix

(B)Diagonal matrix

(C)Unit matrix

(D)None of these

Ans: Given: Matrix P.

Matrix can be square, diagonal, unit depending on the order and elements of matrix.


Since, the order of matrix P is 3 × 3. The number of rows and columns are same.


Therefore, matrix P is square matrix.


Correct Answer. A


54. Total number of possible matrices of order 3×3 with each entry 2or0is,

(A)9

(B)27

(C)81

(D)512

Ans: Given: Order of matrix.


Total number of elements in matrices is n.Then, total number of matrices with any two entries will be 2n.


Therefore, total number of possible matrices of order 3 × 3 with each entry 2 or 0 is 29 or 512.


Correct Answer: D


55. [2x+y4x5x74x]=[77y13yx+6],then the value of x+y is

(A)x=3,y=1

(B)x=2,y=3

(C)x=2,y=4

(D)x=3,y=3

Ans:Given: Matrix equation.


Use equality of two matrices. Then, compare the elements.


Here,4x  =  x  +  6 or x  =  2also,4x  =  7y  13 y  =  3 x  +  y   =  2  +  3x  +  y  =  5


56. If A=1π[sin1(xπ)tan1(xπ)sin1(xπ)cot1(πx)]andB=1π[cos1(xπ)tan1(xπ)sin1(xπ)tan1(πx)],thenABis equal to 

(A)I

(B)0

(C)2I

(D)12I

Ans: Use matrix algebra to fins difference of two matrices.


 B  = [1\pi [sin -  1(x\pi )  +  cos - 1(x\pi )]1\pi [tan -  1(x\pi )  tan -  1(x\pi )]1\pi [sin -  1(x\pi )  sin -  1(x\pi )]1\pi [cot - 1(\pi x) +  tan -  1(\pi x)]] A  B  = [120012] A  B  = 12[1001] A  B  = 12I


Correct Answer. D


57.If AandB are two matrices of the order3×mand3×n,respectivelyandm=n, then order of matrix (5A2B)is

(A)m×3

(B)3×3

(C)m×n

(D)3×n

Ans: Given: Order of matrices A and B.


Matrix of same order can be added or subtracted.


For, m  =  n. The order of matrix A and B can be 3× m or 3 × n.


Therefore, the order of matrix (5 2B) is 3 ×n.


Correct Answer. D


58. If A=[0110],thenA2 is equal to

(A)[0110]

(B)[1010]

(C)[0101]

(D)[1001]

Ans: Given: Matrix A.

Use matrix multiplication A2 =  A.A.


A2 =  A.A A2 = [0110][0110] A2 = [1001]


Correct Answer: D


59. If matrix  is equal to

(A)I

(B)A

(C)0

(D)None of these

Ans: Given: Matrix A  = [aij]2 × 2.


Consider a matrix A according to given conditions. Then, use A2 =  A.A.


Let,A  = [0110]A2 =  A.A A2 = [0110][0110] A2 = [1001] A2 =  I


Correct Answer: A


60. The matrix [100020004] is  a

(A)Identity matrix

(B)Symmetric matrix

(C)Skew-symmetric matrix

(D)None of these

Ans: Given: Matrix.


Take transpose of matrix. For symmetric matrix A'  =  A.


A  = [100020004]


A'  = [100020004] A'  =  A.


Correct Answer: B


61. The matrix [05850128120] is a

(A)Diagonal matrix

(B)Symmetric matrix

(C)Skew-symmetric matrix

(D)Scalar matrix

Ans: Given: Matrix.


Take transpose of matrix. For skew-symmetric matrix A'  =  A.


B  = [0 585012 8 120]B'  = [05 8 50 128120] B'  =  B.


Correct Answer: C


62. If A is matrix of order m×nandB is a matrix such that ABandBA are both defined, then order of matrix B is

(A)m×m

(B)n×n

(C)n×m

(D)m×n

Ans: Given: Matrix A and B.


Consider matrix B with order × q. Then, check where AB' and B'A are defined.


A  =  [aij]×n and B  =  [bij]× q B'  =  [bij]× pfor n  =  q, AB' is defined.for p  =  m, B'A is defined. Order of matrix B is m × n.


Correct Answer: D


63. If AandB are matrices of same order, then (ABBA) is a

(A)Skew-symmetric matrix

(B)Null matrix

(C)Symmetric matrix

(D)Unit matrix

Ans: Given: Matrices A and B of same order.


Take transpose of the matrix (AB'  BA').


X  = (AB'  BA')X' = (AB'  BA') X'  =  (AB')'  (BA')' X'  =  (B')'A'  (A')'B' X' =  BA'  AB' X'  =  (AB'  BA') X'  =  X (AB'  BA') is skew - symmetric matrix.


Correct Answer: A


64. If A is a square matrix such that A2=I,then(AI)3+(A+I)37A is equal to

(A)A

(B)IA

(C)I+A

(D)3A

Ans: Given: Matrix A and A2 =  I.


Use a3 + b3 =  (a  +  b)(a2 + b2  ab).


(A  I)3 +  (A  +  I)3  7A  =  [(A  I)  +  (A  +  I){ (A  I)2 +  (A  + I)2  (A  I)(A  +  I)} ]  7A (A  I)3 +  (A  +  I)3  7A  =  [(2A){ A2 + I2  2AI  + A2 + I2 +  AI  (A2  I2)} ]  7A (A  I)3 +  (A  +  I)3  7A  =  2A[I  + I2 +  I  + I2  A2 + I2 7A (A  I)3 +  (A  +  I)3  7A = 2A[5I  I]  7A (A  I)3 +  (A  +  I)3  7A = 8AI  7AI (A  I)3 +  (A  +  I)3  7A = AI (A  I)3 +  (A  +  I)3  7A = A


Correct Answer: A


65. For any two matrices AandB, we have

(A)AB=BA

(B)

(C)AB=O

(D)None of these

Ans:Given: Matrices A and B.


First, find which conditions holds always true for matrices A and B.


The conditions AB  =  BA, AB  BA, AB  =  O are not always true for two matrices A and B.


Correct Answer: D


66. On using elementary column operation  in the following matrix equation [1324]=[1101][3124], we have

(A)[1504]=[1122][3124]

(B)[1504]=[1101][3502]

(C)[1520]=[1301][3124]

(D)[1520]=[1101][3520]

Ans: Given: Matrix equation.


Use the elementary column operation C2  C2  2C1 in matrix equation.


Applying C2  C2  2C1 on first product matrix of equation, we get


[1 520] = [1 101][3 520]


Correct Answer: D


67. On using elementary row operation  in the following matrix equation [4233]=[1203][2011], we have

(A)[5733]=[1703][2011]

(B)[5733]=[1203][1311]

(C)[5733]=[1217][2011]

(D)[4257]=[1233][2011]

Ans: Given: Matrix equation.


Use the elementary row operation R1  R1  3R2 in matrix equation.


Applying R1  R1  3R2 on first product matrix of equation, we get


[ 5 733] = [1 703][2011]

Fill in the blanks:

68. _____ matrix is both symmetric and skew-symmetric matrix.

Ans: Given: Matrix is both symmetric and skew-symmetric matrix.


For symmetric matrix A'  =  Aand for skew-symmetric matrix A'  =  A.


Consider a null matrix,

A  = [0000] A'  = [0000] or  [0000] A'  =  A and A'  =  A.


Therefore, null matrix is both symmetric and skew-symmetric matrix.


69. Sum of two skew-symmetric matrices is always ………. Matrix.

Ans: Sum of two skew-symmetric matrices is always skew-symmetric matrix. Consider two matricesA and B. Then,

A'  =  A and B'  =  B  A  B  =  (A  +  B).


70. The negative of matrix is obtained by multiplying it by ……. .

Ans: Consider a matrix A. The negative of matrix is obtained by multiplying it by  1.


  A  =  1[A].


71. The product of any matrix by the scalar …… is the null matrix.

Ans: Consider a matrix, A  = [1024]. 0.A  =  0[1024] =  0.


The product of any matrix by the scalar 0 is the null matrix.


72. A matrix which is not a square matrix is called a ……. Matrix.

Ans: Consider a matrix, A  = [102].


The matrix which is not square is considered as rectangular matrix.


73. Matrix multiplication is ……. over addition

Ans: Consider three matrices A, B and C.


1. A(B  +  C)  =  AB  +  AC2. (A  +  B)C  =  AC  +  BC


Therefore, matrix multiplication is distributive over addition.


74.If A is symmetric matrix, then A3 is a ……… matrix.

Ans:Given: Symmetric matrix A.


For symmetric matrix A'  =  A and for skew-symmetric matrix A'  =  A.


Here,

A'  =  Anow, A3(A3) =  (A')3 (A3) = A3


Therefore, A3 is a symmetric matrix.


75. If A is a skew-symmetric matrix, then A2 is a ……… .

Ans: Given: A'  =  A.


For symmetric matrix A'  =  A and for skew-symmetric matrix A'  =  A.


Here,

A'  =  Anow, A2(A2) =  (A')2 (A2) =  ( A)2 (A2) = A2


Therefore, A2 is a symmetric matrix.


76. If AandB are square matrices of same order, then

(i)(AB)=..........

Ans: Given: Matrices A and B.


Transpose the matrices. Then, use matrix  identities.


Here,

(AB)'  =  B'A'


(ii)(kA)=.......(kisanyscalar)

Ans: Given: Matrices A and B.


Transpose the matrices. Then, use matrix  identities.


Here,

(kA)'  =  kA'


(iii)[k(AB)]=........

Ans: Given: Matrices A and B.


Transpose the matrices. Then, use matrix  identities.


Here,

(AB)'  =  B'A'

Here,

[k(A  B)]'  =  k(A  B)' [k(A  B)]'  =  k(A'  B')


77. If A is a skew-symmetric matrix, then kA is a …….. (where, k is any scalar).

Ans: Given: A'  =  A.


For skew-symmetric matrix A'  =  A and for symmetric matrix A'  =  A.


Here,

A'  =  Aalso, kA(kA)'  =  kA' (kA)'  =  kA' (kA)'  =  k( A) (kA)'  =  (kA)


Therefore, kA is skew-symmetric matrix.


78. If AandB are symmetric matrices, then

(i)ABBAisa.......

Ans: Given: Matrices A and B, A'  =  A and B'  =  B.


For skew-symmetric matrix A'  =  A and for symmetric matrix A'  =  A.


Here,

(AB  BA)'  =  (AB)'  (BA)' (AB  BA)'  =  B'A'  A'B' (AB  BA)'  =  BA  AB (AB  BA)'  =  (AB  BA)


Therefore, AB  BA is a skew-symmetric matrix.


(ii)BA2ABisa......


Ans: Given: Matrices A and B, A'  =  A and B'  =  B.


For skew-symmetric matrix A'  =  A and for symmetric matrix A'  =  A.


Here,

(BA  2AB)'  =  (BA)'  2(AB)' (BA  2AB)'  =  A'B'  2B'A' (BA  2AB)'  =  AB  2BA (BA  2AB)'  =  (2BA  AB)


Therefore, BA  2AB is neither skew-symmetric nor symmetric matrix.


79.If A is symmetric matrix, then BAB is ……

Ans: Given: A'  =  A.


For skew-symmetric matrix A'  =  A and for skew symmetric matrix A'  =  A.


Here,

(B'AB)'  =  [B'(AB)]' (B'AB)'  =  (AB)'(B')' (B'AB)'  =  (B'A')B (B'AB)'  =  B'AB


Therefore, B'AB is a symmetric matrix.


80. If AandB are symmetric matrices of same order, then AB is symmetric if and only if …….

Ans: Given: A and B are two skew symmetric matrices.


For symmetric matrix A'  =  A and for skew symmetric matrix A'  =  A.


Take transpose,

(AB)'  =  B'A' (AB)'  =  ( B)( A)(AB)'  =  BAif, AB  =  BA, then(AB)'  =  AB.


For AB =  BA, AB is symmetric matrix.


81. In applying one or more row operations while finding A1by elementary row operations, we obtain all zeroes in one or more, then A1………..

Ans:While solving the inverse of matrix, if we obtain all zeroes in one or more row. Then, inverse of the matrix does not exist.


Therefore, A 1 does not exist.

True/false:

82. A matrix denotes a number.

Ans: False.


A matrix is defined as the ordered rectangular array which contains numbers or functions.


83. Matrices of any order can be added.

Ans: False.


According to matrix algebra, two  matrices can be added only when they have same order.


 84. Two matrices are equal, if they have same number of rows and same number of columns.

Ans: False.


The two matrices are said to be equal only when they have same elements and same order. Matrices with same number of rows and same number of columns are square matrices.


85. Matrices of different order cannot be subtracted.

Ans:True.


According to matrix algebra, two matrices of same order can be added or subtracted. Therefore, matrices of different order cannot be subtracted.


86. Matrix addition is associative as well as commutative.

Ans: True.


According to properties of matrices, Matrix addition is both associative and commutative.


(A  +  B)  +  C  =  A  +  (B  +  C) and A  +  B  =  B  +  A.


87. Matrix multiplication is commutative.

Ans: False.


According to matrix multiplication, if AB and BAare both defined then, AB  BA. Therefore, matrix multiplication is not commutative.


88. A square matrix where every element is unity is called an identity matrix.

Ans: False.


A matrix is said to be an identity matrix if and only if every diagonal element of matrix is unity. Therefore, square matrix where every element is unity is not an identity matrix.


89. If A and Bare two square matrices of the same order, then A  +  B  =  B  +  A.

Ans: According to properties of matrices, matrix addition of two matrices with same order is commutative.


A  +  B  =  B  +  A,where A and B are square matrices.


90. If AandBare two matrices of same order, then AB=BA.

Ans: False.


According to properties of matrices, addition of two matrices is commutative.


 A  +  ( B)  =  A  B A  B  =  (B  A)  (B  A)  B  A


91. If matrix AB=0,thenA=0orB=0orbothAandB are null matrices.

Ans: False.


For two non-zero matrices A and B of same order. It is possible that A.B  =  0.Therefore, A.B  =  0does not implies that A  =   or B  =  0.


92. Transpose of column matrix is a column matrix.

Ans: False.


Consider a column matrix A  = [123] and A'  = [123].


Therefore, transpose of column matrix is a row matrix.


93. If AandB are two square matrices of the same order, then AB=BA.

Ans: False.


Since, matrix multiplication does not follow commutative law. It is not always true that AB  =  BA.


94. If each of the three matrices of the same order are symmetric, then their sum is a symmetric matrix.

Ans:True.


Consider three matrices A, B and C of same order.


 A'  =  A, B'  =  B and C'  =  C.(A  +  B  +  C)'   =  A'  +  B'  +  C' (A  +  B  +  C)'   =  A  +  B  +  C


Therefore, (A  +  B  +  C) is symmetric matrix.


95. If A and B are any two matrices of the same order, then (AB)'  =  A'B'.

Ans:False.


According to transpose properties of matrices, the transpose of matrix AB is (AB)'  =  B'A'.


96. If (AB)=BA,whereAandB are not square matrices, then number of rows in A is equal to number of columns in B and number of columns in A is equal to number of columns in B.

Ans: Given: (AB)'  =  B'A'.


For multiplication of non-square matrices the product must be defined as per the order of matrix.


True.


Let, matrices A and B with order m × n and p × q respectively.


As, (AB)'  =  B'A' A× n B× q is defined for n  =  p.order of (AB) is m × q. (AB)' is of order q × m. B'A is of order of q × m. (AB)'  =  B'A' is true.


97. If A,BandC are square matrices of same order, then AB=AC always implies thatB=C.

Ans: Given: A, B and C are square matrices.


Consider three matrices such that AB  =  AC. Then, check for equality for B and C.


False.


A  = [1000], B  = [0013] and C  = [0031]AB   = [1000][0013] = [0000]AC  = [0013][0031] = [0000] AB =  AC but B  C.


98.AA is always a symmetric matrix for any matrix A.

Ans: Given: Matrix A.


For skew-symmetric matrix A'  =  A and for symmetric matrix A'  =  A.


True.


For AA',(AA')'  =  (A')'A' (AA')'  =  (AA')


Therefore, AA' is always symmetric matrix.


99. If A=[231142]andB=[234521],thenABandBA are defined and equal.

Ans: Given: Matrices A  and B.


Use matrix multiplication A.B and B.A. Then, check equality of AB and BA..


False.


AB  = [23 1142]2 × 3[234521]3 × 2AB is defined, AB  = [14202225]BA  = [234521]3 × 2[23 1142]2 × 3BA is defined, BA  = [7184133265100] AB  BA.


100.If A is skew symmetric matrix, then A2 is a symmetric matrix.

Ans: Given: A'  =  A.


For symmetric matrix A'  =  A and for skew-symmetric matrix A'  =  A.


True.


Here,

A'  =  Anow, A2(A2) =  (A')2 (A2) =  ( A)2 (A2) = A2


Therefore, A2 is a symmetric matrix.


101.(AB)1=A1B1,whereAandB are invertible matrices satisfying commutative property with respect to multiplication.

Ans: Given: (AB) 1 = A 1B 1.


Use commutative property AB  =  BA of matrix multiplication.\


True.


A and B are invertible matrices,(AB) 1 = (BA) 1(AB) 1 =  (AB) 1 { using, AB =  BA}  B 1A 1 = A1B1


Matrices are the third Chapter of the NCERT Exemplar Solutions for Class 12 Mathematics. The introduction to the Matrix  and its order, its kinds, properties, operations are done on Matrices, multiplication of two Matrices, Symmetric and Skew-Symmetric Matrices, transpose of the Matrix , invertible Matrix , and other topics are addressed in this Chapter. Learners use theNCERT Exemplar for Class 12 Maths Chapter 3 - Matrices (Book Solutions) PDF from the Vedantu site to solve all their doubts instantly and get the right answers.

 

The National Council for Educational Research and Training (Ncert) publishes the Ncert Exemplar. These books are designed for students in grades 6 through 12. NCERT Exemplar Books are ideal study materials for students in Classes 8 through 12.  These questions are written in such a way that students can emphasize establishing a solid foundation as well as expanding their knowledge, allowing them to gain a greater understanding of the concepts.

 

Chapter 3 of the NCERT Exemplar Class 12 Maths solutions One of the most fascinating Chapters to study is Matrices. Matrices are a type of Mathematical tool that aids in the solution of linear equations. Matrices are faster and more efficient than the traditional direct technique of solving problems. Matrices are utilized in a variety of fields other than Mathematics, such as economics, genetics, and so on. The NCERT Exemplar Class 12 Maths Chapter 3 answers cover a wide range of Matrix -related subjects, including types, operations, and invertible Matrices.


WhatsApp Banner

FAQs on NCERT Exemplar for Class 12 Maths Chapter-3 (Book Solutions)

1. What are the various applications of studying the Chapter 3 Matrices?

For some pupils, the Matrix  is a fascinating and challenging subject. It is a high-scoring Chapter in the NCERT Class 12 Maths solutions that a student can use to improve their Exam scores. However, the goal should not be solely to increase one's score. Students should instead concentrate on comprehending the topic and its applications. NCERT Exemplar Solutions Chapter 3 in Class 12 Maths is employed not only in linear equations but also has a wide range of applications in higher education. It is employed in genetics, current psychology, economics, and other fields, so pupils in Class 12th benefit from starting from the beginning.

2. What are the various sub topics covered in the NCERT Exemplar for Class 12 Maths Chapter 3 - Matrices (Book Solutions)?

The various sub topics discussed in the NCERT Exemplar for Class 12 Maths Chapter 3 - Matrices (Book Solutions) are:

  • 3.1 The Beginning

  • Matrix  3.2

  • 3.2.1 Matrix  order

  • 3.3 Different types of Matrices

  • 3.4 Multiplication and division of Matrices

  • 3.4.1 Matrices are added

  • 3.4.2 Scalar multiplication of a Matrix 

  • 3.4.3 Matrix  addition properties

  • 3.4.4 Matrix  scalar multiplication properties

  • 3.4.5 Matrices multiplication

  • 3.4.6 Properties of Matrix  Multiplication

  • 3.5 Matrix  transposition

  • 3.5.1 Properties of Matrices in transposition

  • Symmetric and skew-symmetric Matrices (section 3.6)

  • 3.7 Matrix  operations at a basic level

  • Invertible Matrices (3.8)

  • 3.8.1 Matrix  inversion using elementary operations

3. What can you learn in NCERT Exemplar for Class 12 Maths Chapter 3 - Matrices (Book Solutions)?

Students will study many types of Matrices, their properties, and how operations are applied to them in NCERT Exemplar for Class 12 Maths Chapter 3 - Matrices (Book Solutions).

The properties of a Matrix's transpose are studied in depth. The definition, characteristics, and theorems of symmetric and skew-symmetric Matrices are also included. Students will also learn about Matrix  transformations and obtain a clear knowledge of how Matrices are inverted with elementary operations in NCERT Exemplar for Class 12 Maths Chapter 3 - Matrices (Book Solutions).

Students will have a thorough understanding of Matrices' characteristics and kinds. They will learn about Matrices' operations and basic operations.

Higher-level questions can be answered with considerably more confidence and comfort. The solutions to NCERT Exemplar for Class 12 Maths Chapter 3 - Matrices (Book Solutions) are compiled by the top faculties and subject experts of Vedantu.

4. What are the advantages of using NCERT Exemplar for Class 12 Maths Chapter 3 - Matrices (Book Solutions)?

NCERT Exemplar for Class 12 Maths Chapter 3 - Matrices (Book Solutions) will aid students in grasping the fundamentals. It will aid in the student's understanding of Matrices and their fundamentals. The order of a Matrix  is discussed in NCERT sample Class 12 Maths solutions Chapter 3, as well as how to design and solve a Matrix  for high-order issue solving. The use of Matrices is also covered in the beginning.

The order of a Matrix  is discussed in NCERT Exemplar for Class 12 Maths Chapter 3 - Matrices (Book Solutions), as well as how to design and solve a Matrix  for high-order question handling.

5. How can I get the most out of the NCERT Exemplar for Class 12 Maths Chapter 3 - Matrices (Book Solutions)?

The finest sources to practise questions and strengthen your concepts are NCERT Exemplar for Class 12 Maths Chapter 3 - Matrices (Book Solutions).

After you've read the Chapter thoroughly and have understood all the concepts related to it, and have a firm grasp on the topic, you can utilise the NCERT Exemplar for Class 12 Maths Chapter 3 - Matrices (Book Solutions)  to practise additional questions that have been expertly crafted for you by top subject experts. Answering all of these questions will not only help you gain a comprehensive understanding of the Chapter's principles but will also improve your overall confidence and grasp of the Chapter. You will now be able to perform significantly better on your primary Exam and pass with flying colours.

NCERT Exemplar for Class 12 Maths Chapter 3 - Matrices (Book Solutions) solutions are written in easy language so that the student may grasp the concept confidently and self-explanatorily.