
The fundamental frequency of a vibrating string fixed at both ends is f. Will the 5th harmonic vibrate with the same wavelength as that of fundamental?
(A) Yes
(B) No
(C) Depends on the tension in the string.
(D) Depends on the linear density of the string.
Answer
125.1k+ views
Hint A vibration in a string is a wave. Resonance causes a vibrating string to produce a sound with constant frequency, i.e. constant pitch. If the length or tension of the string is correctly adjusted, the sound produced is a musical tone. Vibrating strings are the basis of string instruments such as guitars, cellos, and pianos.
Complete step by step answer:
1. The lowest resonant frequency of a vibrating object is called its fundamental frequency. Most vibrating objects have more than one resonant frequency and those used in musical instruments typically vibrate at harmonics of the fundamental. A harmonic is defined as an integer (whole number) multiple of the fundamental frequency. Vibrating strings, open cylindrical air columns, and conical air columns will vibrate at all harmonics of the fundamental. Cylinders with one end closed will vibrate with only odd harmonics of the fundamental. Vibrating membranes typically produce vibrations at harmonics, but also have some resonant frequencies which are not harmonics. It is for this class of vibrators that the term overtone becomes useful - they are said to have some non-harmonic overtones.
2, The nth harmonic = n $\times$ the fundamental frequency. 5th harmonic refers to 5f.
Here, n=5. So, the 5th harmonic will be 5f.
3. The frequency has increased to 5 times, while the velocity of the wave remains the same. Thus wavelength will decrease by 5 fold.
The correct option is (b)
Note The shorter the string, the higher the frequency of the fundamental. The higher the tension, the higher the frequency of the fundamental. The lighter the string, the higher the frequency of the fundamental.
Complete step by step answer:
1. The lowest resonant frequency of a vibrating object is called its fundamental frequency. Most vibrating objects have more than one resonant frequency and those used in musical instruments typically vibrate at harmonics of the fundamental. A harmonic is defined as an integer (whole number) multiple of the fundamental frequency. Vibrating strings, open cylindrical air columns, and conical air columns will vibrate at all harmonics of the fundamental. Cylinders with one end closed will vibrate with only odd harmonics of the fundamental. Vibrating membranes typically produce vibrations at harmonics, but also have some resonant frequencies which are not harmonics. It is for this class of vibrators that the term overtone becomes useful - they are said to have some non-harmonic overtones.
2, The nth harmonic = n $\times$ the fundamental frequency. 5th harmonic refers to 5f.
Here, n=5. So, the 5th harmonic will be 5f.
3. The frequency has increased to 5 times, while the velocity of the wave remains the same. Thus wavelength will decrease by 5 fold.
The correct option is (b)
Note The shorter the string, the higher the frequency of the fundamental. The higher the tension, the higher the frequency of the fundamental. The lighter the string, the higher the frequency of the fundamental.
Recently Updated Pages
States of Matter Chapter For JEE Main Chemistry

Uniform Acceleration - Definition, Equation, Examples, and FAQs

Difference Between Mass and Weight

The ratio of the diameters of two metallic rods of class 11 physics JEE_Main

What is the difference between Conduction and conv class 11 physics JEE_Main

Mark the correct statements about the friction between class 11 physics JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

Class 11 JEE Main Physics Mock Test 2025

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
