
Which of the following statements is correct if the intermolecular forces in liquids A, B and C are in the order \[A < B < C\]?
(A) B evaporates more readily than A
(B) B evaporates less readily than C
(C) A and B evaporate at the same time
(D) A evaporates more readily than C
Answer
214.2k+ views
Hint: We know higher the intermolecular force makes it more difficult to break the molecular bonds. Now if the intermolecular bonds are weakened, only then the particles will move more freely. If the particles are able to move freely so that they can escape the bulk, then they can evaporate.
Complete step by step answer::
Evaporation is the process in which the surface molecules of a liquid gain kinetic energy and escape in the form of vapor. If we will increase the intermolecular forces then the force between the molecules will also increase and as a result the escaping tendency will decrease. This means that higher the intermolecular forces lower will be the escaping tendency of the molecules.
Hence, we can say that if a particle has a low escaping tendency then the rate of evaporation for that particle will be low. So, we conclude that:
If intermolecular forces are high, escaping tendency will be low and the rate of evaporation will also decrease.
The order for intermolecular forces in a liquid as per the question is \[A < B < C\]. Therefore, the rate of evaporation will be \[A > B > C\]. This means that A will evaporate more readily than C.
So, the correct option is option (d.).
Note: The nature of molecules is different in different mediums. One should know the medium while working on these conditions.
It is vital that one understands the difference between evaporation and boiling. In boiling, almost all the particles in the bulk are heated to the extent that they gain kinetic energy equal to a gas particle, but in evaporation this only the particles on the surface that is open will be able to escape in the form of vapors.
Complete step by step answer::
Evaporation is the process in which the surface molecules of a liquid gain kinetic energy and escape in the form of vapor. If we will increase the intermolecular forces then the force between the molecules will also increase and as a result the escaping tendency will decrease. This means that higher the intermolecular forces lower will be the escaping tendency of the molecules.
Hence, we can say that if a particle has a low escaping tendency then the rate of evaporation for that particle will be low. So, we conclude that:
If intermolecular forces are high, escaping tendency will be low and the rate of evaporation will also decrease.
The order for intermolecular forces in a liquid as per the question is \[A < B < C\]. Therefore, the rate of evaporation will be \[A > B > C\]. This means that A will evaporate more readily than C.
So, the correct option is option (d.).
Note: The nature of molecules is different in different mediums. One should know the medium while working on these conditions.
It is vital that one understands the difference between evaporation and boiling. In boiling, almost all the particles in the bulk are heated to the extent that they gain kinetic energy equal to a gas particle, but in evaporation this only the particles on the surface that is open will be able to escape in the form of vapors.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Average and RMS Value in Physics: Formula, Comparison & Application

Alpha, Beta, and Gamma Decay Explained for JEE & NEET

Electromagnetic Waves – Meaning, Types, Properties & Applications

Charging and Discharging of Capacitor Explained

What is the period of small oscillations of the block class 11 physics JEE_Main

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Main 2026 Helpline Numbers for Aspiring Candidates

Free Radical Substitution and Its Stepwise Mechanism

Chemistry Question Papers for JEE Main, NEET & Boards (PDFs)

Elastic Collision in Two Dimensions: Concepts, Laws, Derivation & Examples

NCERT Solutions For Class 11 Physics Chapter 12 Kinetic Theory - 2025-26

