
Find the modulus of the mean velocity vector averaged over the first $t\,\sec $ of motion.
(A) $\sqrt {2{a^2} + {b^2}{t^2}} $
(B) $\sqrt {{a^2} + {b^2}{t^2}} $
(C) $\sqrt {{a^2} + b{t^2}} $
(D) $\sqrt {2{a^2} + {b^2}{t^2}} $
Answer
148.5k+ views
Hint The modulus of the mean velocity vector can be determined by using the formula of the mean velocity vector and the modulus of the final result is taken, then the modulus of the mean velocity vector can be determined. The formula of the mean velocity vector gives the relation between the velocity vector and the time.
Useful formula
The mean velocity vector is given by,
$\vec m = \dfrac{{\int {\vec V.dt} }}{{\int {dt} }}$
Where, $\vec m$ is the mean velocity vector, $\vec V$ is the velocity vector and $t$ is the time taken.
Complete step by step solution
The unit vector of the $\vec r$ is given by,
$\vec r = at\hat i - b{t^2}\hat j$
The velocity vector is given by,
$\vec V = \dfrac{{d\vec r}}{{dt}}$
By differentiating the $\vec r$ with respect to the time, then the velocity vector is written as,
$\vec V = a\hat i - 2bt\hat j$
Now,
The mean velocity vector is given by,
$\vec m = \dfrac{{\int {\vec V.dt} }}{{\int {dt} }}\,.................\left( 1 \right)$
By substituting the velocity vector in the above equation (1), then the above equation (1) is written as,
$\vec m = \dfrac{{\int {\left( {a\hat i - 2bt\hat j} \right)dt} }}{{\int {dt} }}$
By integrating the above equation, then the above equation is written as,
$\vec m = \dfrac{{at\hat i - b{t^2}\hat j}}{t}$
By cancelling the terms in the above equation, then the above equation is written as,
$\vec m = a\hat i - bt\hat j$
By taking modulus on the both sides, then the above equation is written as,
$\left| {\vec m} \right| = \left| {a\hat i - bt\hat j} \right|$
The modulus is the square root of the sum of the individual squares of the coefficient of the $\hat i$ and $\hat j$, then the above equation is written as,
$\left| {\vec m} \right| = \sqrt {{a^2} + {b^2}{t^2}} $
Thus, the above equation shows the modulus of the mean velocity vector.
Hence, the option (B) is the correct answer.
Note The mean velocity vector is directly proportional to the integration of the velocity vector and the mean velocity vector is inversely proportional to the time. As the velocity vector increases, then the mean velocity vector also increases.
Useful formula
The mean velocity vector is given by,
$\vec m = \dfrac{{\int {\vec V.dt} }}{{\int {dt} }}$
Where, $\vec m$ is the mean velocity vector, $\vec V$ is the velocity vector and $t$ is the time taken.
Complete step by step solution
The unit vector of the $\vec r$ is given by,
$\vec r = at\hat i - b{t^2}\hat j$
The velocity vector is given by,
$\vec V = \dfrac{{d\vec r}}{{dt}}$
By differentiating the $\vec r$ with respect to the time, then the velocity vector is written as,
$\vec V = a\hat i - 2bt\hat j$
Now,
The mean velocity vector is given by,
$\vec m = \dfrac{{\int {\vec V.dt} }}{{\int {dt} }}\,.................\left( 1 \right)$
By substituting the velocity vector in the above equation (1), then the above equation (1) is written as,
$\vec m = \dfrac{{\int {\left( {a\hat i - 2bt\hat j} \right)dt} }}{{\int {dt} }}$
By integrating the above equation, then the above equation is written as,
$\vec m = \dfrac{{at\hat i - b{t^2}\hat j}}{t}$
By cancelling the terms in the above equation, then the above equation is written as,
$\vec m = a\hat i - bt\hat j$
By taking modulus on the both sides, then the above equation is written as,
$\left| {\vec m} \right| = \left| {a\hat i - bt\hat j} \right|$
The modulus is the square root of the sum of the individual squares of the coefficient of the $\hat i$ and $\hat j$, then the above equation is written as,
$\left| {\vec m} \right| = \sqrt {{a^2} + {b^2}{t^2}} $
Thus, the above equation shows the modulus of the mean velocity vector.
Hence, the option (B) is the correct answer.
Note The mean velocity vector is directly proportional to the integration of the velocity vector and the mean velocity vector is inversely proportional to the time. As the velocity vector increases, then the mean velocity vector also increases.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
Uniform Acceleration

Degree of Dissociation and Its Formula With Solved Example for JEE

Electrical Field of Charged Spherical Shell - JEE

Charging and Discharging of Capacitor

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

The time period of an artificial satellite in a circular class 11 physics JEE_Main

Other Pages
JEE Main Chemistry Question Paper with Answer Keys and Solutions

A pressure of 100 kPa causes a decrease in volume of class 11 physics JEE_Main

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

A solid cube and a solid sphere of the same material class 11 physics JEE_Main

A boy wants to throw a ball from a point A so as to class 11 physics JEE_Main
