
Find the modulus of the mean velocity vector averaged over the first $t\,\sec $ of motion.
(A) $\sqrt {2{a^2} + {b^2}{t^2}} $
(B) $\sqrt {{a^2} + {b^2}{t^2}} $
(C) $\sqrt {{a^2} + b{t^2}} $
(D) $\sqrt {2{a^2} + {b^2}{t^2}} $
Answer
232.8k+ views
Hint The modulus of the mean velocity vector can be determined by using the formula of the mean velocity vector and the modulus of the final result is taken, then the modulus of the mean velocity vector can be determined. The formula of the mean velocity vector gives the relation between the velocity vector and the time.
Useful formula
The mean velocity vector is given by,
$\vec m = \dfrac{{\int {\vec V.dt} }}{{\int {dt} }}$
Where, $\vec m$ is the mean velocity vector, $\vec V$ is the velocity vector and $t$ is the time taken.
Complete step by step solution
The unit vector of the $\vec r$ is given by,
$\vec r = at\hat i - b{t^2}\hat j$
The velocity vector is given by,
$\vec V = \dfrac{{d\vec r}}{{dt}}$
By differentiating the $\vec r$ with respect to the time, then the velocity vector is written as,
$\vec V = a\hat i - 2bt\hat j$
Now,
The mean velocity vector is given by,
$\vec m = \dfrac{{\int {\vec V.dt} }}{{\int {dt} }}\,.................\left( 1 \right)$
By substituting the velocity vector in the above equation (1), then the above equation (1) is written as,
$\vec m = \dfrac{{\int {\left( {a\hat i - 2bt\hat j} \right)dt} }}{{\int {dt} }}$
By integrating the above equation, then the above equation is written as,
$\vec m = \dfrac{{at\hat i - b{t^2}\hat j}}{t}$
By cancelling the terms in the above equation, then the above equation is written as,
$\vec m = a\hat i - bt\hat j$
By taking modulus on the both sides, then the above equation is written as,
$\left| {\vec m} \right| = \left| {a\hat i - bt\hat j} \right|$
The modulus is the square root of the sum of the individual squares of the coefficient of the $\hat i$ and $\hat j$, then the above equation is written as,
$\left| {\vec m} \right| = \sqrt {{a^2} + {b^2}{t^2}} $
Thus, the above equation shows the modulus of the mean velocity vector.
Hence, the option (B) is the correct answer.
Note The mean velocity vector is directly proportional to the integration of the velocity vector and the mean velocity vector is inversely proportional to the time. As the velocity vector increases, then the mean velocity vector also increases.
Useful formula
The mean velocity vector is given by,
$\vec m = \dfrac{{\int {\vec V.dt} }}{{\int {dt} }}$
Where, $\vec m$ is the mean velocity vector, $\vec V$ is the velocity vector and $t$ is the time taken.
Complete step by step solution
The unit vector of the $\vec r$ is given by,
$\vec r = at\hat i - b{t^2}\hat j$
The velocity vector is given by,
$\vec V = \dfrac{{d\vec r}}{{dt}}$
By differentiating the $\vec r$ with respect to the time, then the velocity vector is written as,
$\vec V = a\hat i - 2bt\hat j$
Now,
The mean velocity vector is given by,
$\vec m = \dfrac{{\int {\vec V.dt} }}{{\int {dt} }}\,.................\left( 1 \right)$
By substituting the velocity vector in the above equation (1), then the above equation (1) is written as,
$\vec m = \dfrac{{\int {\left( {a\hat i - 2bt\hat j} \right)dt} }}{{\int {dt} }}$
By integrating the above equation, then the above equation is written as,
$\vec m = \dfrac{{at\hat i - b{t^2}\hat j}}{t}$
By cancelling the terms in the above equation, then the above equation is written as,
$\vec m = a\hat i - bt\hat j$
By taking modulus on the both sides, then the above equation is written as,
$\left| {\vec m} \right| = \left| {a\hat i - bt\hat j} \right|$
The modulus is the square root of the sum of the individual squares of the coefficient of the $\hat i$ and $\hat j$, then the above equation is written as,
$\left| {\vec m} \right| = \sqrt {{a^2} + {b^2}{t^2}} $
Thus, the above equation shows the modulus of the mean velocity vector.
Hence, the option (B) is the correct answer.
Note The mean velocity vector is directly proportional to the integration of the velocity vector and the mean velocity vector is inversely proportional to the time. As the velocity vector increases, then the mean velocity vector also increases.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

