Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 12 Maths Chapter 9: Differential Equations - Exercise 9.5

ffImage
Last updated date: 19th Apr 2024
Total views: 574.2k
Views today: 13.74k

NCERT Solutions for Class 12 Maths Chapter 9 (Ex 9.5)

Important Topics

The important subtopics of NCERT Class 12 Maths Chapter 9 Differential Equations are given below.


Section Name

Topic Name

9

Differential Equations

9.1

Introduction

9.2

Basic Concepts

9.3

General and Particular Solutions of a Differential Equation

9.4

Formation of a Differential Equation whose General Solution is given

9.5

Methods of Solving First order, First Degree Differential Equations



Tips to solve NCERT Class 12 Maths Chapter 9 Exercise 9.5

  • The solution of NCERT class 12 mathematics chapter 9 Exercise 9.5 differential equations are provided here. But students are advised to try to solve the exersise by themselves and when they face any difficulty they can refer the slutions of Vedantu. 

  • The solutions are provided by Subject Matter Experts and have solved in detail.

  • Students will increase their  speed and accuracy of performing calculations once they starting solving this expersise. It will boost your prepration of examinations.


Free PDF download of NCERT Solutions for Class 12 Maths Chapter 9 Exercise 9.5 (Ex 9.5) and all chapter exercises at one place prepared by expert teacher as per NCERT (CBSE) books guidelines. Class 12 Maths Chapter 9 Differential Equations Exercise 9.5 Questions with Solutions to help you to revise complete Syllabus and Score More marks. Register and get all exercise solutions in your emails.


Class:

NCERT Solutions for Class 12

Subject:

Class 12 Maths

Chapter Name:

Chapter 9 - Differential Equations

Exercise:

Exercise - 9.5

Content-Type:

Text, Videos, Images and PDF Format

Academic Year:

2024-25

Medium:

English and Hindi

Available Materials:

  • Chapter Wise

  • Exercise Wise

Other Materials

  • Important Questions

  • Revision Notes

Competitive Exams after 12th Science

Access NCERT Solutions for Class 12 Maths Chapter 9 –Differential Equations

EXERCISE 9.5

Refer for exercise 9.5 in the PDF

1. Solve the differential equation \[\left( {{x^2} + xy} \right)dy = \left( {{x^2} + {y^2}} \right)dy\]

Ans: After rearranging the given equation we get,

\[\dfrac{{dy}}{{dx}} = \dfrac{{{x^2} + {y^2}}}{{{x^2} + xy}}\]

It is a homogeneous differential equation.

To solve this problem, we will make the substitution.

\[y = vx\]

Differentiating equation w.r.t. \[x\], we get

\[\dfrac{{dy}}{{dx}} = v + x\dfrac{{dv}}{{dx}}\]

Substituting \[y = vx\] and \[\dfrac{{dy}}{{dx}}\] in the above equation, we get

\[v + x\dfrac{{dv}}{{dx}} = \dfrac{{{x^2} + {{\left( {vx} \right)}^2}}}{{{x^2} + x\left( {vx} \right)}}\]

\[v + x\dfrac{{dv}}{{dx}} = \dfrac{{{x^2}}}{{{x^2}}}\left( {\dfrac{{1 + {v^2}}}{{1 + v}}} \right)\]

\[v + x\dfrac{{dv}}{{dx}} = \dfrac{{1 + {v^2}}}{{1 + v}}\]

\[x\dfrac{{dv}}{{dx}} = \dfrac{{1 + {v^2}}}{{1 + v}} - v\]

\[x\dfrac{{dv}}{{dx}} = \dfrac{{1 + {v^2} - v - {v^2}}}{{1 + v}}\]

\[x\dfrac{{dv}}{{dx}} = \dfrac{{1 - v}}{{1 + v}}\]

\[dfrac{1}{x}dx = \dfrac{{1 + v}}{{1 - v}}dv\]

Taking integration on both side,

\[\int {\dfrac{1}{x}dx}  = \int {\dfrac{{1 + v}}{{1 - v}}dv} \]

\[\log x + C = \int {\dfrac{{1 + v + 1 - 1}}{{1 - v}}dv} \]

\[\log x + C = \int {\dfrac{{2 + 1 - v}}{{1 - v}}dv} \]

\[\log x + C = \int {\left( {\dfrac{2}{{1 - v}} + 1} \right)dv} \]

\[\log x + C =  - 2\log \left( {1 - v} \right) + v\]

Substituting the value of \[v = \dfrac{y}{x}\].

\[\log x + C =  - 2\log \left( {1 - \dfrac{y}{x}} \right) + \dfrac{y}{x}\]

\[\log x + \log {\left( {\dfrac{{x - y}}{x}} \right)^2} = \dfrac{y}{x} + C\]

\[\log \left[ {{{\left( {\dfrac{{x - y}}{x}} \right)}^2}x} \right] = \dfrac{y}{x} - C\]

\[{\left( {\dfrac{{x - y}}{x}} \right)^2}x = {e^{\dfrac{y}{x} - C}}\]

\[\dfrac{{{{\left( {x - y} \right)}^2}}}{x} = {e^{\dfrac{y}{x} - C}}\]

\[{\left( {x - y} \right)^2} = x{e^{\dfrac{y}{x}}}{e^{ - C}}\]

\[{\left( {x - y} \right)^2} = x{e^{\dfrac{y}{x}}}C\]

This is the required differential equation.

Where \[C = {e^{ - C}}\].

2. Solve the differential equation \[y' = \dfrac{{x + y}}{x}\]

Ans:\[\dfrac{{dy}}{{dx}} = \dfrac{{x + y}}{x}\]

On rearranging the equation, we get

\[\dfrac{{dy}}{{dx}} = 1 + \dfrac{y}{x}\]

It is a homogeneous differential equation.

To solve this problem, we will make the substitution.

\[y = vx\]

Differentiating equation w.r.t. \[x\], we get

\[\dfrac{{dy}}{{dx}} = v + x\dfrac{{dv}}{{dx}}\]

Substituting \[y = vx\] and \[\dfrac{{dy}}{{dx}}\] in the above equation, we get

\[v + x\dfrac{{dv}}{{dx}} = 1 + v\]

\[dv = \dfrac{1}{x}dx\]

Taking integration on both side,

\[\int {1.dv}  = \int {\dfrac{1}{x}dx} \]

\[v = \log x + C\]

Substituting the value of \[v = \dfrac{y}{x}\].

\[\dfrac{y}{x} = \log x + C\]

\[y = x\log x + Cx\]

This is the required differential equation.

3. Solve the differential equation \[\left( {x - y} \right)dy = \left( {x + y} \right)dx\]

Ans: After rearranging the given equation we get,

\[\dfrac{{dy}}{{dx}} = \dfrac{{x + y}}{{x - y}}\]

It is a homogeneous differential equation.

To solve this problem, we will make the substitution.

\[y = vx\]

Differentiating equation w.r.t. \[x\], we get

\[\dfrac{{dy}}{{dx}} = v + x\dfrac{{dv}}{{dx}}\]

Substituting \[y = vx\] and \[\dfrac{{dy}}{{dx}}\] in the above equation, we get

\[v + x\dfrac{{dv}}{{dx}} = \dfrac{{x + vx}}{{x - vx}}\]

\[v + x\dfrac{{dv}}{{dx}} = \dfrac{{1 + v}}{{1 - v}}\]

\[x\dfrac{{dv}}{{dx}} = \dfrac{{1 + v}}{{1 - v}} - v\]

\[x\dfrac{{dv}}{{dx}} = \dfrac{{1 + v - v + {v^2}}}{{1 - v}}\]

\[x\dfrac{{dv}}{{dx}} = \dfrac{{1 + {v^2}}}{{1 - v}}\]

\[\dfrac{{1 - v}}{{1 + {v^2}}}dv = \dfrac{1}{x}dx\]

Taking integration on both side,

\[\int {\dfrac{{1 - v}}{{1 + {v^2}}}dv}  = \int {\dfrac{1}{x}dx} \]

\[\int {\dfrac{1}{{1 + {v^2}}}} dv - \int {\dfrac{v}{{1 + {v^2}}}} dv = \int {\dfrac{1}{x}dx} ......\left( 1 \right)\]

Let \[I = \int {\dfrac{v}{{1 + {v^2}}}} dv\]

Now, let \[1 + {v^2} = t\]

Differentiating equation w.r.t. \[v\], we get

\[  2vdv = dt \] 

 \[ vdv = \dfrac{{dt}}{2} \]

Substituting \[vdv = \dfrac{{dt}}{2}\] in the above equation, we get

\[I = \int {\dfrac{1}{2t}} dt\]

Substituting this value in equation \[\left( 1 \right)\] .

Therefore,

\[\int {\dfrac{1}{{1 + {v^2}}}} dv - \int {\dfrac{1}{2t}} dt = \int {\dfrac{1}{x}dx} \]

\[{\tan ^{ - 1}}v - \dfrac{1}{2}\log t = \log x + C\]

Substituting the value of \[1 + {v^2} = t\] and \[v = \dfrac{y}{x}\] .

\[{\tan ^{ - 1}}\left( {\dfrac{x}{y}} \right) - \dfrac{1}{2}\log \left( {1 + \dfrac{{{y^2}}}{{{x^2}}}} \right) = \log x + C\]

After rearranging the given equation we get,

\[{\tan ^{ - 1}}\left( {\dfrac{x}{y}} \right) - \dfrac{1}{2}\log \left( {1 + \dfrac{{{y^2}}}{{{x^2}}}} \right) = \log x + C\]

\[{\tan ^{ - 1}}\left( {\dfrac{x}{y}} \right) = \log x + \dfrac{1}{2}\log \left( {1 + \dfrac{{{y^2}}}{{{x^2}}}} \right) + C\]

\[{\tan ^{ - 1}}\left( {\dfrac{x}{y}} \right) = \dfrac{1}{2}\left( {2\log x + \log \left( {1 + \dfrac{{{y^2}}}{{{x^2}}}} \right)} \right)\]

\[{\tan ^{ - 1}}\left( {\dfrac{x}{y}} \right) = \log \left( {\dfrac{{{y^2} + {x^2}}}{{{y^2}}} \times {x^2}} \right) + C\]

\[{\tan ^{ - 1}}\left( {\dfrac{x}{y}} \right) = \log \left( {{y^2} + {x^2}} \right) + C\]

This is the required differential equation.

4. Solve the differential equation \[\left( {{x^2} - {y^2}} \right)dx + 2xydy = 0\]

Ans: After rearranging the given equation we get,

\[\dfrac{{dy}}{{dx}} =  - \dfrac{{{x^2} - {y^2}}}{{2xy}}\]

It is a homogeneous differential equation.

To solve this problem, we will make the substitution.

\[y = vx\]

Differentiating equation w.r.t. \[x\], we get

\[\dfrac{{dy}}{{dx}} = v + x\dfrac{{dv}}{{dx}}\]

Substituting \[y = vx\] and \[\dfrac{{dy}}{{dx}}\] in the above equation, we get

\[v + x\dfrac{{dv}}{{dx}} =  - \dfrac{{{x^2} - {{\left( {vx} \right)}^2}}}{{2x.vx}}\]

\[v + x\dfrac{{dv}}{{dx}} =  - \dfrac{{1 - {v^2}}}{{2v}}\]

\[x\dfrac{{dv}}{{dx}} =  - \dfrac{{1 - {v^2}}}{{2v}} - v\]

\[x\dfrac{{dv}}{{dx}} = \dfrac{{ - 1 + {v^2} - 2{v^2}}}{{2v}}\]

\[x\dfrac{{dv}}{{dx}} = \dfrac{{ - 1 - {v^2}}}{{2v}}\]

\[ - \dfrac{{2v}}{{1 + {v^2}}}dv = \dfrac{1}{x}dx\]

\[\dfrac{{2v}}{{1 + {v^2}}}dv =  - \dfrac{1}{x}dx\]

Taking integration on both side,

\[\int {\dfrac{{2v}}{{1 + {v^2}}}dv}  =  - \int {\dfrac{1}{x}dx} ......\left( 1 \right)\]

Now, let \[1 + {v^2} = t\]

Differentiating equation w.r.t. \[v\], we get

\[2vdv = dt\]

Substituting \[2vdv = dt\] in equation \[\left( 1 \right)\], we get

\[\int {\dfrac{1}{t}dt}  =  - \int {\dfrac{1}{x}dx} \]

\[\log t =  - \log x + C\]

Substituting the value of \[1 + {v^2} = t\] and \[v = \dfrac{y}{x}\].

\[\log \left( {1 + \dfrac{{{y^2}}}{{{x^2}}}} \right) =  - \log x + C\]

\[\log \left( {1 + \dfrac{{{y^2}}}{{{x^2}}}} \right) + \log x = C\]

\[\log \left( {\dfrac{{{x^2} + {y^2}}}{{{x^2}}} \times x} \right) = C\]

\[\dfrac{{{x^2} + {y^2}}}{x} = {e^C}\]

\[\dfrac{{{x^2} + {y^2}}}{x} = K\]

\[{x^2} + {y^2} = Kx\]

This is the required differential equation.

5. Solve the differential equation \[{x^2}\dfrac{{dy}}{{dx}} = {x^2} - 2{y^2} + xy\]

Ans: After rearranging the given equation we get,

\[\dfrac{{dy}}{{dx}}= \dfrac{{x^2} - 2{y^2} + xy}{x^2}\]

It is a homogeneous differential equation.

To solve this problem, we will make the substitution.

\[y = vx\]

Differentiating equation w.r.t. \[x\], we get

\[\dfrac{{dy}}{{dx}} = v + x\dfrac{{dv}}{{dx}}\]

Substituting \[\dfrac{{dy}}{{dx}}\] in the above equation, we get

\[v + x\dfrac{{dv}}{{dx}} = 1 - 2{v^2} + v\]

\[x\dfrac{{dv}}{{dx}} = 1 - 2{v^2}\]

\[\dfrac{1}{{1 - 2{v^2}}}dv = \dfrac{1}{x}dx\]

Taking integration on both side,

\[\int {\dfrac{1}{{1 - 2{v^2}}}dv}  = \int {\dfrac{1}{x}dx} \]

\[\int {\dfrac{1}{{{1^2} - {{\left( {\sqrt 2 v} \right)}^2}}}dv}  = \int {\dfrac{1}{x}dx} \]

On integrating using standard trigonometric identity we get,

\[\dfrac{1}{{\sqrt 2 }}.\dfrac{1}{{1.2}}.\log \left| {\dfrac{{1 + \sqrt 2 v}}{{1 - \sqrt 2 v}}} \right| = \log \left| x \right| + C\]

Substituting the value of \[v = \dfrac{y}{x}\].

\[\dfrac{1}{{2\sqrt 2 }}\log \left| {\dfrac{{1 + \sqrt 2 \dfrac{y}{x}}}{{1 - \sqrt 2 \dfrac{y}{x}}}} \right| = \log \left| x \right| + C\]

\[\dfrac{1}{{2\sqrt 2 }}\log \left| {\dfrac{{x + \sqrt 2 y}}{{x - \sqrt 2 y}}} \right| = \log \left| x \right| + C\]

This is the required differential equation.

6. Solve the differential equation \[xdy - ydx = \sqrt {{x^2} + {y^2}} dx\]

Ans: After rearranging the given equation we get,

\[\dfrac{{dy}}{{dx}} = \dfrac{{\sqrt {{x^2} + {y^2}}  + y}}{x}\]

\[\dfrac{{dy}}{{dx}} = \sqrt {1 + \dfrac{{{y^2}}}{{{x^2}}}}  + \dfrac{y}{x}\]

It is a homogeneous differential equation.

To solve this problem, we will make the substitution.

\[y = vx\]

Differentiating equation w.r.t. \[x\], we get

\[\dfrac{{dy}}{{dx}} = v + x\dfrac{{dv}}{{dx}}\]

Substituting \[y = vx\] and \[\dfrac{{dy}}{{dx}}\] in the above equation, we get

\[v + x\dfrac{{dv}}{{dx}} = \sqrt {1 + {v^2}}  + v\]

\[x\dfrac{{dv}}{{dx}} = \sqrt {1 + {v^2}} \]

\[\dfrac{1}{{\sqrt {1 + {v^2}} }}dv = \dfrac{1}{x}dx\]

Taking integration on both side,

\[\int {\dfrac{1}{{\sqrt {1 + {v^2}} }}dv}  = \int {\dfrac{1}{x}dx} \]

Using \[\int {\dfrac{1}{{\sqrt {{x^2} + {a^2}} }} = \log \left| {x + \sqrt {{x^2} + {a^2}} } \right|}  + C\], we get

\[\log \left| {v + \sqrt {1 + {v^2}} } \right| = \log x + \log C\]

Substituting the value of \[v = \dfrac{y}{x}\].

\[\log \left| {\dfrac{y}{x} + \sqrt {1 + {{\left( {\dfrac{y}{x}} \right)}^2}} } \right| = \log xC\]

\[\dfrac{y}{x} + \sqrt {1 + {{\left( {\dfrac{y}{x}} \right)}^2}}  = xC\]

\[\dfrac{y}{x} + \sqrt {{{\dfrac{{{x^2} + y}}{{{x^2}}}}^2}}  = xC\]

\[\dfrac{y}{x} + \dfrac{{\sqrt {{x^2} + {y^2}} }}{x} = xC\]

\[y + \sqrt {{x^2} + {y^2}}  = C{x^2}\]

This is the required differential equation.

7. Solve the differential equation \[\left\{ {x\cos \left( {\dfrac{y}{x}} \right) + y\sin \left( {\dfrac{y}{x}} \right)} \right\}ydx = \left\{ {y\sin \left( {\dfrac{y}{x}} \right) - x\cos \left( {\dfrac{y}{x}} \right)} \right\}xdy\]

Ans: After rearranging the given equation we get,

\[\dfrac{{dy}}{{dx}} = \dfrac{{\left\{ {x\cos \left( {\dfrac{y}{x}} \right) + y\sin \left( {\dfrac{y}{x}} \right)} \right\}y}}{{\left\{ {y\sin \left( {\dfrac{y}{x}} \right) - x\cos \left( {\dfrac{y}{x}} \right)} \right\}x}}\]

It is a homogeneous differential equation.

To solve this problem, we will make the substitution.

\[y = vx\]

Differentiating equation w.r.t. \[x\], we get

\[\dfrac{{dy}}{{dx}} = v + x\dfrac{{dv}}{{dx}}\]

Substituting \[y = vx\] and \[\dfrac{{dy}}{{dx}}\] in the above equation, we get

\[v + x\dfrac{{dv}}{{dx}} = \dfrac{{\left\{ {x\cos \left( v \right) + vx\sin \left( v \right)} \right\}vx}}{{\left\{ {vx\sin \left( v \right) - x\cos \left( v \right)} \right\}x}}\]

\[x\dfrac{{dv}}{{dx}} = \dfrac{{\left\{ {\cos \left( v \right) + v\sin \left( v \right)} \right\}v}}{{\left\{ {v\sin \left( v \right) - \cos \left( v \right)} \right\}}} - v\]

\[x\dfrac{{dv}}{{dx}} = \dfrac{{v\cos \left( v \right) + {v^2}\sin \left( v \right) - {v^2}\sin \left( v \right) + v\cos \left( v \right)}}{{v\sin \left( v \right) - \cos \left( v \right)}}\]

\[x\dfrac{{dv}}{{dx}} = \dfrac{{2v\cos \left( v \right)}}{{v\sin \left( v \right) - \cos \left( v \right)}}\]

\[\dfrac{{v\sin \left( v \right) - \cos \left( v \right)}}{{2v\cos \left( v \right)}}dv = \dfrac{1}{x}dx\]

Taking integration on both side,

\[\int {\dfrac{{v\sin \left( v \right) - \cos \left( v \right)}}{{2v\cos \left( v \right)}}dv}  = \int {\dfrac{1}{x}dx} \]

\[\int {\dfrac{{v\sin \left( v \right)}}{{2v\cos \left( v \right)}}dv - \int {\dfrac{{\cos \left( v \right)}}{{2v\cos \left( v \right)}}dv} }  = \int {\dfrac{1}{x}dx} \]

\[\dfrac{1}{2}\int {\tan vdv - \dfrac{1}{2}\int {\dfrac{1}{v}dv} }  = \int {\dfrac{1}{x}dx} \]

\[\dfrac{1}{2}\log \sec v - \dfrac{1}{2}\log v = \log x + \log C\]

\[\dfrac{1}{2}\left( {\log \sec v - \log v} \right) = \log xC\]

\[\log \dfrac{{\sec v}}{v} = 2\log xC\]

\[\log \dfrac{{\sec v}}{v} = \log {\left( {xC} \right)^2}\]

\[\dfrac{{\sec v}}{v} = {\left( {xC} \right)^2}\]

Substituting the value of \[v = \dfrac{y}{x}\].

\[\dfrac{{\sec \left( {\dfrac{y}{x}} \right)}}{{\dfrac{y}{x}}} = {\left( {xC} \right)^2}\]

\[\dfrac{x}{y}\sec \left( {\dfrac{y}{x}} \right) = {\left( {xC} \right)^2}\]

\[\dfrac{x}{{y{x^2}}}.\dfrac{1}{{\cos \left( {\dfrac{y}{x}} \right)}} = {C^2}\]

\[\dfrac{1}{{yx}}.\dfrac{1}{{\cos \left( {\dfrac{y}{x}} \right)}} = {C^2}\]

\[\dfrac{1}{{{C^2}}} = yx\cos \left( {\dfrac{y}{x}} \right)\]

\[yx\cos \left( {\dfrac{y}{x}} \right) = K\]

This is the required differential equation.

8. Solve the differential equation \[x\dfrac{{dy}}{{dx}} - y + x\sin \left( {\dfrac{y}{x}} \right) = 0\]

Ans: After rearranging the given equation we get,

\[\dfrac{{dy}}{{dx}} = \dfrac{{y - x\sin \left( {\dfrac{y}{x}} \right)}}{x}\]

\[\dfrac{{dy}}{{dx}} = \dfrac{y}{x} - \sin \left( {\dfrac{y}{x}} \right)\]

It is a homogeneous differential equation.

To solve this problem, we will make the substitution.

\[y = vx\]

Differentiating equation w.r.t. \[x\], we get

\[\dfrac{{dy}}{{dx}} = v + x\dfrac{{dv}}{{dx}}\]

Substituting \[y = vx\] and \[\dfrac{{dy}}{{dx}}\] in the above equation, we get

\[v + x\dfrac{{dv}}{{dx}} = \dfrac{{vx}}{x} - \sin \left( {\dfrac{{vx}}{x}} \right)\]

\[v + x\dfrac{{dv}}{{dx}} = v - \sin v\]

\[x\dfrac{{dv}}{{dx}} =  - \sin v\]

\[\dfrac{1}{{\sin v}}dv =  - \dfrac{1}{x}dx\]

Taking integration on both side,

\[\int {\dfrac{1}{{\sin v}}dv}  =  - \int {\dfrac{1}{x}dx} \]

\[\int {\cos ecvdv}  =  - \int {\dfrac{1}{x}dx} \]

\[\log \left( {\cos ecv - \cot v} \right) =  - \log x + \log C\]

\[\log \left( {\cos ecv - \cot v} \right) = \log \dfrac{C}{x}\]

\[\cos ecv - \cot v = \dfrac{C}{x}\]

Substituting the value of \[v = \dfrac{y}{x}\].

\[\cos ec\left( {\dfrac{y}{x}} \right) - \cot \left( {\dfrac{y}{x}} \right) = \dfrac{C}{x}\]

\[\dfrac{1}{{\sin \left( {\dfrac{y}{x}} \right)}} - \dfrac{{\cos \left( {\dfrac{y}{x}} \right)}}{{\sin \left( {\dfrac{y}{x}} \right)}} = \dfrac{C}{x}\]

\[1 - \cos \left( {\dfrac{y}{x}} \right) = \dfrac{C}{x}\sin \left( {\dfrac{y}{x}} \right)\]

\[x\left( {1 - \cos \left( {\dfrac{y}{x}} \right)} \right) = C\sin \left( {\dfrac{y}{x}} \right)\]

This is the required differential equation.

9. Solve the differential equation \[ydx + x\log \left( {\dfrac{y}{x}} \right)dy - 2xdy = 0\]

Ans: After rearranging the given equation we get,

\[\dfrac{{dy}}{{dx}} = \dfrac{{ - y}}{{x\log \left( {\dfrac{y}{x}} \right) - 2x}}\]

\[\dfrac{{dy}}{{dx}} = \dfrac{y}{{2x - x\log \left( {\dfrac{y}{x}} \right)}}\]

It is a homogeneous differential equation.

To solve this problem, we will make the substitution.

\[y = vx\]

Differentiating equation w.r.t. \[x\], we get

\[\dfrac{{dy}}{{dx}} = v + x\dfrac{{dv}}{{dx}}\]

Substituting \[y = vx\] and \[\dfrac{{dy}}{{dx}}\] in the above equation, we get

\[v + x\dfrac{{dv}}{{dx}} = \dfrac{{vx}}{{2x - x\log \left( {\dfrac{{vx}}{x}} \right)}}\]

\[v + x\dfrac{{dv}}{{dx}} = \dfrac{v}{{2 - \log v}}\]

\[x\dfrac{{dv}}{{dx}} = \dfrac{v}{{2 - \log v}} - v\]

\[x\dfrac{{dv}}{{dx}} = \dfrac{{v - 2v + v\log v}}{{2 - \log v}}\]

\[x\dfrac{{dv}}{{dx}} = \dfrac{{ - v + v\log v}}{{2 - \log v}}\]

\[\dfrac{{2 - \log v}}{{ - v + v\log v}}dv = \dfrac{1}{x}dx\]

\[\dfrac{{2 - \log v}}{{v\left( {\log v - 1} \right)}}dv = \dfrac{1}{x}dx\]

\[\dfrac{{1 - \left( {\log v - 1} \right)}}{{v\left( {\log v - 1} \right)}}dv = \dfrac{1}{x}dx\]

\[\dfrac{1}{{v\left( {\log v - 1} \right)}}dv - \dfrac{{\left( {\log v - 1} \right)}}{{v\left( {\log v - 1} \right)}}dv = \dfrac{1}{x}dx\]

\[\dfrac{1}{{v\left( {\log v - 1} \right)}}dv - \dfrac{1}{v}dv = \dfrac{1}{x}dx\]

Taking integration on both side,

\[\int {\dfrac{1}{{v\left( {\log v - 1} \right)}}dv}  - \int {\dfrac{1}{v}dv}  = \int {\dfrac{1}{x}dx} \]                                            ………. (1)

Let \[I = \int {\dfrac{1}{{v\left( {\log v - 1} \right)}}dv} \]

Put \[\log v - 1 = t\]

Differentiating w.r.t. \[v\] .

\[\dfrac{1}{v} = \dfrac{{dt}}{{dv}}\]

\[\dfrac{1}{v}dv = dt\]

Put this value in above equation and we get

\[I = \int {\dfrac{1}{t}dt} \]

Put this in equation \[\left( 1 \right)\]

\[\int {\dfrac{1}{t}dt}  - \int {\dfrac{1}{v}dv}  = \int {\dfrac{1}{x}dx} \]

\[\log t - \log v = \log x + \log c\]

Substituting the value of \[\log v - 1 = t\] and \[v = \dfrac{y}{x}\] .

\[\log \left( {\log v - 1} \right) - \log \left( {\dfrac{y}{x}} \right) = \log x + \log c\]

\[\log \left( {\dfrac{{\log \left( {\dfrac{y}{x}} \right) - 1}}{{\left( {\dfrac{y}{x}} \right)}}} \right) = \log xC\]

\[\dfrac{{\log \left( {\dfrac{y}{x}} \right) - 1}}{{\left( {\dfrac{y}{x}} \right)}} = xC\]

\[\log \left( {\dfrac{y}{x}} \right) - 1 = \dfrac{y}{x}.xC\]

\[\log \left( {\dfrac{y}{x}} \right) - 1 = yC\]

This is the required differential equation.

10. Solve the differential equation \[\left( {1 + {e^{\dfrac{x}{y}}}} \right)dx + {e^{\dfrac{x}{y}}}\left( {1 - \dfrac{x}{y}} \right)dy = 0\]

Ans: After rearranging the given equation we get,

\[\dfrac{{dx}}{{dy}} = \dfrac{{ - {e^{\dfrac{x}{y}}}\left( {1 - \dfrac{x}{y}} \right)}}{{1 + {e^{\dfrac{x}{y}}}}}\]

It is a homogeneous differential equation.

To solve this problem, we will make the substitution.

\[x = vy\]

Differentiating equation w.r.t. \[y\], we get

\[\dfrac{{dx}}{{dy}} = v + y\dfrac{{dv}}{{dy}}\]

Substituting \[x = vy\] and \[\dfrac{{dx}}{{dy}}\] in the above equation, we get

\[v + y\dfrac{{dv}}{{dy}} = \dfrac{{ - {e^{\dfrac{{vy}}{y}}}\left( {1 - \dfrac{{vy}}{y}} \right)}}{{1 + {e^{\dfrac{{vy}}{y}}}}}\]

\[v + y\dfrac{{dv}}{{dy}} = \dfrac{{ - {e^v}\left( {1 - v} \right)}}{{1 + {e^v}}}\]

\[v + y\dfrac{{dv}}{{dy}} = \dfrac{{ - {e^v} + v{e^v}}}{{1 + {e^v}}}\]

\[y\dfrac{{dv}}{{dy}} = \dfrac{{ - {e^v} + v{e^v}}}{{1 + {e^v}}} - v\]

\[y\dfrac{{dv}}{{dy}} = \dfrac{{ - {e^v} + v{e^v} - v - v{e^v}}}{{1 + {e^v}}}\]

\[y\dfrac{{dv}}{{dy}} = \dfrac{{ - {e^v} - v}}{{1 + {e^v}}}\]

\[y\dfrac{{dv}}{{dy}} =  - \left[ {\dfrac{{{e^v} + v}}{{1 + {e^v}}}} \right]\]

\[\left[ {\dfrac{{1 + {e^v}}}{{{e^v} + v}}} \right]dv =  - \dfrac{1}{y}dy\]

Taking integration on both side,

\[\int {\left[ {\dfrac{{1 + {e^v}}}{{{e^v} + v}}} \right]dv}  =  - \int {\dfrac{1}{y}dy} \]

On integrating both side,

\[\log \left( {v + {e^v}} \right) =  - \log y + \log C\]

Substituting the value of \[v = \dfrac{x}{y}\].

\[\log \left( {\dfrac{x}{y} + {e^{\dfrac{x}{y}}}} \right) =  - \log y + \log C\]

\[\log \left( {\dfrac{x}{y} + {e^{\dfrac{x}{y}}}} \right) = \log \left( {\dfrac{C}{y}} \right)\]

\[\dfrac{x}{y} + {e^{\dfrac{x}{y}}} = \dfrac{C}{y}\]

\[x + y{e^{\dfrac{x}{y}}} = C\]

This is the required differential equation.

11. Solve the differential equation \[\left( {x + y} \right)dy + \left( {x - y} \right)dx = 0;{\text{ }}y = 1;x = 1\]

Ans: After rearranging the given equation we get,

\[\dfrac{{dy}}{{dx}} =  - \dfrac{{\left( {x - y} \right)}}{{\left( {x + y} \right)}}\]

It is a homogeneous differential equation.

To solve this problem, we will make the substitution.

\[y = vx\]

Differentiating equation w.r.t. \[x\], we get

\[\dfrac{{dy}}{{dx}} = v + x\dfrac{{dv}}{{dx}}\]

Substituting \[y = vx\] and \[\dfrac{{dy}}{{dx}}\] in the above equation, we get

\[v + x\dfrac{{dv}}{{dx}} =  - \dfrac{{\left( {x - vx} \right)}}{{\left( {x + vx} \right)}}\]

\[v + x\dfrac{{dv}}{{dx}} =  - \dfrac{{\left( {1 - v} \right)}}{{\left( {1 + v} \right)}}\]

\[x\dfrac{{dv}}{{dx}} =  - \dfrac{{\left( {1 - v} \right)}}{{\left( {1 + v} \right)}} - v\]

\[x\dfrac{{dv}}{{dx}} = \dfrac{{ - 1 + v - v - {v^2}}}{{1 + v}}\]

\[x\dfrac{{dv}}{{dx}} = \dfrac{{ - 1 - {v^2}}}{{1 + v}}\]

\[\dfrac{{1 + v}}{{1 + {v^2}}}dv =  - \dfrac{1}{x}dx\]

Taking integration on both side,

\[\int {\dfrac{{1 + v}}{{1 + {v^2}}}dv}  =  - \int {\dfrac{1}{x}dx} \]

\[\int {\dfrac{1}{{1 + {v^2}}}dv}  + \int {\dfrac{v}{{1 + {v^2}}}dv}  =  - \int {\dfrac{1}{x}dx} \]

\[{\tan ^{ - 1}}v + \dfrac{1}{2}\log \left( {1 + {v^2}} \right) =  - \log x + C\]

Substituting the value of \[v = \dfrac{y}{x}\].

\[{\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right) - \dfrac{1}{2}\log \left( {1 + {{\left( {\dfrac{y}{x}} \right)}^2}} \right) =  - \log x + C\]

\[y = 1\]

When

\[x = 1\]

\[{\tan ^{ - 1}}\left( {\dfrac{1}{1}} \right) + \dfrac{1}{2}\log \left( {1 + {{\left( {\dfrac{1}{1}} \right)}^2}} \right) =  - \log 1 + C\]

\[\dfrac{\pi }{4} + \dfrac{1}{2}\log \left( 2 \right) = C\]

Therefore, the final solution becomes,

\[{\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right) + \dfrac{1}{2}\log \left( {1 + {{\left( {\dfrac{y}{x}} \right)}^2}} \right) =  - \log x + \dfrac{\pi }{4} + \dfrac{1}{2}\log \left( 2 \right)\]

\[2{\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right) + \log \left( {\dfrac{{{x^2} + {y^2}}}{{{x^2}}}} \right) =  - 2\log x + 2 \times \dfrac{\pi }{4} + 2 \times \dfrac{1}{2}\log \left( 2 \right)\]

\[2{\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right) + \log \left( {\dfrac{{{x^2} + {y^2}}}{{{x^2}}}} \right) =  - \log {x^2} + \dfrac{\pi }{2} + \log \left( 2 \right)\]

\[2{\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right) + \log \left( {\dfrac{{{x^2} + {y^2}}}{{{x^2}}}} \right) + \log {x^2} =  + \dfrac{\pi }{2} + \log \left( 2 \right)\]

\[2{\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right) + \log \left( {\dfrac{{{x^2} + {y^2}}}{{{x^2}}} \times {x^2}} \right) =  + \dfrac{\pi }{2} + \log \left( 2 \right)\]

\[2{\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right) + \log \left( {{x^2} + {y^2}} \right) = \dfrac{\pi }{2} + \log \left( 2 \right)\]

This is the required differential equation.

12. Solve the differential equation \[{x^2}dy + \left( {xy + {y^2}} \right)dx = 0\]; \[y = 1\] when \[x = 1\].

Ans: After rearranging the given equation we get,

\[\dfrac{{dy}}{{dx}} =  - \dfrac{{xy + {y^2}}}{{{x^2}}}\]

It is a homogeneous differential equation.

To solve this problem, we will make the substitution.

\[y = vx\]

Differentiating equation w.r.t. \[x\], we get

\[\dfrac{{dy}}{{dx}} = v + x\dfrac{{dv}}{{dx}}\]

Substituting \[y = vx\] and \[\dfrac{{dy}}{{dx}}\] in the above equation, we get

\[v + x\dfrac{{dv}}{{dx}} =  - \dfrac{{xvx + {{\left( {xv} \right)}^2}}}{{{x^2}}}\]

\[v + x\dfrac{{dv}}{{dx}} =  - \dfrac{{v{x^2} + {x^2}{v^2}}}{{{x^2}}}\]

\[v + x\dfrac{{dv}}{{dx}} =  - v - {v^2}\]

\[x\dfrac{{dv}}{{dx}} =  - v - {v^2} - v\]

\[x\dfrac{{dv}}{{dx}} =  - 2v - {v^2}\]

\[\dfrac{1}{{2v + {v^2}}}dv =  - \dfrac{1}{x}dx\]

Taking integration on both side,

\[\int {\dfrac{1}{{2v + {v^2}}}dv}  =  - \int {\dfrac{1}{x}dx} \]

\[\int {\dfrac{1}{{v\left( {2 + v} \right)}}dv}  =  - \int {\dfrac{1}{x}dx} \]

Dividing and multiplying above equation by 2.

\[\dfrac{1}{2}\int {\dfrac{2}{{v\left( {2 + v} \right)}}dv}  =  - \int {\dfrac{1}{x}dx} \]

\[\dfrac{1}{2}\int {\dfrac{{2 + v - v}}{{v\left( {2 + v} \right)}}dv}  =  - \int {\dfrac{1}{x}dx} \]

\[\dfrac{1}{2}\int {\dfrac{{2 + v}}{{v\left( {2 + v} \right)}}dv}  - \dfrac{1}{2}\int {\dfrac{v}{{v\left( {2 + v} \right)}}dv}  =  - \int {\dfrac{1}{x}dx} \]

\[\dfrac{1}{2}\int {\dfrac{1}{v}dv}  - \dfrac{1}{2}\int {\dfrac{1}{{\left( {2 + v} \right)}}dv}  =  - \int {\dfrac{1}{x}dx} \]

\[\dfrac{1}{2}\log v - \dfrac{1}{2}\log \left( {2 + v} \right) =  - \log x + \log C\]

\[\dfrac{1}{2}\log \left( {\dfrac{v}{{2 + v}}} \right) = \log \dfrac{C}{x}\]

\[\log \left( {\dfrac{v}{{2 + v}}} \right) = 2\log \dfrac{C}{x}\]

\[\log \left( {\dfrac{v}{{2 + v}}} \right) = \log {\left( {\dfrac{C}{x}} \right)^2}\]

\[\dfrac{v}{{2 + v}} = {\left( {\dfrac{C}{x}} \right)^2}\]

Substituting the value of \[v = \dfrac{y}{x}\].

\[\dfrac{{\dfrac{y}{x}}}{{2 + \dfrac{y}{x}}} = {\left( {\dfrac{C}{x}} \right)^2}\]

\[\dfrac{{\dfrac{y}{x}}}{{\dfrac{{2x + y}}{x}}} = {\left( {\dfrac{C}{x}} \right)^2}\]

\[\dfrac{y}{{2x + y}} = {\left( {\dfrac{C}{x}} \right)^2}\]

\[y = 1\]

When

\[x = 1\]

\[\dfrac{1}{{2.1 + 1}} = {\left( {\dfrac{C}{1}} \right)^2}\]

\[\dfrac{1}{3} = {C^2}\]

Therefore, the final solution becomes,

\[\dfrac{y}{{2x + y}} = {\left( {\dfrac{C}{x}} \right)^2}\]

\[\dfrac{y}{{2x + y}} = \dfrac{{{C^2}}}{{{x^2}}}\]

\[\dfrac{{y{x^2}}}{{2x + y}} = {C^2}\]

\[\dfrac{{y{x^2}}}{{2x + y}} = \dfrac{1}{3}\]

\[2x + y = 3y{x^2}\]

This is the required differential equation.

13. Solve the differential equation \[\left[ {x{{\sin }^2}\left( {\dfrac{y}{x}} \right) - y} \right]dx + xdy = 0\]; \[y = \dfrac{\pi }{4}\] when \[x = 1\].

Ans: After rearranging the given equation we get,

\[\dfrac{{dy}}{{dx}} =  - \dfrac{{\left[ {x{{\sin }^2}\left( {\dfrac{y}{x}} \right) - y} \right]}}{x}\]

It is a homogeneous differential equation.

To solve this problem, we will make the substitution.

\[y = vx\]

Differentiating equation w.r.t. \[x\], we get

\[\dfrac{{dy}}{{dx}} = v + x\dfrac{{dv}}{{dx}}\]

Substituting \[y = vx\] and \[\dfrac{{dy}}{{dx}}\] in the above equation, we get

\[v + x\dfrac{{dv}}{{dx}} =  - \dfrac{{\left[ {x{{\sin }^2}\left( {\dfrac{{vx}}{x}} \right) - vx} \right]}}{x}\]

\[v + x\dfrac{{dv}}{{dx}} =  - {\sin ^2}\left( v \right) + v\]

\[x\dfrac{{dv}}{{dx}} =  - {\sin ^2}\left( v \right) + v - v\]

\[x\dfrac{{dv}}{{dx}} =  - {\sin ^2}\left( v \right)\]

\[\dfrac{1}{{{{\sin }^2}\left( v \right)}}dv =  - \dfrac{1}{x}dx\]

\[\cos e{c^2}vdv =  - \dfrac{1}{x}dx\]

Taking integration on both side,

\[\int {\cos e{c^2}vdv}  =  - \int {\dfrac{1}{x}dx} \]

\[ - \cot v =  - \log x - \log C\]

\[\cot v = \log x + \log C\]

\[\cot v = \log xC\]

Substituting the value of \[v = \dfrac{y}{x}\].

\[\cot \left( {\dfrac{y}{x}} \right) = \log xC\]

\[y = \dfrac{\pi }{4}\]

When

\[x = 1\]

\[\cot \left( {\dfrac{{\dfrac{\pi }{4}}}{1}} \right) = \log 1C\]

\[\cot \left( {\dfrac{\pi }{4}} \right) = \log C\]

\[1 = \log C\]

\[{e^1} = C\]

\[e = C\]

Therefore, final solution becomes,

\[\cot \left( {\dfrac{y}{x}} \right) = \log \left| {xe} \right|\]

This is the required differential equation.

14. Solve the differential equation \[\dfrac{{dy}}{{dx}} - \dfrac{y}{x} + \cos ec\left( {\dfrac{y}{x}} \right) = 0\]; \[y = 0\] when \[x = 1\].

Ans: After rearranging the given equation we get,

\[\dfrac{{dy}}{{dx}} = \dfrac{y}{x} - \cos ec\left( {\dfrac{y}{x}} \right)\]

It is a homogeneous differential equation.

To solve this problem, we will make the substitution.

\[y = vx\]

Differentiating equation w.r.t. \[x\], we get

\[\dfrac{{dy}}{{dx}} = v + x\dfrac{{dv}}{{dx}}\]

Substituting \[y = vx\] and \[\dfrac{{dy}}{{dx}}\] in the above equation, we get

\[v + x\dfrac{{dv}}{{dx}} = \dfrac{{vx}}{x} - \cos ec\left( {\dfrac{{vx}}{x}} \right)\]

\[v + x\dfrac{{dv}}{{dx}} = v - \cos ec\left( v \right)\]

\[x\dfrac{{dv}}{{dx}} =  - \cos ec\left( v \right)\]

\[\dfrac{1}{{\cos ec\left( v \right)}}dv =  - \dfrac{1}{x}dx\]

\[\sin vdv =  - \dfrac{1}{x}dx\]

Taking integration on both side,

\[\int {\sin vdv}  =  - \int {\dfrac{1}{x}dx} \]

\[ - \cos v =  - \log x + C\]

Substituting the value of \[v = \dfrac{y}{x}\].

\[ - \cos \left( {\dfrac{y}{x}} \right) =  - \log x + C\]

\[y = 0\]

When

\[x = 1\]

\[ - \cos \left( {\dfrac{0}{1}} \right) =  - \log 1 + C\]

\[ - 1 = C\]

Therefore, the final solution becomes,

\[ - \cos \left( {\dfrac{y}{x}} \right) =  - \log x - 1\]

\[\cos \left( {\dfrac{y}{x}} \right) = \log x + 1\]

\[\cos \left( {\dfrac{y}{x}} \right) = \log x + \log e\]

\[\cos \left( {\dfrac{y}{x}} \right) = \log \left| {xe} \right|\]

This is the required differential equation.

15. Solve the differential equation \[2xy + {y^2} - 2{x^2}\dfrac{{dy}}{{dx}} = 0\]; \[y = 2\] when \[x = 1\].

Ans: After rearranging the given equation we get,

\[\dfrac{{dy}}{{dx}} = \dfrac{{2xy + {y^2}}}{{2{x^2}}}\]

It is a homogeneous differential equation.

To solve this problem, we will make the substitution.

\[y = vx\]

Differentiating equation w.r.t. \[x\], we get

\[\dfrac{{dy}}{{dx}} = v + x\dfrac{{dv}}{{dx}}\]

Substituting \[y = vx\] and \[\dfrac{{dy}}{{dx}}\] in the above equation, we get

\[v + x\dfrac{{dv}}{{dx}} = \dfrac{{2xvx + {{\left( {vx} \right)}^2}}}{{2{x^2}}}\]

\[v + x\dfrac{{dv}}{{dx}} = \dfrac{{2{x^2}v + {v^2}{x^2}}}{{2{x^2}}}\]

\[v + x\dfrac{{dv}}{{dx}} = \dfrac{{2v + {v^2}}}{2}\]

\[x\dfrac{{dv}}{{dx}} = \dfrac{{2v + {v^2}}}{2} - v\]

\[x\dfrac{{dv}}{{dx}} = \dfrac{{2v + {v^2} - 2v}}{2}\]

\[x\dfrac{{dv}}{{dx}} = \dfrac{{{v^2}}}{2}\]

\[\dfrac{2}{{{v^2}}}dv = \dfrac{1}{x}dx\]

Taking integration on both side,

\[\int {\dfrac{2}{{{v^2}}}dv}  = \int {\dfrac{1}{x}dx} \]

\[ - \dfrac{2}{v} = \log x + C\]

Substituting the value of \[v = \dfrac{y}{x}\].

\[ - \dfrac{2}{{\dfrac{y}{x}}} = \log x + C\]

\[ - \dfrac{{2x}}{y} = \log x + C\]

\[y = 2\]

When

\[x = 1\]

\[ - \dfrac{{2.1}}{2} = \log 1 + C\]

\[ - 1 = C\]

Therefore, final solution becomes,

\[ - \dfrac{{2x}}{y} = \log x - 1\]

\[\dfrac{{2x}}{y} = 1 - \log x\]

\[y = \dfrac{{2x}}{{1 - \log x}}:x \ne e\] 

This is the required differential equation.

16. A homogeneous differential equation of the from \[\dfrac{{dx}}{{dy}} = h\left( {\dfrac{x}{y}} \right)\]can be solved by

making the substitution.

\[ \left( A \right)y = vx{\text{                      }}\left( B \right)v = yx\]

  \[\left( C \right)x = vy{\text{                      }}\left( D \right)x = v\]

Ans: As \[h\left( {\dfrac{x}{y}} \right)\] is function of \[\dfrac{x}{y}\]

Therefore, we have to substitute, \[x = vy\] .

So, the correct option is \[\left( C \right)\] .


17. Which of the following is a homogeneous differential equation?

\[\left( A \right)\left( {4x + 6y + 5} \right)dy - \left( {3y + 2x + 4} \right)dx = 0\]

\[\left( B \right)\left( {xy} \right)dx - \left( {{x^3} + {y^3}} \right)dy = 0\]

\[\left( C \right)\left( {{x^3} + 2{y^2}} \right)dx + 2xydy = 0\]

\[\left( D \right){y^2}dx + \left( {{x^2} - xy - {y^2}} \right)dy = 0\]

Ans: The correct option is \[\left( D \right)\] .

Explanation:

\[{y^2}dx + \left( {{x^2} - xy - {y^2}} \right)dy = 0\]

After rearranging the given equation we get,

\[\dfrac{{dx}}{{dy}} =  - \dfrac{{{x^2} - xy - {y^2}}}{{{y^2}}}\]

Let \[f\left( {x,y} \right) =  - \dfrac{{{x^2} - xy - {y^2}}}{{{y^2}}}\]

Now, put \[x = kx\] and \[y = ky\] 

\[f\left( {kx,ky} \right) =  - \dfrac{{{{\left( {kx} \right)}^2} - kxky - {{\left( {ky} \right)}^2}}}{{{{\left( {ky} \right)}^2}}}\]

\[f\left( {kx,ky} \right) =  - \dfrac{{{k^2}}}{{{k^2}}}\dfrac{{{x^2} - xy - {y^2}}}{{{y^2}}}\]

\[f\left( {kx,ky} \right) = {k^0}\left( { - \dfrac{{{x^2} - xy - {y^2}}}{{{y^2}}}} \right)\]

\[f\left( {kx,ky} \right) = {k^0}f\left( {x,y} \right)\]

Hence, the given differential equation is homogeneous.


NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations Exercise 9.5

Opting for the NCERT solutions for Ex 9.5 Class 12 Maths is considered as the best option for the CBSE students when it comes to exam preparation. This chapter consists of many exercises. Out of which we have provided the Exercise 9.5 Class 12 Maths NCERT solutions on this page in PDF format. You can download this solution as per your convenience or you can study it directly from our website/ app online.

Vedantu in-house subject matter experts have solved the problems/ questions from the exercise with the utmost care and by following all the guidelines by CBSE. Class 12 students who are thorough with all the concepts from the Maths textbook and quite well-versed with all the problems from the exercises given in it, then any student can easily score the highest possible marks in the final exam. With the help of this Class 12 Maths Chapter 9 Exercise 9.5 solutions, students can easily understand the pattern of questions that can be asked in the exam from this chapter and also learn the marks weightage of the chapter. So that they can prepare themselves accordingly for the final exam.

Besides these NCERT solutions for Class 12 Maths Chapter 9 Exercise 9.5, there are plenty of exercises in this chapter which contain innumerable questions as well. All these questions are solved/answered by our in-house subject experts as mentioned earlier. Hence all of these are bound to be of superior quality and anyone can refer to these during the time of exam preparation. In order to score the best possible marks in the class, it is really important to understand all the concepts of the textbooks and solve the problems from the exercises given next to it. 

Do not delay any more. Download the NCERT solutions for Class 12 Maths Chapter 9 Exercise 9.5 from Vedantu website now for better exam preparation. If you have the Vedantu app in your phone, you can download the same through the app as well. The best part of these solutions is these can be accessed both online and offline as well.


NCERT Solutions for Class 12 Maths PDF Download


Chapter 9 - Differential Equations Exercises in PDF Format

Exercise 9.1

12 Questions & Solutions (10 Short Answers, 2 MCQs)

Exercise 9.2

12 Questions & Solutions (10 Short Answers, 2 MCQs)

Exercise 9.3

12 Questions & Solutions (5 Short Answers, 5 Long Answers, 2 MCQs)

Exercise 9.4

23 Questions & Solutions (10 Short Answers, 12 Long Answers, 1 MCQs)

Exercise 9.5

17 Questions & Solutions (15 Short Answers, 2 MCQs)

Exercise 9.6

19 Questions & Solutions (15 Short Answers, 2 Long Answers, 2 MCQs)


Students can also download the following additional study material -