Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 12 Maths Chapter 5: Continuity and Differentiability - Exercise 5.5

ffImage
Last updated date: 17th Apr 2024
Total views: 574.5k
Views today: 9.74k

NCERT Solutions for Class 12 Maths Chapter 5 (Ex 5.5)

Class 12 Maths is a profound syllabus that contains crucial chapters based on the advanced concepts. These chapters are added for the knowledge development of the students. They will be able to prepare a strong foundation and score well in the board and competitive exams. The 5th Chapter of Class 12 Maths is based on continuity and differentiability. This new chapter can be solved by using the Ex 5.5 Class 12 Maths NCERT Solutions. The experienced Maths teachers of Vedantu have described the solutions to the particular exercise for the benefit of the students.


Class:

NCERT Solutions for Class 12

Subject:

Class 12 Maths

Chapter Name:

Chapter 5 - Continuity and Differentiability

Exercise:

Exercise - 5.5

Content-Type:

Text, Videos, Images and PDF Format

Academic Year:

2024-25

Medium:

English and Hindi

Available Materials:

  • Chapter Wise

  • Exercise Wise

Other Materials

  • Important Questions

  • Revision Notes



By following Exercise 5.5 Class 12 Maths NCERT Solutions, you can easily get hold of the new concepts and can use them to solve problems on your own. Develop your problem-solving skills by following the path paved by Exercise 5.5 Class 12 Maths and complete preparing this chapter.

Competitive Exams after 12th Science

Access NCERT Solutions for Class 12 Maths Chapter 5 – Continuity and Differentiability

Exercise 5.5

1. Find the derivative of the function $\text{y=cosx }\!\!\times\!\!\text{ cos2x }\!\!\times\!\!\text{ cos3x}$ with respect to $\mathbf{x}$.

Ans.

The given function is $\text{y=cosx }\!\!\times\!\!\text{ cos2x }\!\!\times\!\!\text{ cos3x}$.

First, taking logarithm both sides of the equation give,

$\text{logy=log(cosx }\!\!\times\!\!\text{ cos2x }\!\!\times\!\!\text{ cos3x)}$

$\Rightarrow \text{logy=log(cosx)+log(cos2x)+log(cos3x)}$, by the property of logarithm.

Now, differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{1}}{\text{y}}\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{1}}{\text{cosx}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(cosx)+}\dfrac{\text{1}}{\text{cos2x}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(cos2x)+}\dfrac{\text{1}}{\text{cos3x}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(cos3x)} $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=y}\left[ \text{-}\dfrac{\text{sinx}}{\text{cosx}}\text{-}\dfrac{\text{sin2x}}{\text{cos2x}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(2x)-}\dfrac{\text{sin3x}}{\text{cos3x}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(3x)} \right] $ 

Therefore,

$\dfrac{\text{dy}}{\text{dx}}\text{=-cos }\!\!\times\!\!\text{ cos2x }\!\!\times\!\!\text{ cos3x}\left[ \text{tanx+2tan2x+3tan3x} \right]$.

 2. Find the derivative of the function  $\mathbf{y=}\sqrt{\dfrac{\mathbf{(x-1)(x-2)}}{\mathbf{(x-3)(x-4)(x-5)}}}$  with respect to $\mathbf{x}$.

Ans.

The given function is $\text{y=}\sqrt{\dfrac{\text{(x-1)(x-2)}}{\text{(x-3)(x-4)(x-5)}}}$.

First taking logarithm both sides of the equation give

$\text{logy=log}\sqrt{\dfrac{\text{(x-1)(x-2)}}{\text{(x-3)(x-4)(x-5)}}} $ 

$\Rightarrow \text{logy=}\dfrac{\text{1}}{\text{2}}\text{log}\left[ \dfrac{\text{(x-1)(x-2)}}{\text{(x-3)(x-4)(x-5)}} \right] $ 

$\Rightarrow \text{logy=}\dfrac{\text{1}}{\text{2}}\left[ \text{log }\!\!\{\!\!\text{ (x-1)(x-2) }\!\!\}\!\!\text{ -log }\!\!\{\!\!\text{ (x-3)(x-4)(x-5) }\!\!\}\!\!\text{ } \right] $ 

$\Rightarrow \text{logy=}\dfrac{\text{1}}{\text{2}}\text{ }\!\![\!\!\text{ log(x-1)+log(x-2)-log(x-3)-log(x-4)-log(x-5) }\!\!]\!\!\text{ } $ 

Now, differentiating both sides of the equation with respect to $\text{x}$ give

$\dfrac{\text{dy}}{\text{dx}}=\dfrac{\text{1}}{\text{2}}\dfrac{\text{d}}{\text{dx}}\text{ }\!\![\!\!\text{ log(x-1)+log(x-2)-log(x-3)-log(x-4)-log(x-5) }\!\!]\!\!\text{ }$.

$\dfrac{\text{1}}{\text{y}}\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{1}}{\text{2}}\left[ \dfrac{\text{1}}{\text{x-1}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(x-1)+}\dfrac{\text{1}}{\text{x-2}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(x-2)-}\dfrac{\text{1}}{\text{x-3}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(x-3)-}\dfrac{\text{1}}{\text{x-4}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(x-4)} \right. $ 

$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left. \text{-}\dfrac{\text{1}}{\text{x-5}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(x-5)} \right] $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{y}}{\text{2}}\left( \dfrac{\text{1}}{\text{x-1}}\text{+}\dfrac{\text{1}}{\text{x-2}}\text{+}\dfrac{\text{1}}{\text{x-3}}\text{+}\dfrac{\text{1}}{\text{x-4}}\text{+}\dfrac{\text{1}}{\text{x-5}} \right)$

Therefore,

$\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{1}}{\text{2}}\sqrt{\dfrac{\text{(x-1)(x-2)}}{\text{(x-3)(x-4)(x-5)}}}\left[ \dfrac{\text{1}}{\text{x-1}}\text{+}\dfrac{\text{1}}{\text{x-2}}\text{+}\dfrac{\text{1}}{\text{x-3}}\text{+}\dfrac{\text{1}}{\text{x-4}}\text{+}\dfrac{\text{1}}{\text{x-5}} \right]$.

3. Find the derivative of the function $\text{y=(logx}{{\text{)}}^{\text{cosx}}}$ with respect to $\mathbf{x}$.

Ans.

The given function is $\text{y=(logx}{{\text{)}}^{\text{cosx}}}$.

First, taking logarithm both sides of the equation give 

$\text{logy=cosx}\text{.log(logx)}$.

Now, differentiating both sides of the equation with respect to $\text{x}$ give

$\dfrac{\text{1}}{\text{y}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\text{(cosx) }\!\!\times\!\!\text{ log(logx)+cosx }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\left[ \text{log(logx)} \right]$

$\Rightarrow \dfrac{\text{1}}{\text{y}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{dy}}{\text{dx}}\text{=-sinxlog(logx)+cosx }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{logx}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(logx)}$, by applying the chain rule.

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=y}\left[ \text{-sinxlog(logx)+}\dfrac{\text{cosx}}{\text{logx}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{x}} \right]$

Therefore,

$\dfrac{\text{dy}}{\text{dx}}\text{=(logx}{{\text{)}}^{\text{cosx}}}\left[ \dfrac{\text{cosx}}{\text{xlogx}}\text{-sin }\!\!\times\!\!\text{ log(logx)} \right]$.

4. Determine the derivative of the function $\text{y=}{{\text{x}}^{\mathbf{x}}}\text{-}{{\text{2}}^{\text{sinx}}}$ with respect to $\mathbf{x}$.

Ans.

The given function is $\text{y=}{{\text{x}}^{\text{x}}}\text{-}{{\text{2}}^{\text{sinx}}}$.

Now, let ${{\text{x}}^{\text{x}}}\text{=u}$                                                                      …… (1)

and ${{\text{2}}^{\text{sinx}}}\text{=v}$.                                                                           …… (2)

Therefore, $\text{y=u-v}$.                                                                 …… (3)

Then differentiating the equation (3) with respect to $\text{x}$ gives

$\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{du}}{\text{dx}}-\dfrac{\text{dv}}{\text{dx}}$                                                                       …… (4)

Now, taking logarithm both sides of the equation (1) give

$\text{log}\left( \text{u} \right)=\log \left( {{\text{x}}^{\text{x}}} \right) $ 

$\Rightarrow \log \text{u=xlogx} $ 

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{1}}{\text{u}}\dfrac{\text{du}}{\text{dx}}\text{=}\left[ \dfrac{\text{d}}{\text{dx}}\text{(x) }\!\!\times\!\!\text{ logx+x }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(logx)} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=u}\left[ \text{1 }\!\!\times\!\!\text{ logx+x }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{x}} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=}{{\text{x}}^{\text{x}}}\text{(logx+1)} $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=}{{\text{x}}^{\text{x}}}\text{(1+logx)}$                                                      …… (5) 

Now, taking logarithm both sides of the equation (2) give

$\text{log}\left( {{\text{2}}^{\text{sinx}}} \right)\text{=logv}$

$\Rightarrow \text{logv=sinx }\!\!\times\!\!\text{ log2}$.

Differentiating both sides of the equation with respect to $\text{x}$, give

$\dfrac{\text{1}}{\text{v}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{dv}}{\text{dx}}\text{=log2 }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(sinx}) $ 

$\Rightarrow \dfrac{\text{dv}}{\text{dx}}\text{=vlog2cosx} $ 

$\Rightarrow \dfrac{\text{dv}}{\text{dx}}\text{=}{{\text{2}}^{\text{sinx}}}\text{cosxlog2}$                                                 …… (6)      

Therefore, from the equation (4), (5) and (6) give

$\dfrac{\text{dy}}{\text{dx}}\text{=}{{\text{x}}^{\text{x}}}\text{(1+logx)-}{{\text{2}}^{\text{sinx}}}\text{cosxlog}2$.

5. Find the derivative of the function $\mathbf{y=(x+3}{{\mathbf{)}}^{\mathbf{2}}}{{\mathbf{(x+4)}}^{\mathbf{3}}}{{\mathbf{(x+5)}}^{\mathbf{4}}}$ with respect to $\mathbf{x}$.

Ans. 

The given function is $\text{y=(x+3}{{\text{)}}^{\text{2}}}{{\text{(x+4)}}^{\text{3}}}{{\text{(x+5)}}^{\text{4}}}$.

First, taking logarithm both sides of the equation give

$\text{logy=log}\left[ {{\text{(x+3)}}^{\text{2}}}{{\text{(x+4)}}^{\text{3}}}{{\text{(x+5)}}^{\text{4}}} \right]$

$\Rightarrow \text{logy=2log(x+3)+3log(x+4)+4log(x+5)}$

Now, differentiating both sides of the equation with respect to $\text{x}$, give

$\dfrac{\text{1}}{\text{y}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{dy}}{\text{dy}}\text{=2 }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{x-3}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dz}}\text{(x+3)+3 }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{x+4}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(x+4)+4 }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{x+5}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(x+5)} $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=y}\left[ \dfrac{\text{2}}{\text{x+3}}\text{+}\dfrac{\text{3}}{\text{x+4}}\text{+}\dfrac{\text{4}}{\text{x+5}} \right] $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=(x+3}{{\text{)}}^{\text{2}}}{{\text{(x+4)}}^{\text{3}}}{{\text{(x+5)}}^{\text{4}}}\text{ }\!\!\times\!\!\text{ }\left[ \dfrac{\text{2}}{\text{x+3}}\text{+}\dfrac{\text{3}}{\text{x+4}}\text{+}\dfrac{\text{4}}{\text{x+5}} \right] $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=(x+3}{{\text{)}}^{\text{2}}}{{\text{(x+4)}}^{\text{3}}}{{\text{(x+5)}}^{\text{4}}}\text{ }\!\!\times\!\!\text{ }\left[ \dfrac{\text{2(x+4)(x+5)+3(x+3)(x+5)+4(x+3)(x+4)}}{\text{(x+3)(x+4)(x+5)}} \right] $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=(x+3}{{\text{)}}^{\text{2}}}{{\text{(x+4)}}^{\text{2}}}{{\text{(x+5)}}^{\text{2}}}\text{-}\left[ \text{2(}{{\text{x}}^{\text{2}}}\text{+9x+20)+3(}{{\text{x}}^{\text{2}}}\text{+9x+15)+4(}{{\text{x}}^{\text{2}}}\text{+7x+12)} \right] $ 

Therefore,

$\dfrac{\text{dy}}{\text{dx}}\text{=(x+3)(x+4}{{\text{)}}^{\text{2}}}{{\text{(x+5)}}^{\text{3}}}\text{(9}{{\text{x}}^{\text{2}}}\text{+70x+133)}$.

6. Find the derivative of the function $\mathbf{y=}{{\left( \mathbf{x+}\dfrac{\mathbf{1}}{\mathbf{x}} \right)}^{\mathbf{x}}}\mathbf{+}{{\mathbf{x}}^{\left( \mathbf{1+}\dfrac{\mathbf{1}}{\mathbf{x}} \right)}}$ with respect to $\mathbf{x}$.

Ans.

The given function is $\text{y=}{{\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)}^{\text{x}}}\text{+}{{\text{x}}^{\left( \text{1+}\dfrac{\text{1}}{\text{x}} \right)}}$.

First, let $\text{u=}{{\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)}^{\text{x}}}$and $\text{v=}{{\text{x}}^{\left( \text{1+}\dfrac{\text{1}}{\text{x}} \right)}}$

Therefore, $\text{y=u+v}$.                                         …… (1)

Differentiating the equation (1) both sides with respect to $\text{x}$ give

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{du}}{\text{dx}}\text{=}\dfrac{\text{dv}}{\text{dx}}$ …... (2)

Now, $\text{u=}{{\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)}^{\text{x}}}$

$\Rightarrow \text{logu=log}{{\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)}^{\text{x}}}$

$\Rightarrow \text{logu=xlog}\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)$

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{1}}{\text{u}}\dfrac{\text{du}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\text{(x) }\!\!\times\!\!\text{ log}\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)\text{+x }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\left[ \text{log}\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right) \right] $ 

$\Rightarrow \dfrac{\text{1}}{\text{u}}\dfrac{\text{du}}{\text{dx}}\text{=1 }\!\!\times\!\!\text{ log}\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)\text{+x }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right) $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=u}\left[ \text{log}\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)\text{+}\dfrac{\text{x}}{\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)}\text{ }\!\!\times\!\!\text{ }\left( \text{x+}\dfrac{\text{1}}{{{\text{x}}^{\text{2}}}} \right) \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=}{{\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)}^{\text{x}}}\left[ \text{log}\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)\text{+}\dfrac{\left( \text{x-}\dfrac{\text{1}}{\text{x}} \right)}{\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=}{{\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)}^{\text{x}}}\left[ \text{log}\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)\text{+}\dfrac{{{\text{x}}^{\text{2}}}\text{+1}}{{{\text{x}}^{\text{2}}}\text{-1}} \right] $

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=}{{\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)}^{\text{2}}}\left[ \dfrac{{{\text{x}}^{\text{2}}}\text{+1}}{{{\text{x}}^{\text{2}}}\text{-1}}\text{+log}\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right) \right]$ …… (3)

Also, $\text{v=}{{\text{x}}^{\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)}}$

 $\Rightarrow \text{logv=log}\left[ {{\text{x}}^{{{\text{x}}^{\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)}}}} \right] $ 

$\Rightarrow \text{logv=}\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)\text{logx} $ 

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{1}}{\text{v}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{dv}}{\text{dx}}\text{=}\left[ \dfrac{\text{d}}{\text{dx}}\left( \text{1+}\dfrac{\text{1}}{\text{x}} \right) \right]\text{ }\!\!\times\!\!\text{ logx+}\left( \text{1+}\dfrac{\text{1}}{\text{x}} \right)\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{logx} $ 

$\Rightarrow \dfrac{\text{1}}{\text{v}}\dfrac{\text{dv}}{\text{dx}}\text{=-}\dfrac{\text{logx}}{{{\text{x}}^{\text{2}}}}\text{+}\dfrac{\text{1}}{\text{x}}\text{+}\dfrac{\text{1}}{{{\text{x}}^{\text{2}}}} $ 

$\Rightarrow \dfrac{\text{dv}}{\text{dx}}\text{=v}\left[ \dfrac{\text{-logx+x+1}}{{{\text{x}}^{\text{2}}}} \right]$           ……. (4)

Hence, from the equations (2), (3) and (4), give

$\dfrac{\text{dy}}{\text{dx}}\text{=}{{\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)}^{\text{x}}}\left[ \dfrac{{{\text{x}}^{\text{2}}}\text{-1}}{{{\text{x}}^{\text{2}}}\text{+1}}\text{+log}\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right) \right]\text{+}{{\text{x}}^{\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)}}\left( \dfrac{\text{x+1-logx}}{{{\text{x}}^{\text{2}}}} \right)$.

7. Determine derivative of the function $\mathbf{y=(logx}{{\mathbf{)}}^{\mathbf{x}}}\mathbf{+}{{\mathbf{x}}^{\mathbf{logx}}}$ with respect to $\mathbf{x}$.

Ans.

The given function is $\text{y=(logx}{{\text{)}}^{\text{x}}}\text{+}{{\text{x}}^{\text{logx}}}$.

Then, let $\text{u=(logx}{{\text{)}}^{\text{x}}}$ and $\text{v=}{{\text{x}}^{\text{logx}}}$.

Therefore, $\text{y=u+v}$.

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{du}}{\text{dx}}\text{+}\dfrac{\text{dv}}{\text{dx}}$                             ……. (1)

Now, $\text{u=(logx}{{\text{)}}^{\text{x}}}$

$\Rightarrow \text{logu=log}\left[ {{\text{(logx)}}^{\text{x}}} \right] $ 

$\Rightarrow \text{logu=xlog(logx)} $ 

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{1}}{\text{u}}\dfrac{\text{du}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\text{(x) }\!\!\times\!\!\text{ log(logx)+x }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\left[ \text{log(logx)} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=u}\left[ \text{1 }\!\!\times\!\!\text{ log(logx)+x }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{logx}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(logx)} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=(logx}{{\text{)}}^{\text{x}}}\left[ \text{log(logx)+}\dfrac{\text{x}}{\text{logx}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{x}} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=(logx}{{\text{)}}^{\text{x}}}\left[ \text{log(logx)+}\dfrac{\text{1}}{\text{logx}} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=(logx}{{\text{)}}^{\text{x}}}\text{=}\left[ \dfrac{\text{log(logx) }\!\!\times\!\!\text{ logx+1}}{\text{logx}} \right] $ 

$\dfrac{\text{du}}{\text{dx}}\text{=(logx}{{\text{)}}^{\text{x-1}}}\left[ \text{1+logx }\!\!\times\!\!\text{ log(logx)} \right]$ ……. (2)

Again, $\text{v=}{{\text{x}}^{\text{logx}}}$

$\Rightarrow \log \text{v=log}\left( {{\text{x}}^{\text{logx}}} \right) $ 

$\Rightarrow \log \text{v=logxlogx=}{{\left( \log \text{x} \right)}^{2}} $
Differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{1}}{\text{v}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{dx}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\left[ {{\text{(logx)}}^{\text{2}}} \right] $ 

$\Rightarrow \dfrac{\text{1}}{\text{v}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{dx}}{\text{dx}}\text{=2(logx) }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(logx)} $ 

$\Rightarrow \dfrac{\text{dv}}{\text{dx}}\text{=2}{{\text{x}}^{\text{logx}}}\dfrac{\text{logx}}{\text{x}} $ 

$\Rightarrow \dfrac{\text{dv}}{\text{dx}}\text{=2}{{\text{x}}^{\text{logx}}}\text{ }\!\!\times\!\!\text{ logx}$ ….…. (3)

Hence, from the equations (1), (2), and (3), gives

$\dfrac{\text{dy}}{\text{dx}}\text{=(logx}{{\text{)}}^{\text{x+1}}}\left[ \text{1+logx }\!\!\times\!\!\text{ log(logx)} \right]\text{+2}{{\text{x}}^{\text{logx-1}}}\text{ }\!\!\times\!\!\text{ logx}$.

8. Find the derivative of the function  $\mathbf{y=(sinx}{{\mathbf{)}}^{\mathbf{x}}}\mathbf{+si}{{\mathbf{n}}^{\mathbf{-1}}}\sqrt{\mathbf{x}}$ with respect to $\mathbf{x}$.

Ans.

The given function is $\text{y=(sinx}{{\text{)}}^{\text{x}}}\text{+si}{{\text{n}}^{\text{-1}}}\sqrt{\text{x}}$.

Now, let $\text{u=(sinx}{{\text{)}}^{\text{x}}}$ and $\text{v=si}{{\text{n}}^{\text{-1}}}\sqrt{\text{x}}$.

Therefore, $\text{y=u+v}$.

Then, differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{du}}{\text{dx}}\text{-}\dfrac{\text{dv}}{\text{dx}}$       …….. (1)

Now, $\text{u=(sinx}{{\text{)}}^{\text{x}}}$

$\Rightarrow \text{logu=xlog(sinx}{{\text{)}}^{\text{x}}} $ 

$\Rightarrow \text{logu=xlog(sinx)} $ 

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{1}}{\text{u}}\dfrac{\text{du}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\text{(x) }\!\!\times\!\!\text{ log(sinx)+x }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\left[ \text{log(sinx)} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=u}\left[ \text{1 }\!\!\times\!\!\text{ log(sinx)+x }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{sinx}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(sinx)} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=(sinx}{{\text{)}}^{\text{x}}}\left[ \text{log(sinx)+}\dfrac{\text{x}}{\text{sinx}}\text{ }\!\!\times\!\!\text{ cosx} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=(sinx}{{\text{)}}^{\text{x}}}\text{(xcotx+logsinx)}$ ….… (2)

Again,$\text{v=si}{{\text{n}}^{\text{-1}}}\sqrt{\text{x}}$.

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{dv}}{\text{dx}}\text{=}\dfrac{\text{1}}{\sqrt{\text{1-(}\sqrt{\text{x}}{{\text{)}}^{\text{2}}}}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(}\sqrt{\text{x}}\text{)} $ 

$\Rightarrow \dfrac{\text{dv}}{\text{dx}}\text{=}\dfrac{\text{1}}{\sqrt{\text{1-x}}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{2}\sqrt{\text{x}}} $ 

$\Rightarrow \dfrac{\text{dv}}{\text{dx}}\text{=}\dfrac{\text{1}}{\text{2}\sqrt{\text{x-}{{\text{x}}^{\text{2}}}}}$

Hence, from the equations (1), (2) and (3), gives

$\dfrac{\text{dv}}{\text{dx}}\text{=(sinx}{{\text{)}}^{\text{2}}}\text{(xcotx+logsinx)+}\dfrac{\text{1}}{\text{2}\sqrt{\text{x-}{{\text{x}}^{\text{2}}}}}$.

9. Find the derivative of the function $\mathbf{y=}{{\mathbf{x}}^{\mathbf{sinx}}}\mathbf{+(sinx}{{\mathbf{)}}^{\mathbf{cosx}}}$ with respect to $\mathbf{x}$.

Ans.

The given function is $\text{y=}{{\text{x}}^{\text{sinx}}}\text{+(sinx}{{\text{)}}^{\text{cosx}}}$.

Then, let $\text{u=}{{\text{x}}^{\text{sinx}}}$ and $\text{v=(sinx}{{\text{)}}^{\text{cosx}}}$.

Therefore, $\text{y=u+v}$.

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{du}}{\text{dx}}\text{-}\dfrac{\text{dv}}{\text{dx}}$               …… (1)

Now, $\text{u=}{{\text{x}}^{\text{sinx}}}$

$\Rightarrow \text{logu=xlog(}{{\text{x}}^{\text{sinx}}}\text{)} $ 

$\Rightarrow \text{logu=sinxlogx} $ 

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{1}}{\text{u}}\dfrac{\text{du}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\text{(sinx) }\!\!\times\!\!\text{ logx+sinx }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(logx)} $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=u=}\left[ \text{cosxlogx+sinx }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{x}} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=}{{\text{x}}^{\text{sinx}}}\left[ \text{cosxlogx+}\dfrac{\text{sinx}}{\text{x}} \right]$                     ….... (2)

Again, $\text{v=(sinx}{{\text{)}}^{\text{cosx}}}$

$\Rightarrow \text{logv=log(sinx}{{\text{)}}^{\text{cosx}}} $ 

$\Rightarrow \text{logv=cosxlog(sinx)} $ 

Then, differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{1}}{\text{v}}\dfrac{\text{dv}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\text{(cosx) }\!\!\times\!\!\text{ log(sinx)+cosx }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\left[ \text{log(sinx)} \right] $ 

$\Rightarrow \dfrac{\text{dv}}{\text{dx}}\text{=v}\left[ \text{-sinx }\!\!\times\!\!\text{ log(sinx)+cosx }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{sinx}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(sinx)} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=(sinx}{{\text{)}}^{\text{cosx}}}\left[ \text{-sinxlogsinx+cotxcosx} \right] $ 

$\Rightarrow \dfrac{\text{dv}}{\text{dx}}\text{=(sinx}{{\text{)}}^{\text{cosx}}}\text{ }\!\![\!\!\text{ cosxcotx+sinxlogsinx }\!\!]\!\!\text{ }$ …… (3)

Hence, from the equations (1), (2) and (3), gives

$\dfrac{\text{du}}{\text{dx}}\text{=}{{\text{x}}^{\text{sinx}}}\left( \text{cosxlogx+}\dfrac{\text{sinx}}{\text{x}} \right)\text{+(sinx}{{\text{)}}^{\text{cosx}}}\text{ }\!\![\!\!\text{ cosxcotx+sinxlogsinx }\!\!]\!\!\text{ }$.

10. Find the derivative function $\mathbf{y=}{{\mathbf{x}}^{\mathbf{xcosx}}}\mathbf{+}\dfrac{{{\mathbf{x}}^{\mathbf{2}}}\mathbf{+1}}{{{\mathbf{x}}^{\mathbf{2}}}\mathbf{-1}}$ with respect to $\mathbf{x}$.

Ans. 

The given function is $\text{y=}{{\text{x}}^{\text{xcosx}}}\text{+}\dfrac{{{\text{x}}^{\text{2}}}\text{+1}}{{{\text{x}}^{\text{2}}}\text{-1}}$.

First, let $\text{u=}{{\text{x}}^{\text{xcosx}}}$ and $\text{v=}\dfrac{{{\text{x}}^{\text{2}}}\text{+1}}{{{\text{x}}^{\text{2}}}\text{-1}}$.

Therefore, $\text{y=u+v}$.

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{du}}{\text{dx}}\text{-}\dfrac{\text{dv}}{\text{dx}}$ ……. (1)

Now, $\text{u=}{{\text{x}}^{\text{xcosx}}}$.

Then, differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{1}}{\text{u}}\dfrac{\text{du}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\text{(x) }\!\!\times\!\!\text{ cosxlogx+x }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(cosx) }\!\!\times\!\!\text{ logx+xcosx }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(logx)} $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=u}\left[ \text{1 }\!\!\times\!\!\text{ cosx }\!\!\times\!\!\text{ logx+x }\!\!\times\!\!\text{ (-sinx)logx+xcosx }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{x}} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=}{{\text{x}}^{\text{xcosx}}}\text{(cosxlogx-xsinxlogx+cosx})$ …… (2)

Again, $\text{v=}\dfrac{{{\text{x}}^{\text{2}}}\text{+1}}{{{\text{x}}^{\text{2}}}\text{-1}}$

$\Rightarrow \text{logv=log(}{{\text{x}}^{\text{2}}}\text{+1)-log(}{{\text{x}}^{\text{2}}}\text{-1)}$

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{1}}{\text{v}}\text{=}\dfrac{\text{dv}}{\text{dx}}\text{=}\dfrac{\text{2x}}{{{\text{x}}^{\text{2}}}\text{+1}}\text{-}\dfrac{\text{2x}}{{{\text{x}}^{\text{2}}}\text{-1}} $ 

$\Rightarrow \dfrac{\text{dv}}{\text{dx}}\text{=v}\left[ \dfrac{\text{2x(}{{\text{x}}^{\text{2}}}\text{-1)-2x(}{{\text{x}}^{\text{2}}}\text{+1)}}{\text{(}{{\text{x}}^{\text{2}}}\text{+1)(}{{\text{x}}^{\text{2}}}\text{-1)}} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=}\dfrac{{{\text{x}}^{\text{2}}}\text{+1}}{{{\text{x}}^{\text{2}}}\text{-1}}\text{ }\!\!\times\!\!\text{ }\left[ \dfrac{\text{-4x}}{\text{(}{{\text{x}}^{\text{2}}}\text{+1)(}{{\text{x}}^{\text{2}}}\text{-1)}} \right] $ 

$\Rightarrow \dfrac{\text{dv}}{\text{dx}}\text{=}\dfrac{\text{-4x}}{{{\text{(}{{\text{x}}^{\text{2}}}\text{-1)}}^{\text{2}}}}$ …….. (3)

Hence, from the equations (1), (2) and (3), give

$\dfrac{\text{dv}}{\text{dx}}\text{=}{{\text{x}}^{\text{xcosx}}}\left[ \text{cosx(1+logx)-xsinxlogx} \right]\text{-}\dfrac{\text{4x}}{{{\text{(}{{\text{x}}^{\text{2}}}\text{-1)}}^{\text{2}}}}$.

11. Find the derivative of the function $\mathbf{y=(xcosx}{{\mathbf{)}}^{\mathbf{x}}}\mathbf{+(xsinx}{{\mathbf{)}}^{\dfrac{\mathbf{1}}{\mathbf{x}}}}$ with respect to $\mathbf{x}$.

Ans.

The given function is $\text{y=(xcosx}{{\text{)}}^{\text{x}}}\text{+(xsinx}{{\text{)}}^{\dfrac{\text{1}}{\text{x}}}}$.

Then, let $\text{u=(xcosx}{{\text{)}}^{\text{x}}}$ and $\text{v=(xsinx}{{\text{)}}^{\dfrac{\text{1}}{\text{x}}}}$.

Therefore, $\text{y=u+v}$.

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{du}}{\text{dx}}\text{+}\dfrac{\text{dv}}{\text{dx}}$                                                         ……. (1)

Again, $\text{u=(cosx}{{\text{)}}^{\text{x}}}$

$\Rightarrow \text{logu=log(xcosx}{{\text{)}}^{\text{x}}} $ 

$\Rightarrow \text{logu=xlog(xcosx)} $ 

$\Rightarrow \text{logu=x }\!\![\!\!\text{ logx+logcosx }\!\!]\!\!\text{ } $ 

$\Rightarrow \text{logu=xlogx+xlogcosx} $ 

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{1}}{\text{u}}\dfrac{\text{du}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\text{(xlogx+xlogcosx)} $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=u}\left[ \left\{ \text{logx }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(x)+x }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(logx)} \right\}\text{+}\left\{ \text{logcosx }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(x)+x }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(logcosx)} \right\} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=(xcosx}{{\text{)}}^{\text{x}}}\left[ \left\{ \text{logx }\!\!\times\!\!\text{ 1+x }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{x}} \right\}\text{+}\left\{ \text{logcosx-1+x }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{cosx}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(cosx)} \right\} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=(xcosx}{{\text{)}}^{\text{x}}}\left[ \left\{ \text{logx+1} \right\}\text{+}\left\{ \text{logcosx-1+}\dfrac{\text{x}}{\text{cosx}}\text{ }\!\!\times\!\!\text{ (-sinx)} \right\} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=(xcosx}{{\text{)}}^{\text{x}}}\left[ \text{(logx+1)+(logcosx-xtanx)} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=(xcosx}{{\text{)}}^{\text{x}}}\left[ \text{1-xtanx+(logx+logcosx)} \right]$

Therefore,

$\dfrac{\text{du}}{\text{dx}}\text{=(xcosx}{{\text{)}}^{\text{x}}}\left[ \text{1-xtanx+(logx(xcosx)} \right]$   …….. (2)

Again, $\text{v=(xsinx}{{\text{)}}^{\dfrac{\text{1}}{\text{x}}}}$

$\Rightarrow \text{logv=log(xsinx}{{\text{)}}^{\dfrac{\text{1}}{\text{x}}}} $ 

$\Rightarrow \text{logv=}\dfrac{\text{1}}{\text{x}}\text{log(xsinx)} $ 

$\Rightarrow \text{logv=}\dfrac{\text{1}}{\text{x}}\text{(logx+logsinx)} $ 

$\Rightarrow \text{logv=}\dfrac{\text{1}}{\text{x}}\text{logx+}\dfrac{\text{1}}{\text{x}}\text{logsinx} $ 

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{1}}{\text{v}}\dfrac{\text{dv}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\left( \dfrac{\text{1}}{\text{x}}\text{logx} \right)\text{+}\dfrac{\text{d}}{\text{dx}}\left[ \dfrac{\text{1}}{\text{x}}\text{log(sinx)} \right] $ 

$\Rightarrow \dfrac{\text{1}}{\text{v}}\dfrac{\text{dv}}{\text{dx}}\text{=}\left[ \dfrac{\text{1}}{\text{x}}\text{logx }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\left( \dfrac{\text{1}}{\text{x}} \right)\text{+}\dfrac{\text{1}}{\text{x}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(logx)} \right]\text{+}\left[ \text{log(sinx) }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\left( \dfrac{\text{1}}{\text{x}} \right)\text{+}\dfrac{\text{1}}{\text{x}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\left\{ \text{(logsinx)} \right\} \right] $ 

$\Rightarrow \dfrac{\text{1}}{\text{v}}\dfrac{\text{dv}}{\text{dx}}\text{=}\left[ \dfrac{\text{1}}{\text{x}}\text{logx }\!\!\times\!\!\text{ }\left( \text{-}\dfrac{\text{1}}{{{\text{x}}^{\text{2}}}} \right)\text{+}\dfrac{\text{1}}{\text{x}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{x}} \right]\text{+}\left[ \text{log(sinx) }\!\!\times\!\!\text{ }\left( \text{-}\dfrac{\text{1}}{{{\text{x}}^{\text{2}}}} \right)\text{+}\dfrac{\text{1}}{\text{x}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{sinx}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(sinx)} \right] $ 

$\Rightarrow \dfrac{\text{1}}{\text{v}}\dfrac{\text{dv}}{\text{dx}}\text{=}\dfrac{\text{1}}{{{\text{x}}^{\text{2}}}}\text{(1-logx)+}\left[ \dfrac{\text{1-logx}}{{{\text{x}}^{\text{2}}}}\text{+}\dfrac{\text{1}}{\text{xsinx}}\text{ }\!\!\times\!\!\text{ cosx} \right] $ 

$\Rightarrow \dfrac{\text{1}}{\text{v}}\dfrac{\text{dv}}{\text{dx}}\text{=}\dfrac{\text{1}}{{{\text{x}}^{\text{2}}}}{{\text{(xsinx)}}^{\dfrac{\text{1}}{\text{x}}}}\text{+}\left[ \dfrac{\text{1-logx}}{{{\text{x}}^{\text{2}}}}\text{+}\dfrac{\text{-log(sinx)+xcotx}}{{{\text{x}}^{\text{2}}}} \right] $ 

$\Rightarrow \dfrac{\text{dv}}{\text{dx}}\text{=(xsinx}{{\text{)}}^{\dfrac{\text{1}}{\text{x}}}}\left[ \dfrac{1-\log x-\log (\sin x)+x\cot x}{{{\text{x}}^{\text{2}}}} \right] $ 

Therefore,

$\dfrac{\text{dv}}{\text{dx}}\text{=(xsinx}{{\text{)}}^{\dfrac{\text{1}}{\text{x}}}}\left[ \dfrac{\text{1-log(xsinx)+xcotx}}{{{\text{x}}^{\text{2}}}} \right]$ ……. (3)

Hence, from the equations (1), (2) and (3), gives

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=(xcosx}{{\text{)}}^{\text{2}}}\left[ \text{1-xtanx+log(xcosx)} \right]\text{+(xsinx}{{\text{)}}^{\dfrac{\text{1}}{\text{x}}}}\left[ \dfrac{\text{1-log(xsinx)+xcotx}}{{{\text{x}}^{\text{2}}}} \right]$.

12. Determine $\dfrac{\mathbf{dy}}{\mathbf{dx}}$ from the equation ${{\mathbf{x}}^{\mathbf{y}}}\mathbf{+}{{\mathbf{y}}^{\mathbf{x}}}\mathbf{=1}$.

Ans.

The given function is ${{\text{x}}^{\text{y}}}\text{+}{{\text{y}}^{\text{x}}}\text{=1}$.

Then, let ${{\text{x}}^{\text{y}}}\text{=u}$ and ${{\text{y}}^{\text{x}}}\text{=v}$.

Therefore, $\text{u+v=1}$.

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{du}}{\text{dx}}\text{+}\dfrac{\text{dv}}{\text{dy}}\text{=0}$

Now, $\text{u=}{{\text{x}}^{\text{y}}}$                             ……. (1)

$\Rightarrow \text{logu=log(}{{\text{x}}^{\text{y}}}\text{)} $ 

$\Rightarrow \text{logu=ylogx} $ 

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{1}}{\text{u}}\dfrac{\text{du}}{\text{dx}}\text{=logx}\dfrac{\text{dy}}{\text{dx}}\text{+y }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(logx)}$

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=u}\left[ \text{logx}\dfrac{\text{dy}}{\text{dx}}\text{+y }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{x}} \right]$

Therefore, $\dfrac{\text{du}}{\text{dx}}\text{=}{{\text{x}}^{\text{y}}}\left[ \text{logx}\dfrac{\text{dy}}{\text{dx}}\text{+}\dfrac{\text{y}}{\text{x}} \right]$ ………… (2)

Also, $\text{v=}{{\text{y}}^{\text{x}}}$

Taking logarithm both sides of the equation give

$\Rightarrow \text{logv=log(}{{\text{y}}^{\text{3}}}\text{)} $ 

$\Rightarrow \text{logv=xlogy} $ 

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{1}}{\text{v}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{dv}}{\text{dx}}\text{=logy }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(x)+x }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(logy)}$

$\Rightarrow \dfrac{\text{dv}}{\text{dx}}\text{=v}\left( \text{logy }\!\!\times\!\!\text{ 1+x }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{y}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{dy}}{\text{dx}} \right)$

Therefore, $\dfrac{\text{dv}}{\text{dx}}\text{=}{{\text{y}}^{\text{x}}}\left( \text{logy+}\dfrac{\text{x}}{\text{y}}\dfrac{\text{dy}}{\text{dx}} \right)$ ……... (3)

So, from the equation (1), (2) and (3), gives

${{\text{x}}^{\text{y}}}\left( \text{logx}\dfrac{\text{dy}}{\text{dx}}\text{+}\dfrac{\text{y}}{\text{x}} \right)\text{+}{{\text{y}}^{\text{x}}}\left( \text{logy+}\dfrac{\text{x}}{\text{y}}\dfrac{\text{dy}}{\text{dx}} \right)\text{=0} $ 

$\Rightarrow \left( {{\text{x}}^{\text{2}}}\text{+logx+x}{{\text{y}}^{\text{y-1}}} \right)\dfrac{\text{dy}}{\text{dx}}\text{=-}\left( \text{y}{{\text{x}}^{\text{y-1}}}\text{+}{{\text{y}}^{\text{x}}}\text{logy} \right) $ 

Hence, $\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{y}{{\text{x}}^{\text{y-1}}}\text{+}{{\text{y}}^{\text{x}}}\text{logy}}{{{\text{x}}^{\text{y}}}\text{logx+x}{{\text{y}}^{\text{x-1}}}}$.

13. Determine $\dfrac{\mathbf{dy}}{\mathbf{dx}}$ from the equation ${{\text{y}}^{\text{x}}}\text{=}{{\text{x}}^{\text{y}}}$.

Ans.

The given equation is ${{\text{y}}^{\text{x}}}\text{=}{{\text{x}}^{\text{y}}}$.

Then, taking logarithm both sides of the equation give

$\text{xlogy=ylogx}$.

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\text{logy }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(x)+x }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(logy)=logx }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(y)+y }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(logx)} $ 

$\Rightarrow \text{logy }\!\!\times\!\!\text{ 1+x }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{y}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{dy}}{\text{dx}}\text{=logx }\!\!\times\!\!\text{ }\dfrac{\text{dy}}{\text{dx}}\text{+y }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{x}} $ 

$\Rightarrow \text{logy+}\dfrac{\text{x}}{\text{y}}\dfrac{\text{dy}}{\text{dx}}\text{=logx}\dfrac{\text{dy}}{\text{dx}}\text{+}\dfrac{\text{y}}{\text{x}} $ 

$\Rightarrow \left( \dfrac{\text{x}}{\text{y}}\text{-logx} \right)\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{y}}{\text{x}}\text{-logy} $ 

$\Rightarrow \left( \dfrac{\text{x-ylogx}}{\text{y}} \right)\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{y-xlogy}}{\text{x}} $ 

$\Rightarrow \left( \dfrac{\text{x-ylogx}}{\text{y}} \right)\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{y-xlogy}}{\text{x}} $ 

Therefore, $\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{y}}{\text{x}}\left( \dfrac{\text{y-xlogy}}{\text{x-ylogx}} \right)$.

14. Determine $\dfrac{\mathbf{dy}}{\mathbf{dx}}$ from the equation ${{\text{(cosx)}}^{\text{y}}}\text{=(cosy}{{\text{)}}^{\text{x}}}$.

Ans.

The given equation is ${{\text{(cosx)}}^{\text{y}}}\text{=(cosy}{{\text{)}}^{\text{x}}}$.

Then, taking logarithm both sides of the equation give

$\text{ylogcosx=xlogcosy}$.

Now, differentiating both sides of the equation with respect to $\text{x}$ gives

$\text{logcosx }\!\!\times\!\!\text{ }\dfrac{\text{dy}}{\text{dx}}\text{+y }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(logcosx)=logcosy }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(x)+x }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(logcosy}) $ 

$\Rightarrow \text{logcosx}\dfrac{\text{dy}}{\text{dx}}\text{+}\dfrac{\text{y}}{\text{cosx}}\text{ }\!\!\times\!\!\text{ (-sinx)=logcosy+}\dfrac{\text{x}}{\text{cosy}}\text{(-siny) }\!\!\times\!\!\text{ }\dfrac{\text{dy}}{\text{dx}} $ 

$\Rightarrow \text{logcosx}\dfrac{\text{dy}}{\text{dx}}\text{-ytanx=logcosy-xtany}\dfrac{\text{dy}}{\text{dx}} $ 

$\Rightarrow \text{(logcosx+xtany)}\dfrac{\text{dy}}{\text{dx}}\text{=ytanx+logcosy} $ 

Therefore, $\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{ytanx+logcosy}}{\text{xtany+logcosx}}$.

15. Determine $\dfrac{\mathbf{dy}}{\mathbf{dx}}$ from the equation $\text{xy=}{{\text{e}}^{\text{(x-y)}}}$.

Ans. 

The given equation is $\text{xy=}{{\text{e}}^{\text{(x-y)}}}$.

Then, taking logarithm both sides of the equation give

$\text{log(xy)=log(}{{\text{e}}^{\text{x-y}}}\text{)} $ 

$\Rightarrow \text{logx+logy=(x-y)loge} $ 

$\Rightarrow \text{logx+logy=(x-y) }\!\!\times\!\!\text{ 1} $ 

$\Rightarrow \text{logx+logy=x-y} $ 

Now, differentiating both sides of the equation with respect to $\text{x}$ gives 

$\dfrac{\text{d}}{\text{dx}}\text{(logx)+}\dfrac{\text{d}}{\text{dx}}\text{(logy)=}\dfrac{\text{d}}{\text{dx}}\text{(x)-}\dfrac{\text{dy}}{\text{dx}} $ 

$\Rightarrow \dfrac{\text{1}}{\text{x}}\text{+}\dfrac{\text{1}}{\text{y}}\dfrac{\text{dy}}{\text{dx}}\text{=1-}\dfrac{\text{1}}{\text{x}} $ 

$\Rightarrow \left( \text{1+}\dfrac{\text{1}}{\text{y}} \right)\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{x-1}}{\text{x}} $ 

Therefore, $\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{y(x-1)}}{\text{x(x+1)}}$.

16. Determine the derivative of the following function $\mathbf{f}$ and hence evaluate $\mathbf{f'(1)}$. 

$\text{f(x)=(1+x)(1+}{{\text{x}}^{\text{2}}}\text{)(1+}{{\text{x}}^{\text{4}}}\text{)(1+}{{\text{x}}^{\text{8}}}\text{)}$.

Ans.

The given function is $\text{f(x)=(1+x)(1+}{{\text{x}}^{\text{2}}}\text{)(1+}{{\text{x}}^{\text{4}}}\text{)(1+}{{\text{x}}^{\text{8}}}\text{)}$.

By taking logarithm both sides of the equation give

$\text{logf(x)=log(1+x)+log(1+}{{\text{x}}^{\text{2}}}\text{)+log(1+}{{\text{x}}^{\text{4}}}\text{)+log(1+}{{\text{x}}^{\text{8}}}\text{)}$

Now, differentiating both sides of the equation with respect to $\text{x}$ gives $\dfrac{\text{1}}{\text{f(x)}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{ }\!\![\!\!\text{ f(x) }\!\!]\!\!\text{ =}\dfrac{\text{d}}{\text{dx}}\text{log(1+x)+}\dfrac{\text{d}}{\text{dx}}\text{log(1+}{{\text{x}}^{\text{2}}}\text{)+}\dfrac{\text{d}}{\text{dx}}\text{log(1+}{{\text{x}}^{\text{4}}}\text{)+}\dfrac{\text{d}}{\text{dx}}\text{log(1+}{{\text{x}}^{\text{8}}}\text{)} $ 

$\Rightarrow \dfrac{\text{1}}{\text{f(x)}}\text{ }\!\!\times\!\!\text{ f }\!\!'\!\!\text{ (x)=}\dfrac{\text{1}}{\text{1+x}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{dx}}\text{(1+x)+}\dfrac{\text{1}}{\text{1+}{{\text{x}}^{\text{2}}}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{log(1+}{{\text{x}}^{\text{2}}}\text{)+}\dfrac{\text{1}}{\text{1+}{{\text{x}}^{\text{4}}}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{log(1+}{{\text{x}}^{\text{4}}}\text{)} $ 

$\text{+}\dfrac{\text{1}}{\text{1+}{{\text{x}}^{\text{8}}}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{log(1+}{{\text{x}}^{\text{8}}}\text{)} $ 

$\Rightarrow \text{f }\!\!'\!\!\text{ (x)=f(x)}\left[ \dfrac{\text{1}}{\text{1+x}}\text{+}\dfrac{\text{1}}{\text{1+}{{\text{x}}^{\text{2}}}}\text{ }\!\!\times\!\!\text{ 2x+}\dfrac{\text{1}}{\text{1+}{{\text{x}}^{\text{4}}}}\text{ }\!\!\times\!\!\text{ 4}{{\text{x}}^{\text{3}}}\text{+}\dfrac{\text{1}}{\text{1+}{{\text{x}}^{\text{8}}}}\text{ }\!\!\times\!\!\text{ 8}{{\text{x}}^{\text{7}}} \right] $ 

Therefore,

$\text{f }\!\!'\!\!\text{ (x)=(1+x)(1+}{{\text{x}}^{\text{2}}}\text{)(1+}{{\text{x}}^{\text{4}}}\text{)(1+}{{\text{x}}^{\text{8}}}\text{)}\left[ \dfrac{\text{1}}{\text{1+x}}\text{+}\dfrac{\text{2x}}{\text{1+}{{\text{x}}^{\text{2}}}}\text{+}\dfrac{\text{4}{{\text{x}}^{\text{3}}}}{\text{1+}{{\text{x}}^{\text{4}}}}\text{+}\dfrac{\text{8}{{\text{x}}^{\text{7}}}}{\text{1+}{{\text{x}}^{\text{8}}}} \right]$

So, 

$\text{f }\!\!'\!\!\text{ (1)=(1+1)(1+}{{\text{1}}^{\text{2}}}\text{)(1+}{{\text{1}}^{\text{4}}}\text{)(1+}{{\text{1}}^{\text{8}}}\text{)}\left[ \dfrac{\text{1}}{\text{1+1}}\text{+}\dfrac{\text{2 }\!\!\times\!\!\text{ 1}}{\text{1+}{{\text{1}}^{\text{2}}}}\text{+}\dfrac{\text{4 }\!\!\times\!\!\text{ }{{\text{1}}^{\text{3}}}}{\text{1+}{{\text{1}}^{\text{4}}}}\text{+}\dfrac{\text{8 }\!\!\times\!\!\text{ }{{\text{1}}^{\text{7}}}}{\text{1+}{{\text{1}}^{\text{8}}}} \right] $ 

$\text{=2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2}\left[ \dfrac{\text{1}}{\text{2}}\text{+}\dfrac{\text{2}}{\text{2}}\text{+}\dfrac{\text{4}}{\text{2}}\text{+}\dfrac{\text{8}}{\text{2}} \right] $ 

$\text{=16 }\!\!\times\!\!\text{ }\left( \dfrac{\text{1+2+4+8}}{\text{2}} \right) $ 

$\text{=16 }\!\!\times\!\!\text{ }\dfrac{\text{15}}{\text{2}}\text{=120} $ 

Hence, $\text{{f}'}\left( \text{1} \right)\text{=120}$.

17. Differentiate the function $\mathbf{y=(}{{\mathbf{x}}^{\mathbf{2}}}\mathbf{-5x+8)(}{{\mathbf{x}}^{\mathbf{3}}}\mathbf{+7x+9)}$ in three ways as described below. Also, verify whether all the answers are the same. 

(a) By using product rules. 

Ans.

The given function is $\text{y=}\left( {{\text{x}}^{\text{2}}}\text{-5x+8} \right)\left( {{\text{x}}^{\text{3}}}\text{+7x+9} \right)$.

Now, let consider $\text{u=(}{{\text{x}}^{\text{2}}}\text{-5x+8)}$ and $\text{v=(}{{\text{x}}^{\text{3}}}\text{+7x+9)}$

Therefore, $\text{y=uv}$.

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{du}}{\text{dv}}\text{.v+u}\text{.}\dfrac{\text{du}}{\text{dx}} $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\text{(}{{\text{x}}^{\text{2}}}\text{-5x+8)}\text{.(}{{\text{x}}^{\text{3}}}\text{+7x+9)+(}{{\text{x}}^{\text{2}}}\text{-5x+8)}\text{.}\dfrac{\text{d}}{\text{dx}}\text{(}{{\text{x}}^{\text{3}}}\text{+7x+9)} $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=(2x-5)(}{{\text{x}}^{\text{3}}}\text{+7x+9)}\text{.(}{{\text{x}}^{\text{2}}}\text{-5x+8)(3}{{\text{x}}^{\text{2}}}\text{+7)} $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=2x(}{{\text{x}}^{\text{3}}}\text{+7x+9)-5(}{{\text{x}}^{\text{2}}}\text{-5x+8)+}{{\text{x}}^{\text{2}}}\text{(3}{{\text{x}}^{\text{2}}}\text{+7)-5x(3}{{\text{x}}^{\text{2}}}\text{+7)-8(3}{{\text{x}}^{\text{2}}}\text{+7)} $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=(2}{{\text{x}}^{\text{4}}}\text{+14}{{\text{x}}^{\text{2}}}\text{+18x)-5}{{\text{x}}^{\text{3}}}\text{-35x-45+(3}{{\text{x}}^{\text{4}}}\text{+7}{{\text{x}}^{\text{2}}}\text{)-15}{{\text{x}}^{\text{3}}}\text{-35x+24}{{\text{x}}^{\text{2}}}\text{+56} $ 

Hence, $\dfrac{\text{dy}}{\text{dx}}\text{=5}{{\text{x}}^{\text{4}}}\text{-20}{{\text{x}}^{\text{3}}}\text{+45}{{\text{x}}^{\text{2}}}\text{+52x+11}$.

(b) By expanding the factors as a polynomial.

Ans.

The given function is

$\text{y=(}{{\text{x}}^{\text{2}}}\text{-5x+8)(}{{\text{x}}^{\text{3}}}\text{+7x+9)}$.

Then, calculating the product, gives

$\text{y=}{{\text{x}}^{\text{2}}}\text{(}{{\text{x}}^{\text{3}}}\text{+7x+9)-5}{{\text{x}}^{\text{4}}}\text{(}{{\text{x}}^{\text{3}}}\text{+7x+9)+8(}{{\text{x}}^{\text{3}}}\text{+7x+9)} $ 

$\Rightarrow \text{y=}{{\text{x}}^{\text{5}}}\text{+7}{{\text{x}}^{\text{3}}}\text{+9}{{\text{x}}^{\text{2}}}\text{-5}{{\text{x}}^{\text{3}}}\text{-26}{{\text{x}}^{\text{2}}}\text{+11x+72} $ 

Now, differentiating both sides of the equation with respect to $\text{x}$ gives $\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\text{(}{{\text{x}}^{\text{5}}}\text{+7}{{\text{x}}^{\text{3}}}\text{+9}{{\text{x}}^{\text{2}}}\text{-5}{{\text{x}}^{\text{3}}}\text{-26}{{\text{x}}^{\text{2}}}\text{+11x+72)} $ 

$=\dfrac{\text{d}}{\text{dx}}\text{(}{{\text{x}}^{\text{5}}}\text{)-5}\dfrac{\text{d}}{\text{dx}}\text{(}{{\text{x}}^{\text{4}}}\text{)+15}\dfrac{\text{d}}{\text{dx}}\text{(}{{\text{x}}^{\text{3}}}\text{)-26}\dfrac{\text{d}}{\text{dx}}\text{(}{{\text{x}}^{\text{3}}}\text{)+11}\dfrac{\text{d}}{\text{dx}}\text{(x)+}\dfrac{\text{d}}{\text{dx}}\text{(72)} $ 

$\text{=5}{{\text{x}}^{\text{4}}}\text{-5 }\!\!\times\!\!\text{ 4}{{\text{x}}^{\text{3}}}\text{+15 }\!\!\times\!\!\text{ 3}{{\text{x}}^{\text{2}}}\text{-26 }\!\!\times\!\!\text{ 2x+11 }\!\!\times\!\!\text{ 1+0} $ 

Hence, $\dfrac{\text{dy}}{\text{dx}}\text{=5}{{\text{x}}^{\text{4}}}\text{-20}{{\text{x}}^{\text{3}}}\text{+45}{{\text{x}}^{\text{2}}}\text{-52x+11}$.

(c) By using a logarithmic function.

Ans.    

The given function is

$\text{y=(}{{\text{x}}^{\text{2}}}\text{-5x+8)(}{{\text{x}}^{\text{3}}}\text{+7x+9)}$.

Now, taking logarithm both sides of the function give

$\text{logy=log(}{{\text{x}}^{\text{2}}}\text{-5x+8)+log(}{{\text{x}}^{\text{3}}}\text{+7x+9)}$

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{1}}{\text{y}}\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\text{log(}{{\text{x}}^{\text{2}}}\text{-5x+8)+}\dfrac{\text{d}}{\text{dx}}\text{log(}{{\text{x}}^{\text{3}}}\text{+7x+9)} $ 

$\Rightarrow \dfrac{\text{1}}{\text{y}}\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{1}}{{{\text{x}}^{\text{2}}}\text{-5x+8}}\text{.}\dfrac{\text{d}}{\text{dx}}\text{(}{{\text{x}}^{\text{2}}}\text{-5x+8)+}\dfrac{\text{1}}{{{\text{x}}^{\text{3}}}\text{+7x+9}}\text{.}\dfrac{\text{d}}{\text{dx}}\text{(}{{\text{x}}^{\text{3}}}\text{+7x+9)} $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=y}\left[ \dfrac{\text{1}}{{{\text{x}}^{\text{2}}}\text{-5x+8}}\text{ }\!\!\times\!\!\text{ (2x-5)+}\dfrac{\text{1}}{{{\text{x}}^{\text{3}}}\text{+7x+9}}\text{ }\!\!\times\!\!\text{ (3}{{\text{x}}^{\text{2}}}\text{+7)} \right] $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=(}{{\text{x}}^{\text{2}}}\text{-5x+8)(}{{\text{x}}^{\text{3}}}\text{+7x+9)}\left[ \dfrac{\text{2x-5}}{{{\text{x}}^{\text{3}}}\text{-5x+8}}\text{+}\dfrac{\text{3}{{\text{x}}^{\text{2}}}\text{+7}}{{{\text{x}}^{\text{3}}}\text{+7x+9}} \right] $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=(}{{\text{x}}^{\text{2}}}\text{-5x+8)(}{{\text{x}}^{\text{3}}}\text{+7x+9)}\left[ \dfrac{\text{(2x-5)(}{{\text{x}}^{\text{3}}}\text{+7x+9)+(3}{{\text{x}}^{\text{2}}}\text{+7)(}{{\text{x}}^{\text{2}}}\text{-5x+8)}}{\text{(}{{\text{x}}^{\text{3}}}\text{-5x+8)+(}{{\text{x}}^{\text{3}}}\text{+7x+9)}} \right] $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=2x(}{{\text{x}}^{\text{3}}}\text{+7x+9}{{\text{x}}^{\text{2}}}\text{)-5(}{{\text{x}}^{\text{3}}}\text{+7x+9)+3}{{\text{x}}^{\text{2}}}\text{(}{{\text{x}}^{\text{2}}}\text{-5x+8)+7(}{{\text{x}}^{\text{3}}}\text{+7x+9)} $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=(2}{{\text{x}}^{\text{4}}}\text{+14}{{\text{x}}^{\text{2}}}\text{+18x)+(5}{{\text{x}}^{\text{3}}}\text{-35x+45)+(3}{{\text{x}}^{\text{4}}}\text{-15}{{\text{x}}^{\text{3}}}\text{+24}{{\text{x}}^{\text{2}}}\text{)+(7}{{\text{x}}^{\text{2}}}\text{+35x+56)} $ 

Therefore, $\dfrac{\text{dy}}{\text{dx}}\text{=5}{{\text{x}}^{\text{2}}}\text{-20}{{\text{x}}^{\text{3}}}\text{+45}{{\text{x}}^{\text{2}}}\text{-52x+11}$.

Hence, comparing the above three results, it is concluded that the derivative $\dfrac{\text{dy}}{\text{dx}}$ are the same for all methods.

18. Let $\mathbf{u}$, $\mathbf{v}$, and $\mathbf{w}$ are functions of $\mathbf{x}$ , then prove that $\dfrac{\text{d}}{\text{dx}}\text{(u}\text{.v}\text{.w)=}\dfrac{\text{du}}{\text{dx}}\text{v}\text{.w+u}\dfrac{\text{du}}{\text{dx}}\text{.w+u}\text{.v}\dfrac{\text{dw}}{\text{d}\mathbf{x}}$ in two ways. First by using repeated application of product rule and second by applying logarithmic differentiation. 

Ans.

Let the function $\text{y=u}\text{.v}\text{.w=u}\text{.(v}\text{.w)}$.

Then applying the product rule of derivatives, give

$\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{du}}{\text{dx}}\text{.(v}\text{.w)+u}\text{.}\dfrac{\text{d}}{\text{dx}}\text{(v}\text{.w)}$          

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{du}}{\text{dx}}\text{v}\text{.w+u}\left[ \dfrac{\text{dv}}{\text{dx}}\text{.w+v}\text{.}\dfrac{\text{dv}}{\text{dx}} \right]$        (Using the product rule again)

Thus,

$\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{du}}{\text{dx}}\text{v}\text{.w+u}\text{.}\dfrac{\text{dv}}{\text{dx}}\text{.w+u}\text{.v}\dfrac{\text{dw}}{\text{dx}}$.

Now, take the logarithm of both sides of the function $\text{y=u}\text{.v}\text{.w}$.

Then, we have $\text{logy=logu+logv+logw}$.

Differentiating both sides of the equation with respect to $\text{x}$ gives $\dfrac{\text{1}}{\text{y}}\text{.}\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\text{(logu)+}\dfrac{\text{d}}{\text{dx}}\text{(logv)+}\dfrac{\text{d}}{\text{dx}}\text{(logw)} $ 

$\Rightarrow \dfrac{\text{1}}{\text{y}}\text{.}\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{1}}{\text{u}}\dfrac{\text{du}}{\text{dx}}\text{+}\dfrac{\text{1}}{\text{v}}\dfrac{\text{dv}}{\text{dx}}\text{+}\dfrac{\text{1}}{\text{w}}\dfrac{\text{dw}}{\text{dx}} $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=y}\left( \dfrac{\text{1}}{\text{u}}\dfrac{\text{du}}{\text{dx}}\text{+}\dfrac{\text{1}}{\text{v}}\dfrac{\text{dv}}{\text{dx}}\text{+}\dfrac{\text{1}}{\text{w}}\dfrac{\text{dw}}{\text{dx}} \right) $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=u}\text{.v}\text{.w}\left( \dfrac{\text{1}}{\text{u}}\dfrac{\text{du}}{\text{dx}}\text{+}\dfrac{\text{1}}{\text{v}}\dfrac{\text{dv}}{\text{dx}}\text{+}\dfrac{\text{1}}{\text{w}}\dfrac{\text{dw}}{\text{dx}} \right) $ 

Hence, $\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{du}}{\text{dx}}\text{v}\text{.w+u}\dfrac{\text{du}}{\text{dx}}\text{.w+u}\text{.v}\dfrac{\text{dw}}{\text{dx}}$.


Class 12 Continuity and Differentiability Exercise 5.5

NCERT Solutions for Class 12 Math Chapter 5 Exercise 5.5. PDF given on this page consists of solutions for all the questions given in the exercise. These NCERT solutions are based on the latest Class 12 CBSE guidelines and are extremely helpful for quick revisions. Download the NCERT Solutions of Class 12 Math Chapter 5 Continuity and Differentiability Ex-5.5 and practise them for your exam preparations.


Topics Covered in NCERT Class 12 Maths Chapter 5 Exercise 5.5

Class 12 Maths Chapter 5 Exercise 5.5 covers sums based on the topic of Logarithmic Differentiation. Logarithm differentiation is a method of finding the derivative of a function. In this method, the derivative of a function is calculated simply by first finding the logarithm of a given function and then differentiating it.


The logarithm differentiation method is generally used when the value of a function is given in the form of y = f(x)g(x).


What are the Steps to Solve Logarithmic Differentiation?

The steps to calculate logarithm differentiation are discussed below.

  1. Take log on both sides

  2. Use log property to remove exponent

  3. Now differentiate the equation

  4. Simplify the obtained equation

  5. Substitute back the value of y in the equation


Summary of NCERT Solution of Maths Class 12 Chapter 5 Exercise 5.5

Mathematics is a very crucial subject for science students. It prepares the foundation for other subjects as well. Problem-solving and analytical skills are developed by solving the mathematical problems of the higher classes. It can be intimidating to solve the conceptual problems of the new chapters. This is why the students prefer using NCERT Solutions for Class 12 Maths Chapter 5.5. Chapter 5 Maths Class 12 Exercise 5.5 as it helps to check the problem-solving capabilities of a student who has just completed learning continuity and differentiability.  


Class 12 Mathematics has a huge syllabus for all subjects. It can be stressful to handle all the subjects at once. To overcome confusion, you need to be very intuitive while designing your study curriculum by using the NCERT Class 12 Maths Chapter 5 Exercise 5.5 Solutions. This is the right time to act smarter and develop a well-organized study plan. For this, you will need NCERT Solutions for Class 12 Maths Ex 5.5 to complete your study material and start studying accordingly.


After understanding the syllabus of this subject, you should consider dividing the chapters as per their weight in the board exams. If you check the importance of learning continuity and differentiability, you will find out how important it is to understand functions. You will discover how these new concepts will be used later in the advanced chapters of higher mathematics. To make your concepts clear, seek assistance from the NCERT Maths Class 12 Exercise 5.5 Solutions. Chapter 5 Class 12 Maths Exercise 5.5 will become very easy to comprehend. The concepts have been perfectly explained in a simpler language in the NCERT Solutions Class 12 Maths Chapter 5 Ex 5.5. You can be assured that Maths Class 12 Chapter 5 Exercise 5.5 will become very easy once you follow the footsteps of the expert teachers.


Benefits of Using Class 12 Maths NCERT Solutions Chapter 5 Exercise 5.5

Students of Class 12 prefer Vedantu as it is the ultimate portal to find the best solutions for Class 12th Maths Chapter 5 Exercise 5.5. As per the meritorious students, the prime reasons for referring to the Class 12 Maths Ex 5.5 Solutions are:


  • Properly Organized Study Material

There is a reason for referring to the 5.5 Class 12 Maths NCERT Solutions. These solutions help the students to find Class 12 Maths Ex 5.5 Solution in an organized way. They can easily find the solution to a particular problem right away.


  • Understanding the Concept

The new concepts can be overwhelming for the students when they have so many new things to learn and concentrate on. Class 12 Maths Ch 5 Ex 5.5 can be easily handled if you follow the solutions for Exercise 5.5 Class 12th Maths. The simplistic approach of defining the concepts will surely help you clear your doubts and easily.


  • Saving Time

Another motive of developing these Exercise 5.5 Class 12 Maths Solutions is to deliver convenience to the students. They will not have to wait for the mentors to solve a doubt. They can easily use the Class 12 Maths Exercise 5.5 Solutions to solve the exercise questions and proceed to the next level.


  • Increasing Efficiency

Class 12 Maths Chapter 5 Exercise 5.5 Solutions have been prepared by the top mentors to show you how to solve mathematical questions following the CBSE protocols. By practising from the Exercise 5.5 Maths Class 12 solutions, you can increase your efficiency.


Now is the time to work hard and smart. Use the Ex 5.5 Class 12 Maths NCERT Solutions to learn the chapter quickly and proceed to the advanced level of concepts.


NCERT Solutions for Class 12 Maths

 

Class 12 Maths Chapter 5 Exercises

Chapter 5 - Continuity and Differentiability Exercises in PDF Format

Exercise 5.1

34 Questions & Solutions (10 Short Answers, 24 Long Answers)

Exercise 5.2

10 Questions & Solutions (2 Short Answers, 8 Long Answers)

Exercise 5.3

15 Questions & Solutions (9 Short Answers, 6 Long Answers)

Exercise 5.4

10 Questions & Solutions (5 Short Answers, 5 Long Answers)

Exercise 5.6

11 Questions & Solutions (7 Short Answers, 4 Long Answers)

Exercise 5.7

17 Questions & Solutions (10 Short Answers, 7 Long Answers)

Exercise 5.8

6 Questions & Solutions (2 Short Answers, 4 Long Answers)

FAQs on NCERT Solutions for Class 12 Maths Chapter 5: Continuity and Differentiability - Exercise 5.5

1. Why should you use NCERT Solutions for Class 12 Maths Chapter 5 Exercise 5.5?

Class 12 Maths Chapter 5 Exercise 5.5 is a crucial part of the syllabus. You will learn how to use the concepts of continuity and differentiability in other subjects after practising using the solution.

2. Why prefer Vedantu to learn Continuity and Differentiability Exercise 5.5?

Vedantu provides the best Exercise 5.5 Class 12 Maths NCERT Solutions prepared by experienced teachers. They are aware of the common doubts that students face while learning the new concepts of continuity and differentiability. Find the exact answers to your doubts explained in a simpler way to complete Exercise 5.5 Class 12 Maths.

3. What are the benefits you will get if you refer to Class 12 Maths NCERT Solutions Chapter 5 Exercise 5.5?

The benefits are abundant when you refer to Class 12 Maths NCERT Solutions Chapter 5 Exercise 5.5 from Vedantu’s website . Firstly, the curriculum is based entirely on the guidelines set by CBSE (NCERT) books. The study material is properly presented and engages the students to study more. Scandal. These solutions can be downloaded free of cost to study offline as well. If you have any queries, you can reach the mentors and you can get the solutions of  Exercise 5.5 in a well-explained manner.

4. How is the study material of Class 12 Maths Chapter 5 prepared on ‘Vedantu’?

The study material of Class 12 Maths is prepared in a chapter-wise format on Vedantu. You won’t be getting any complaints regarding the content matter as the mentors here are the best who have a good experience profile in the specific subject field and are available to even clear your doubts. The solutions of Class 12 Chapter 5 are available free of cost on Vedantu website and the vedantu app.

5. Is Class 12 Chapter 5 Maths easy?

Maths can’t be easy until and unless you are thorough with the concept. However, Class 12 Maths Chapter 5 is not easy nor difficult. It is at a moderate level between easy and difficult. Apart from Chapter 5, some chapters are easy while the others need a little more hard work than the others. Mostly, students get good marks in Class 12 only with the help of solid preparation. If you don't prepare well it will be tougher.

6. How can I make a study plan for the Class 12 Maths Chapter 5?

For making the study plan for Class 12 Maths Chapter 5, divide everything into equal portions. Don’t try to swallow it on the go. Cut down the syllabus of Maths Class 12 Chapter 5 into proportions. Start from the easiest topic and then gradually jump to the toughest one as this will help to boost your confidence. Don’t skip a single day, maintain your speed and try to complete one exercise each day.

7. What is the importance of Class 12 Maths Chapter 5 Exercise 5.5?

Class 12 Maths Chapter 5 Exercise 5.5 is “Continuity and Differentiability”. This is a crucial year of the student's career. These topics help them perfect preparation for the board as well as the competitive exams. This particular chapter improves the students to think logically and also makes them capable of solving the problem. This chapter particularly helps the students who have just learnt the topic and will make them more comfortable with the practice of this exercise as there are a variety of numerical problems connected with the topic.