Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions For Class 10 Maths Chapter 6 Exercise 6.3 - Triangles

ffImage
widget title icon
Latest Updates

NCERT Solutions for Class 10 Maths Chapter 6 Triangles Exercise 6.3- FREE PDF Download

The NCERT Solutions for Class 10 Triangles Exercise 6.3 Maths Chapter 6 explains detailed answers to the exercises given. These solutions are designed to help students prepare for their CBSE Class 10 board exams. It's important for students to go through these solutions carefully as they cover various types of questions related to Triangles. By practicing with these solutions, students can enhance their understanding and be better equipped to tackle similar questions in their Class 10 board exams.

toc-symbol
Table of Content
1. NCERT Solutions for Class 10 Maths Chapter 6 Triangles Exercise 6.3- FREE PDF Download
2. Glance on NCERT Solutions Maths Chapter 6 Exercise 6.3 Class 10 | Vedantu
3. Access Class 10 Maths NCERT Solutions Chapter 6 Triangles Exercise 6.3
4. Class 10 Maths Chapter 6: Exercises Breakdown
5. CBSE Class 10 Maths Chapter 6 Other Study Materials
6. Chapter-Specific NCERT Solutions for Class 10 Maths
7. NCERT Study Resources for Class 10 Maths
FAQs


Glance on NCERT Solutions Maths Chapter 6 Exercise 6.3 Class 10 | Vedantu

  • Class 10 Maths Chapter 6 Exercise 6.3 covers understanding the different types of triangles based on their sides and angles. 

  • The solutions will delve into Proving two triangles similar based on given angle measures.

  • Determining the ratio of corresponding sides in similar triangles.

  • Applying the relevant theorems and formulas to prove triangles are similar.

  • Finding missing lengths or angles in similar triangles using the given ratio of sides.

  • It explains the criteria for determining if two triangles are similar, such as the Angle-Angle (AA), Side-Side-Side (SSS), and Side-Angle-Side (SAS) criteria. 

  • The exercise also delves into the concept of proportionality in triangles, showing how the corresponding sides of similar triangles are in proportion. 

  • Exercise 6.3 class 10 NCERT solutions has over all 16 Questions & Solutions (12 Short Answers, 4 Long Answers).

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
Watch videos on

NCERT Solutions For Class 10 Maths Chapter 6 Exercise 6.3 - Triangles
Previous
Next
Vedantu 9&10
Subscribe
Download Notes
iconShare
TRIANGLES Class 10 in One Shot (Complete Chapter) | CBSE 10 Maths Chapter 6 - Term 1 Exam | Vedantu
7.9K likes
133.8K Views
3 years ago
Vedantu 9&10
Subscribe
Download Notes
iconShare
TRIANGLES L-1 (Similarity and Criteria for Similarity) CBSE Class 10 Math Chapter 6 | 1st Term Exam
6.4K likes
166.4K Views
3 years ago

Access Class 10 Maths NCERT Solutions Chapter 6 Triangles Exercise 6.3

1. State which pairs of triangles in the following figure are similar? Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form:


the different types of triangles


Ans: 

  1. In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$

$\angle \mathrm{A}=\angle \mathrm{P}$

$\angle \mathrm{B}=\angle \mathrm{Q}$

$\angle \mathrm{C}=\angle \mathrm{R}$

$\therefore$ By AAA criterion of similarity, $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$

  1. In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{QRP}$

$\frac{\mathrm{AB}}{\mathrm{QR}}=\frac{\mathrm{BC}}{\mathrm{RP}}=\frac{\mathrm{AC}}{\mathrm{QP}}=\frac{1}{2}$

$\therefore$ By SSS criterion of similarity, $\triangle \mathrm{ABC} \sim \triangle \mathrm{QRP}$

  1. In $\triangle \mathrm{LMP}$ and $\triangle \mathrm{DEF}$

$\frac{\mathrm{LM}}{\mathrm{DE}}=\frac{2.7}{4}, \frac{\mathrm{LP}}{\mathrm{DF}}=\frac{1}{2}$

The sides are not in the equal ratios, Hence the two triangles are not similar.

  1. In $\triangle \mathrm{MNL}$ and $\triangle \mathrm{QPR}$

$\angle \mathrm{M}=\angle \mathrm{Q}$

$\frac{\mathrm{MN}}{\mathrm{QP}}=\frac{\mathrm{ML}}{\mathrm{QR}}=\frac{1}{2}$

$\therefore$ By SAS criterion of similarity, $\triangle \mathrm{MNL} \sim \triangle \mathrm{QP} \mathrm{R}$

  1. In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{EFD}$

$\angle \mathrm{A}=\angle \mathrm{F}, $

$\frac{AB}{FD}=\frac{BC}{FD}=\frac{1}{2}$

$\therefore$ By SAS criterion of similarity, $\triangle \mathrm{ABC} \sim \triangle \mathrm{EFD}$

  1. In $\triangle \mathrm{DEF}$ and $\triangle \mathrm{PQR}$

Since, sum of angles of a triangle is $180^{\circ}$, Hence, $\angle \mathrm{F}=30^{\circ}$ and $\angle \mathrm{P}=70^{\circ}$

$\angle \mathrm{D} =\angle \mathrm{P}$

$\angle \mathrm{E} =\angle \mathrm{Q}$

$\angle \mathrm{F} =\angle \mathrm{R}$

$\therefore$ By AAA criterion of similarity, $\triangle \mathrm{DEF} \sim \triangle \mathrm{PQR}$


2. In the following figure, $\Delta \mathrm{ODC} \sim \Delta \mathrm{OBA}, \angle \mathrm{BOC}=125^{\circ}$ and $\angle \mathrm{CDO}=70^{\circ}$. Find $\angle \mathrm{DOC}, \angle \mathrm{DCO}$ and $\angle \mathrm{OAB}$


In the following figure, Delta


Ans: Given:

$\triangle \mathrm{ODC} \sim \triangle \mathrm{OBA}$

$\angle \mathrm{BOC}=125^{\circ}$

$\angle \mathrm{CDO}=70^{\circ}$

To find: $\angle D O C, \angle D C O$ and $\angle O A B$

Sol: Here, $B D$ is a line,

So, we can apply a linear pair on it.

$\angle B O C+\angle D O C=180^{\circ} (Linear Pair)$

$125^{\circ}+\angle D O C=180^{\circ}$

$\angle D O C=180^{\circ}-125^{\circ}$

$\angle D O C=180^{\circ}-125^{\circ}$

$\angle D O C=55^{\circ}$

Now in $\triangle \mathrm{DCO}$

$\angle C D O+\angle D C O+\angle D O C=180^{\circ}$

$70^{\circ}+\angle D C O+55^{\circ}=180^{\circ}$

$125^{\circ}+\angle D C O=180^{\circ}$

$\angle D C O=180^{\circ}-125^{\circ}$

$\angle D C O=55^{\circ}$

Now it is given that

$\triangle O D C \sim \triangle O B A$

Hence,

$\angle \mathrm{DCO}=\angle \mathrm{OAB}$

$55^{\circ}=\angle \mathrm{OAB}$

$\angle \mathrm{OAB}=55^{\circ}$

Now in $\triangle \mathrm{DCO}$

$\angle \mathrm{CDO}+\angle \mathrm{DCO}+\angle \mathrm{DOC}=180^{\circ} \quad$ (Sum of all angles of triangle is $180^0$ 

$70^{\circ}+\angle \mathrm{DCO}+55^{\circ}=180^{\circ}$ 

$125^{\circ}+\angle \mathrm{DCO}=180^{\circ}$ 

$\angle \mathrm{DCO}=180^{\circ}-125^{\circ}$ $\angle \mathrm{DCO}=55^{\circ}$

Now, it is given that

$\Delta \mathrm{ODC} \sim \triangle \mathrm{OBA}$

Hence.

$\angle D C O=\angle O A B$(Corresponding angles of a similar triangles are equal)

$55^{\circ}=\angle O A B$


3. Diagonals AC and BD of a trapezium ABCD with AB \|DC intersect each other at the point $\mathrm{O}$. Using a similarity criterion for two triangles, show that $\frac{\mathrm{AO}}{\mathrm{OC}}=\frac{\mathrm{OB}}{\mathrm{OD}}$

Ans: In $\Delta \mathrm{DOC}$ and $\triangle \mathrm{BOA}$

$\angle C D O=\angle A B O$ (Alternate interior angles as $A B \| C D)$

$\angle \mathrm{DCO}=\angle \mathrm{BAO}$ (Alternate interior angles as $\mathrm{AB} \| \mathrm{CD})$

$\angle \mathrm{DOC}=\angle \mathrm{BOA}$ (Vertically opposite angles $)$

$\therefore \Delta \mathrm{DOC} \sim \Delta \mathrm{BOA}$ (AAA similarity criterion)

$\therefore \frac{\mathrm{DO}}{\mathrm{BO}}=\frac{\mathrm{OC}}{\mathrm{OA}} \quad($ Corresponding sides are proportional)

$\Rightarrow \frac{\mathrm{OA}}{\mathrm{OC}}=\frac{\mathrm{OB}}{\mathrm{OD}}$


4.  In the figure, $\frac{\mathrm{QR}}{\mathrm{QS}}=\frac{\mathrm{QT}}{\mathrm{PR}} \text { and } \angle 1=\angle 2 \text {.Show that } \Delta \mathrm{PQS} \sim \Delta \mathrm{TQR}$


In the figure ptqsr


Ans: In $\delta \mathrm{PQR}, \angle \mathrm{PQR}=\angle \mathrm{PRQ}$

$\therefore \mathrm{PQ}=\mathrm{PR}(\mathrm{i})$

Given 

$\frac{\mathrm{QR}}{\mathrm{QS}}=\frac{\mathrm{QT}}{\mathrm{PR}}$

Using (i), we obtain


In the figure ptqsr second


$\frac{\mathrm{QR}}{\mathrm{QS}}=\frac{\mathrm{QT}}{\mathrm{QP}}$

In $\triangle \mathrm{PQS}$ and $\triangle \mathrm{TQR}$,

$\frac{\mathrm{QR}}{\mathrm{QS}}=\frac{\mathrm{QT}}{\mathrm{QP}}[\text { [Using (ii) }]$

$\angle \mathrm{Q}=\angle \mathrm{Q}$

$\therefore \Delta \mathrm{PQS} \sim \Delta \mathrm{TQR} \quad[\text { SAS similarity criterion }]$


5. $\mathrm{S}$ and $\mathrm{T}$ are point on sides $\mathrm{PR}$ and $\mathrm{QR}$ of $\triangle \mathrm{PQR}$ such that $\angle \mathrm{P}=\angle \mathrm{RTS}$. Show that $\triangle \mathrm{RPQ} \sim \Delta \mathrm{RTS}$.

Ans: Given: $\Delta P Q R$

and the points $S$ and $T$ on sides PR and QR.

Such that $\angle P=\angle R T S$


S and T on sides PR and QR


To Prove: $\triangle \mathrm{RPQ} \sim \Delta$ RTS.

Proof:

In $\triangle \mathrm{RPQ}$ and $\triangle \mathrm{RTS}$.

$\angle P=\angle R T S$

(Given)

And $\angle \mathrm{PRQ}=\angle \mathrm{TRS}=\angle \mathrm{R}$

(Common)

So, $\triangle \mathrm{RPQ} \sim \Delta \mathrm{RTS}$.

(AA similarity)

Hence proved


6. In the following figure, if $\triangle \mathrm{ABE} \cong \triangle \mathrm{ACD}$, show that $\triangle \mathrm{ADE} \sim \Delta \mathrm{ABC}$.

Ans: 


the corresponding portions of two triangles


We know that the corresponding portions of two triangles that are congruent to each other are equal.

The two triangles are comparable if one of their angles is equal to one of the other triangle's angles, and the sides that include these angles are proportionate.

For two triangles, this is known as the SAS (Side - Angle - Side) similarity criteria.

In $\triangle \mathrm{ABE}$ and $\triangle \mathrm{ACD}$

$\mathrm{AD}=\mathrm{AE}(\triangle \mathrm{ABE} \cong \Delta \mathrm{ACD} \text { given }) \ldots \ldots \ldots \text { (1) }$

$\mathrm{AB}=\mathrm{AC}(\triangle \mathrm{ABE} \cong \triangle \mathrm{ACD} \text { given })$

Now Consider $\triangle A D E$ and $\triangle A B C$

and $\angle$ DAE $=\angle B A C$ (Common angle)

Thus, $\triangle$ ADE $\sim A$ ABC (SAS criterion)


7. In the following figure, altitudes $\mathrm{AD}$ and $\mathrm{CE}$ of $\Delta \mathrm{ABC}$ intersect each other at the point, P. Show, that:


two angles from one triangle are equivalent


  1. $\triangle \mathrm{AEP} \sim \Delta \mathrm{CDP}$

Ans: When two angles from one triangle are equivalent to two angles from another triangle, the two triangles are said to be comparable.

For two triangles, this is known as the AA similarity criteria.

In $\triangle \mathrm{AEP}$ and $\triangle \mathrm{CDP}$

$[\because \mathrm{CE} \perp \mathrm{AB}$ and $\mathrm{AD} \perp \mathrm{BC} ;$ altitudes $]$

$\angle A P E=\angle C P D$ (Vertically opposite angles)

$\Rightarrow \triangle$ AEP $\sim \triangle$ CPD (AA criterion)


  1. $\triangle \mathrm{ABD} \sim \Delta \mathrm{CBE}$

Ans: When two angles from one triangle are equivalent to two angles from another triangle, the two triangles are said to be comparable.

For two triangles, this is known as the AA similarity criteria.

In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{CBE}$

$\angle \mathrm{ADB}=\angle C E B=90^{\circ}$

$\angle \mathrm{ABD}=\angle C B E \text { (Common angle) }$

$\Rightarrow \triangle \mathrm{ABD} \sim \Delta C B E \text { (AA criterion) }$


  1. $\triangle \mathrm{AEP} \sim \triangle \mathrm{ADB}$

Ans: When two angles from one triangle are equivalent to two angles from another triangle, the two triangles are said to be comparable.

For two triangles, this is known as the AA similarity criteria.

In $\triangle \mathrm{AEP}$ and $\triangle \mathrm{ADB}$

$\angle \mathrm{AEP}=\angle \mathrm{ADB}=9 \mathrm{O}^{\circ}$

$\angle \mathrm{PAE}=\angle \mathrm{BAD} \text { (Common angle) }$

$\Rightarrow \triangle \mathrm{AEP} \sim \triangle \mathrm{ADB} \text { (AA criterion) }$


  1. $\Delta \mathrm{PDC} \sim \Delta \mathrm{BEC}$

Ans: When two angles from one triangle are equivalent to two angles from another triangle, the two triangles are said to be comparable.

For two triangles, this is known as the AA similarity criteria.

In $\triangle \mathrm{PDC}$ and $\triangle \mathrm{BEC}$

$\angle \mathrm{PDC}=\angle \mathrm{BEC}=9 \mathrm{O}^{\circ}$

$\angle \mathrm{PCD}=\angle \mathrm{BCE} \text { (Common angle) }$

$\Rightarrow \triangle \text { PDC } \sim \triangle \mathrm{BEC} \text { (AA criterion)}$


8. $\mathrm{E}$ is a point on the side AD produced of a parallelogram $\mathrm{ABCD}$ and $\mathrm{BE}$ intersects $\mathrm{CD}$ at $\mathrm{F}$. Show that $\triangle \mathrm{ABE} \sim \Delta \mathrm{CFB}$


Opposite angles of a parallelogram


Ans:

In $\triangle \mathrm{ABE}$ and $\triangle \mathrm{CFB}$,

$\angle \mathrm{A}=\angle \mathrm{C}$ (Opposite angles of a parallelogram)

$\angle \mathrm{AEB}=\angle \mathrm{CBF}$ (Alternate interior angles as $\mathrm{AE} \| \mathrm{BC})$

$\therefore \Delta \mathrm{ABE} \sim \Delta \mathrm{CFB}$ (By AA similarity criterion)


9. In the following figure, $\mathrm{ABC}$ and AMP are two right triangles, right angled at B and M respectively, prove that:


AMP are two right triangles, right angled at B and M


  1. $\Delta \mathrm{ABC} \sim \Delta \mathrm{AMP}$

  2. $\frac{\mathrm{CA}}{\mathrm{PA}}=\frac{\mathrm{BC}}{\mathrm{MP}}$

Ans: In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{AMP}$

$\angle \mathrm{ABC}=\angle \mathrm{AMP}\left(\operatorname{Each} 90^{\circ}\right)$ $\angle \mathrm{A}=\angle \mathrm{A}(\mathrm{Common})$

$\therefore \Delta \mathrm{ABC} \sim \Delta \mathrm{AMP}$ (By AA similarity criterion)

$\Rightarrow \frac{\mathrm{CA}}{\mathrm{PA}}=\frac{\mathrm{BC}}{\mathrm{MP}}$ (Corresponding sides of similar triangles are proportional)


10. $\mathrm{CD}$ and $\mathrm{GH}$ are respectively the bisectors of $\angle \mathrm{ACB}$ and $\angle \mathrm{EGF}$ such that $\mathrm{D}$ and $\mathrm{H}$ lie on sides $\mathrm{AB}$ and $\mathrm{FE}$ of $\triangle \mathrm{ABC}$ and $\triangle \mathrm{EFG}$ respectively. If $\triangle \mathrm{ABC} \sim$ $\Delta \mathrm{FEG}$, Show that:


two triangles for cadb


(i) $\frac{\mathrm{CD}}{\mathrm{GH}}=\frac{\mathrm{AC}}{\mathrm{FG}}$

Ans: $\text { It is given that } \triangle \mathrm{ABC} \sim \Delta \mathrm{FEG}.$

$\therefore \angle \mathrm{A}=\angle \mathrm{F}, \angle \mathrm{B}=\angle \mathrm{E}, \text { and } \angle \mathrm{ACB}=\angle \mathrm{FGE}$

$\text { Since, } \angle \mathrm{ACB}=\angle \mathrm{FGE} $

$\therefore \angle \mathrm{ACD}=\angle \mathrm{FGH} \text { (Angle bisector) } $

$\text { And, } \angle \mathrm{DCB}=\angle \mathrm{HGE} \text { (Angle bisector) } $

$\text { In } \triangle \mathrm{ACD} \text { and } \Delta \mathrm{FGH} \text {, }$

$\angle \mathrm{A}=\angle \mathrm{F} \text { (Proved above) }$

$\angle \mathrm{ACD}=\angle \mathrm{FGH} \text { (Proved above) }$

$\therefore \Delta \mathrm{ACD} \sim \Delta \mathrm{FGH} \text { (By AA similarity criterion) }$

$\Rightarrow \frac{\mathrm{CD}}{\mathrm{GH}}=\frac{\mathrm{AC}}{\mathrm{FG}}$


(ii) $\triangle \mathrm{DCB} \sim \Delta \mathrm{HGE}$

Ans: $\text { In } \triangle \mathrm{DCB} \text { and } \triangle \mathrm{HGE} \text {, } $

$\angle \mathrm{DCB}=\angle \mathrm{HGE} \text { (Proved above) } $

$\angle \mathrm{B}=\angle \mathrm{E} \text { (Proved above) } $

$\therefore \triangle \mathrm{DCB} \sim \triangle \mathrm{HGE} \text { (By AA similarity criterion) }$


(iii) $\triangle \mathrm{DCA} \sim \Delta \mathrm{HGF}$

Ans: In $\Delta \mathrm{DCA}$ and $\Delta \mathrm{HGF}$,

$\angle \mathrm{ACD}=\angle \mathrm{FGH}$ (Proved above)

$\angle A=\angle F$ (Proved above)

$\therefore \Delta \mathrm{DCA} \sim \Delta \mathrm{HGF}$ (By AA similarity criterion)


11. In the following figure, $\mathrm{E}$ is a point on side CB produced of an isosceles triangle $\mathrm{ABC}$ with $\mathrm{AB}=\mathrm{AC}$. If $\mathrm{AD} \perp \mathrm{BC}$ and $\mathrm{EF} \perp \mathrm{AC}$, prove that $\triangle \mathrm{ABD} \sim$ $\triangle \mathrm{ECF}$


an isosceles triangle


Ans: It is given that $\mathrm{ABC}$ is an isosceles triangle.

$\therefore \mathrm{AB}=\mathrm{AC}$

$\Rightarrow \angle \mathrm{ABD}=\angle \mathrm{ECF}$

In $\Delta \mathrm{ABD}$ and $\triangle \mathrm{ECF}$

$\angle \mathrm{ADB}=\angle \mathrm{EFC}\left(\operatorname{Each} 90^{\circ}\right)$

$\angle \mathrm{BAD}=\angle \mathrm{CEF}$ (Proved above)

$\therefore \Delta \mathrm{ABD} \sim \triangle \mathrm{ECF}$ (By using AA similarity criterion)


12. Sides $\mathrm{AB}$ and $\mathrm{BC}$ and median AD of a triangle $\mathrm{ABC}$ are respectively proportional to sides PQ and QR and median PM of $\triangle \mathrm{PQR}$ (see the given figure). Show that $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$.


proportional to sides PQ and QR and median PM of triangles


Ans: Median equally divides the opposite side.

$\therefore \mathrm{BD}=\frac{\mathrm{BC}}{2}$ and $\mathrm{QM}=\frac{\mathrm{QR}}{2}$

Given that,

$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{AD}}{\mathrm{PM}}$

$\Rightarrow \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\frac{1}{2} \mathrm{BC}}{\frac{1}{2} \mathrm{QR}}=\frac{\mathrm{AD}}{\mathrm{PM}}$

$\Rightarrow \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BD}}{\mathrm{QM}}=\frac{\mathrm{AD}}{\mathrm{PM}}$

In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{PQM}$,

$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BD}}{\mathrm{QM}}=\frac{\mathrm{AD}}{\mathrm{PM}} \text { (Proved above) }$

$\therefore \Delta \mathrm{ABD} \sim \Delta \mathrm{PQM}$ (By SSS similarity criterion)

$\Rightarrow \angle \mathrm{ABD}=\angle \mathrm{PQM}$ (Corresponding angles of similar triangles)

In $\triangle \mathrm{ABC}$ and $\Delta \mathrm{PQR}$,

$\angle \mathrm{ABD}=\angle \mathrm{PQM} \text { (Proved above) }$

$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}$

$\therefore \Delta \mathrm{ABC} \sim \Delta \mathrm{PQR}$ (By SAS similarity criterion)


13. $\mathrm{D}$ is a point on the side $\mathrm{BC}$ of a triangle $\mathrm{ABC}$ such that $\angle \mathrm{ADC}=\angle \mathrm{BAC}$. Show that $\mathrm{CA}^{2}= \mathrm{CB.CD}$


corresponding sides of similar triangles are in proportion


Ans: $\text { In } \triangle \mathrm{ADC} \text { and } \triangle \mathrm{BAC} \text {, }$

$\angle \mathrm{ADC}=\angle \mathrm{BAC}$ (Given) $\angle \mathrm{ACD}=\angle \mathrm{BCA}$ (Common angle)

$\therefore \Delta \mathrm{ADC} \sim \triangle \mathrm{BAC}$ (By AA similarity criterion)

We know that corresponding sides of similar triangles are in proportion. $\therefore \frac{\mathrm{CA}}{\mathrm{CB}}=\frac{\mathrm{CD}}{\mathrm{CA}}$ $\Rightarrow \mathrm{CA}^{2}=\mathrm{CB} \cdot \mathrm{CD}$


14. Sides $\mathrm{AB}$ and AC and median AD of a triangle $\mathrm{ABC}$ are respectively proportional to sides PQ and PR and median PM of another triangle PQR. Show that $\triangle \mathrm{ABC} \sim \Delta \mathrm{PQR}$


proportional to sides PQ and PR and median PM of another triangle PQR


Ans: Given that,

$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AC}}{\mathrm{PR}}=\frac{\mathrm{AD}}{\mathrm{PM}}$

Let us extend AD and PM up to point $E$ and $L$ respectively, such that $A D=$ DE and PM $=$ ML. 

Then, join $B$ to $E, C$ to $E, Q$ to $L$, and $R$ to $L .$


proportional to sides PQ and PR and median PM of another triangle PQR answer


We know that medians divide opposite sides.

Therefore, $\mathrm{BD}=\mathrm{DC}$ and $\mathrm{QM}=\mathrm{MR}$

Also, $\mathrm{AD}=\mathrm{DE}$ (By construction)

And, $\mathrm{PM}=\mathrm{ML}$ (By construction)

In quadrilateral ABEC, diagonals AE and BC bisect each other at point D. Therefore, quadrilateral ABEC is a parallelogram.

$\therefore \mathrm{AC}=\mathrm{BE}$ and $\mathrm{AB}=\mathrm{EC}$ (Opposite sides of a parallelogram are equal) Similarly, we can prove that quadrilateral PQLR is a parallelogram and PR = QL, $P Q=L R$

It was given that

$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AC}}{\mathrm{PR}}=\frac{\mathrm{AD}}{\mathrm{PM}}$

$\Rightarrow \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BE}}{\mathrm{QL}}=\frac{2 \mathrm{AD}}{2 \mathrm{PM}}$

$\Rightarrow \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BE}}{\mathrm{QL}}=\frac{\mathrm{AE}}{\mathrm{PL}}$

$\therefore \triangle \mathrm{ABE} \sim \triangle \mathrm{PQL}$ (By SSS similarity criterion)

We know that corresponding angles of similar triangles are equal.

$\therefore \angle \mathrm{BAE}=\angle \mathrm{QPL} \ldots$ (1)

Similarly, it can be proved that $\triangle \mathrm{AEC} \sim \triangle \mathrm{PLR}$ and

$\angle \mathrm{CAE}=\angle \mathrm{RPL} \ldots$ (2)

Adding equation (1) and (2), we obtain

$\angle \mathrm{BAE}+\angle \mathrm{CAE}=\angle \mathrm{QPL}+\angle \mathrm{RPL}$

$\Rightarrow \angle \mathrm{CAB}=\angle \mathrm{RPQ} \ldots$ (3)

In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$,

$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AC}}{\mathrm{PR}}$ (Given)

$\angle \mathrm{CAB}=\angle \mathrm{RPQ}[\mathrm{Using}$ equation $(3)]$

$\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ (By SAS similarity criterion)


15. A vertical pole of a length $6 \mathrm{~m}$ casts a shadow $4 \mathrm{~m}$ long on the ground and at the same time a tower casts a shadow $28 \mathrm{~m}$ long. Find the height of the tower.


the height of the tower


Ans: Let $\mathrm{AB}$ and $\mathrm{CD}$ be a tower and a pole respectively.

Let the shadow of $\mathrm{BE}$ and DF be the shadow of $\mathrm{AB}$ and $\mathrm{CD}$ respectively.

At the same time, the light rays from the sun will fall on the tower and the pole at the same angle.

Therefore, $\angle \mathrm{DCF}=\angle \mathrm{BAE}$

And, $\angle \mathrm{DFC}=\angle \mathrm{BEA}$

$\angle \mathrm{CDF}=\angle \mathrm{ABE}$ (Tower and pole are vertical to the ground)

$\therefore \Delta \mathrm{ABE} \sim \Delta \mathrm{CDF}$ (AAA similarity criterion)

$\Rightarrow \frac{\mathrm{AB}}{\mathrm{CD}}=\frac{\mathrm{BE}}{\mathrm{DF}}$

$\Rightarrow \frac{\mathrm{AB}}{6 \mathrm{~cm}}=\frac{28}{4}$

$\Rightarrow \mathrm{AB}=42 \mathrm{~m}$

Therefore, the height of the tower will be 42 metres.


16. If $\mathrm{AD}$ and $\mathrm{PM}$ are medians of triangles $\mathrm{ABC}$ and $\mathrm{PQR}$, respectively where $\Delta \mathrm{ABC} \sim \Delta \mathrm{PQR}$ Prove that $\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AD}}{\mathrm{PM}}$


the corresponding sides of similar triangles are in proportion


Ans: It is given that $\triangle \mathrm{ABC} \sim \Delta \mathrm{PQR}$

We know that the corresponding sides of similar triangles are in proportion. 

$\therefore \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AC}}{\mathrm{PR}}=\frac{\mathrm{BC}}{\mathrm{QR}} \ldots(1)$

Also, $\angle \mathrm{A}=\angle \mathrm{P}, \angle \mathrm{B}=\angle \mathrm{Q}, \angle \mathrm{C}=\angle \mathrm{R} \quad \ldots$ (2)

Since AD and PM are medians, they will divide their opposite sides. $\therefore \mathrm{BD}=\frac{\mathrm{BC}}{2}$ and $\mathrm{QM}=\frac{\mathrm{QR}}{2}$

From equations (1) and (3), we obtain

$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BD}}{\mathrm{QM}}$

In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{PQM}$,

$\angle B=\angle Q$ (Using equation (2))

$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BD}}{\mathrm{QM}}$

(Using equation (4))

$\therefore \triangle \mathrm{ABD} \sim \triangle \mathrm{PQM}$ (By SAS similarity criterion)

$\Rightarrow \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BD}}{\mathrm{QM}}=\frac{\mathrm{AD}}{\mathrm{PM}}$


Conclusion

Vedantu's NCERT Solutions for Class 10 Maths Chapter 6 Exercise 6.3 offers a comprehensive guide to mastering the concepts covered in this exercise. Chapter 6 focuses on triangles, and Exercise 6.3 specifically deals with the properties of triangles, including the Pythagorean theorem and its applications. Regular practice with NCERT solutions provided by platforms like Vedantu can enhance comprehension and problem-solving skills. Pay attention to the step-by-step solutions provided, grasp the underlying principles, and ensure clarity on the concepts before moving forward. Consistent practice and understanding will lead to proficiency in Triangles related problems.


Class 10 Maths Chapter 6: Exercises Breakdown

Exercise

Number of Questions

Exercise 6.1

3 Questions & Solutions (3 Short Answers)

Exercise 6.2

10 Questions & Solutions (9 Short Answers, 1 Long Answer)



CBSE Class 10 Maths Chapter 6 Other Study Materials



Chapter-Specific NCERT Solutions for Class 10 Maths

Given below are the chapter-wise NCERT Solutions for Class 10 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.



NCERT Study Resources for Class 10 Maths

For complete preparation of Maths for CBSE Class 10 board exams, check out the following links for different study materials available at Vedantu.

FAQs on NCERT Solutions For Class 10 Maths Chapter 6 Exercise 6.3 - Triangles

1. What is the AAA Theorem of Similarity of Triangles?

The angle-angle-angle or AAA theorem of similarity of triangles states that if the sides of two triangles are proportional, then their corresponding angles are equal. Two similar triangles are related to each other by a similarity factor, s. This means that if a triangle PQR has sides of length p, q, and r, then the triangle similar to PQR would have dimensions of their sides as sp, sq, and sr.

2. What is the SSS Congruence Theorem?

Two triangles are said to be congruent if their corresponding sides and angles are equal in lengths and measures, respectively. The SSS (side-side-side) theorem states that two triangles are congruent if all the 3 sides of one triangle are equal to all the 3 sides of the other triangle.

3. How many examples are there in Exercise 6.3 of Class 10 Maths?

There are a total of 16 example questions in Exercise 6.3 of Class 10 Maths. These examples focus on the problems that require applying various theorems of triangles and the congruence of triangles. You can find the answers to these questions in NCERT Solutions of Class 10 Maths available on Vedantu. The expert team of Vedantu has structured the answers in an easy and detailed manner. Also, NCERT Solutions are totally based on CBSE enlisted curriculum.

4. How much time do students need to complete Class 10 Maths Exercise 6.3?

The time to complete Class 10 Maths Exercise 6.3 may vary from student to student. It might take a few hours or a day or two to complete the whole exercise. If the concepts are crystal clear to the students, they might end up completing the exercise in less time. Therefore, to help the students with the same, Vedantu provides access to well-curated answers to these questions. The students can go through them and clear their doubts. All the resources are available on the Vedantu app, and they are free of cost.

5. Where can I find NCERT Solutions for Class 10 Maths Exercise 6.3?

Students can find the NCERT Solutions for Class 10 Maths Exercise 6.3 can be found on the Vedantu website or app. Students can download the NCERT Solutions for free. The NCERT Solutions are written in an easy-to-understand and detailed format, with topic-specific explanations. All NCERT questions will be answered here for students. You can browse these solutions to clear up any questions or concerns you may have.

6. What are the various criteria for the congruence of two triangles?

Following are the various criteria through which we can find the congruence of two given triangles:

  • SSS congruence, which stands for Side-Side-Side.

  • SAS congruence, which stands for Side-Angle-Side.

  • ASA congruence, which stands for Angle-Side-Angle.

  • AAS congruence, which stands for Angle-Angle-Side.

  • RHS congruence, which stands for Right Angle-Hypotenuse-Side.

7. Do I need to practice all the questions provided in Class 10 Maths Exercise 6.3 NCERT Solutions?

Yes, it is important to practice all the questions provided in Class 10 Maths Exercise 6.3 NCERT Solutions. Each question provided is an application of a different concept, and practising these questions will help you get a hold of each concept thoroughly. You can download the Class 10 Maths NCERT Solutions for Exercise 6.3 from Vedantu’s website or app for free.

8. What is covered in Exercise 6.3 of Class 10 Maths Ch 6 Ex 6.3 NCERT Solutions: Triangles?

Class 10th Exercise 6.3 in Chapter 6 focuses on the application of the Pythagorean Theorem and its converse. This exercise tests students' understanding of how to identify right triangles and use the theorem to solve problems related to the lengths of sides in a triangle.

9. What are some common mistakes to avoid when solving Exercise 6.3 Class 10 NCERT Solutions problems?

Below are the points of common mistakes for Class 10 Exercise 6.3:

  • Incorrectly Identifying the Hypotenuse: Remember, the hypotenuse is always opposite the right angle and is the longest side.

  • Arithmetic Errors: Carefully square and add/subtract numbers.

  • Misapplying the Theorem: Ensure you only apply the Pythagorean Theorem to right-angled triangles unless using the converse to prove a right angle.