Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions Class 10 Maths Chapter 5 Exercise 5.2 - Arithmetic Progression

ffImage
Last updated date: 23rd Apr 2024
Total views: 574.2k
Views today: 9.74k
MVSAT offline centres Dec 2023

NCERT Class 10 Maths Solutions for Chapter 5 Arithmetic Progression

The NCERT Solutions for Class 10 Maths Chapter 5 Exercise 5.2 has been prepared in detail by the subject matter experts at Vedantu. The experts have a lot of grasp on this topic, having taught students for many years. AP is an important topic and students will have to develop its basics to be able to do well in the higher classes. The Ex 5.2 Class 10 Maths NCERT Solutions are of importance and is used in higher education as well. If students build their foundations strong in the junior classes, it lets them do well in the boards as well as perform well in the competitive examinations. The PDF version of NCERT Maths Class 10 Chapter 5 Exercise 5.2 is easy to assess, and all that the students have to do is to download the CBSE Class 10 Maths PDF and refer to it when needed. Students can also download NCERT Solutions Class 10 Science PDF for free from Vedantu.


Class:

NCERT Solutions for Class 10

Subject:

Class 10 Maths

Chapter Name:

Chapter 5 - Arithmetic Progressions

Exercise:

Exercise - 5.2

Content-Type:

Text, Videos, Images and PDF Format

Academic Year:

2024-25

Medium:

English and Hindi

Available Materials:

  • Chapter Wise

  • Exercise Wise

Other Materials

  • Important Questions

  • Revision Notes

Competitive Exams after 12th Science
Watch videos on
NCERT Solutions Class 10 Maths Chapter 5 Exercise 5.2 - Arithmetic Progression
icon
ARITHMETIC PROGRESSIONS in One Shot (𝐅𝐮𝐥𝐥 𝐂𝐡𝐚𝐩𝐭𝐞𝐫) CBSE 10 Maths Chapter 5 - 𝟏𝐬𝐭 𝐓𝐞𝐫𝐦 𝐄𝐱𝐚𝐦 | Vedantu
Vedantu 9&10
Subscribe
iconShare
7.2K likes
169.2K Views
2 years ago
Download Notes
yt video
Arithmetic Progressions L-2 (Finding Sum of First n Terms of an A.P) CBSE 10 Math Chap 5 | Vedantu
Vedantu 9&10
2.5K likes
70.8K Views
2 years ago
Download Notes
yt video
Arithmetic Progressions L-1 (Introduction & General Term of an A.P) CBSE 10 Math Chapter 5 | Vedantu
Vedantu 9&10
7.1K likes
152.6K Views
2 years ago
Download Notes
yt video
Arithmetic Progressions Class 10 in One-Shot | Concept/Tricks/Questions/Formula/Solution NCERT Maths
Vedantu 9&10
8.8K likes
225.3K Views
3 years ago
Play Quiz
Download Notes
See Moresee more youtube videos

Access NCERT Solutions for Class 10 Maths Chapter 5 – Arithmetic Progression

Exercise 5.2

1.  Fill in the blanks in the following table, given that $a$ is the first term, $d$ the common difference and \[{{a}_{n}}\] the \[{{n}^{th}}\] term of the A.P.


\[a\]

$d$ 

$n$ 

${{a}_{n}}$ 

I

$7$ 

$3$ 

$8$ 

$.....$

II

$-18$ 

$.....$

$10$ 

$0$ 

III

$.....$

$-3$ 

$18$ 

$-5$ 

IV

\[-18.9\] 

$2.5$ 

$.....$

$3.6$ 

V

\[3.5\] 

\[0\] 

\[105\] 

$.....$

Ans: 

i. Given, the first Term, $a=7$  ….. (1)

Given, the common Difference, \[d=3\] …..(2)

Given, the number of Terms, \[n=8\]  …..(3)

We know that the ${{n}^{th}}$ term of the A.P. with first term $a$ and common difference $d$ is given by ${{a}_{n}}=a+\left( n-1 \right)d$     …..(4)

Substituting the values from (1), (2) and (3) in (4) we get,

${{a}_{n}}=7+\left( 8-1 \right)3$

$\Rightarrow {{a}_{n}}=7+21$

$\therefore {{a}_{n}}=28$ 

ii. Given, the first Term, $a=-18$  ….. (1)

Given, the ${{n}^{th}}$ term, \[{{a}_{n}}=0\] …..(2)

Given, the number of Terms, \[n=10\]  …..(3)

We know that the ${{n}^{th}}$ term of the A.P. with first term $a$ and common difference $d$ is given by ${{a}_{n}}=a+\left( n-1 \right)d$     …..(4)

Substituting the values from (1), (2) and (3) in (4) we get,

$0=-18+\left( 10-1 \right)d$

$\Rightarrow 18=9d$

$\therefore d=2$ 

iii. Given, the ${{n}^{th}}$ term, \[{{a}_{n}}=-5\] ….. (1)

Given, the common Difference, \[d=-3\] …..(2)

Given, the number of Terms, \[n=18\]  …..(3)

We know that the ${{n}^{th}}$ term of the A.P. with first term $a$ and common difference $d$ is given by ${{a}_{n}}=a+\left( n-1 \right)d$     …..(4)

Substituting the values from (1), (2) and (3) in (4) we get,

$-5=a+\left( 18-1 \right)\left( -3 \right)$

$\Rightarrow -5=a-51$

$\therefore a = 46$

iv. Given, the first Term, $a=-18.9$  ….. (1)

Given, the common Difference, \[d=2.5\] …..(2)

Given, the ${{n}^{th}}$ term, \[{{a}_{n}}=3.6\] …..(3)

We know that the ${{n}^{th}}$ term of the A.P. with first term $a$ and common difference $d$ is given by ${{a}_{n}}=a+\left( n-1 \right)d$     …..(4)

Substituting the values from (1), (2) and (3) in (4) we get,

$3.6=-18.9+\left( n-1 \right)\left( 2.5 \right)$

$\Rightarrow 22.5=\left( n-1 \right)\left( 2.5 \right)$

$\Rightarrow 9=\left( n-1 \right)$

$\therefore n=10$ 

v. Given, the first Term, $a=3.5$  ….. (1)

Given, the common Difference, \[d=0\] …..(2)

Given, the number of Terms, \[n=105\]  …..(3)

We know that the ${{n}^{th}}$ term of the A.P. with first term $a$ and common difference $d$ is given by ${{a}_{n}}=a+\left( n-1 \right)d$     …..(4)

Substituting the values from (1), (2) and (3) in (4) we get,

${{a}_{n}}=3.5+\left( 105-1 \right)\left( 0 \right)$

$\therefore {{a}_{n}}=3.5$ 


2. Choose the correct choice in the following and justify

i. \[{{30}^{th}}\] term of the A.P \[10,7,4,...,\] is

  1. \[97\]  

  2. \[77\]  

  3. \[- 77\] 

  4. \[87\] 

Ans: Option C. $-77$ 

Given, the first Term, $a=10$  ….. (1)

Given, the common Difference, \[d=7-10=-3\] …..(2)

Given, the number of Terms, \[n=30\]  …..(3)

We know that the ${{n}^{th}}$ term of the A.P. with first term $a$ and common difference $d$ is given by ${{a}_{n}}=a+\left( n-1 \right)d$     …..(4)

Substituting the values from (1), (2) and (3) in (4) we get, ${{a}_{30}}=10+\left( 30-1 \right)\left( -3 \right)$

$\Rightarrow {{a}_{30}}=10-87$

$\therefore {{a}_{30}}=-77$ 

ii. \[{{11}^{th}}\] term of the A.P \[-3,-\dfrac{1}{2},2,...,\] is

  1. \[28\]

  2. \[22\]  

  3. \[38\] 

  4. \[48\dfrac{1}{2}\] 

Ans: Option II, $22$ 

Given, the first Term, $a=-3$  ….. (1)

Given, the common Difference, \[d=-\dfrac{1}{2}-\left( -3 \right)=\dfrac{5}{2}\] …..(2)

Given, the number of Terms, \[n=11\]  …..(3)

We know that the ${{n}^{th}}$ term of the A.P. with first term $a$ and common difference $d$ is given by ${{a}_{n}}=a+\left( n-1 \right)d$     …..(4)

Substituting the values from (1), (2) and (3) in (4) we get, ${{a}_{n}}=-3+\dfrac{5}{2}\left( 11-1 \right)$

$\Rightarrow {{a}_{n}}=-3+25$

$\therefore {{a}_{n}}=22$ 


3. In the following APs find the missing term in the blanks

i. \[2,\_\_,26\] 

Ans: Given, first term $a=2$ …..(1)

We know that the ${{n}^{th}}$ term of the A.P. with first term $a$ and common difference $d$ is given by ${{a}_{n}}=a+\left( n-1 \right)d$     

Substituting the values from (1) we get, ${{a}_{n}}=2+\left( n-1 \right)d$  …..(2)

Given, third term ${{a}_{3}}=26$. From (2) we get,

$26=2+\left( 3-1 \right)d$

$\Rightarrow 26=2+2d$ 

$\therefore d=12$  ….(3)

From (1), (2) and (3) we get for $n=2$ 

${{a}_{2}}=2+\left( 2-1 \right)\left( 12 \right)$

$\therefore {{a}_{2}}=14$

$\therefore $ The sequence is \[2,14,26\].

ii. \[\_\_,13,\_\_,3\] 

Ans: Given, second term ${{a}_{2}}=13$ …..(1)

We know that the ${{n}^{th}}$ term of the A.P. with first term $a$ and common difference $d$ is given by ${{a}_{n}}=a+\left( n-1 \right)d$ …..(2)

Substituting the values from (1) for $n=2$ we get, $13=a+d$  …..(3)

Given, fourth term ${{a}_{4}}=3$. From (2) we get, 

$3=a+3d$  …..(4)

Solving (3) and (4) by subtracting (3) from (4) we get,

$3-13=\left( a+3d \right)-\left( a+d \right)$

$\Rightarrow -10=2d$ 

$\therefore d=-5$  ….(5)

From (3) and (5) we get 

$13=a-5$

$\Rightarrow a=18$ ……(6)

Substituting the values from (5) and (6) in (2) we get,

${{a}_{n}}=18-5\left( n-1 \right)$   …..(7)

First term, $a=18$ and third term ${{a}_{3}}=8$

$\therefore $ The sequence is \[18,13,8,3\].

iii. $5,\_\_,\_\_,9\dfrac{1}{2}$ 

Ans: Given, first term $a=5$ …..(1)

We know that the ${{n}^{th}}$ term of the A.P. with first term $a$ and common difference $d$ is given by ${{a}_{n}}=a+\left( n-1 \right)d$ …..(2)

Substituting the values from (1) in (2) we get, ${{a}_{n}}=5+\left( n-1 \right)d$  …..(3)

Given, fourth term ${{a}_{4}}=9\dfrac{1}{2}$. From (3) we get,

$9\dfrac{1}{2}=5+\left( 4-1 \right)d$ 

$\Rightarrow 9\dfrac{1}{2}=5+3d$ 

$\therefore d=\dfrac{3}{2}$  ….(4)

From (3) and (4) we get 

${{a}_{n}}=5+\dfrac{3}{2}\left( n-1 \right)$ ……(5)

Second term, ${{a}_{2}}=\dfrac{13}{2}$ and third term ${{a}_{3}}=8$

$\therefore $ The sequence is $5,\dfrac{13}{2},8,9\dfrac{1}{2}$.

iv. $-4,\_\_,\_\_,\_\_,\_\_,6$ 

Ans: Given, first term $a=-4$ …..(1)

We know that the ${{n}^{th}}$ term of the A.P. with first term $a$ and common difference $d$ is given by ${{a}_{n}}=a+\left( n-1 \right)d$ …..(2)

Substituting the values from (1) in (2) we get, ${{a}_{n}}=-4+\left( n-1 \right)d$  …..(3)

Given, sixth term ${{a}_{6}}=6$. From (3) we get, 

$6=-4+\left( 6-1 \right)d$ 

$\Rightarrow 6=-4+5d$ 

$\therefore d=2$  ….(4)

From (3) and (4) we get 

${{a}_{n}}=-4+2\left( n-1 \right)$ ……(5)

Second term ${{a}_{2}}=-2$, third term ${{a}_{3}}=0$, fourth term ${{a}_{4}}=2$ and fifth term ${{a}_{5}}=4$.

$\therefore $ The sequence is $-4,-2,0,2,4,6$

v. $\_\_,38,\_\_,\_\_,\_\_,-22$ 

Ans: Given, second term ${{a}_{2}}=38$ …..(1)

We know that the ${{n}^{th}}$ term of the A.P. with first term $a$ and common difference $d$ is given by ${{a}_{n}}=a+\left( n-1 \right)d$ …..(2)

Substituting the values from (1) for $n=2$ we get, $38=a+d$  …..(3)

Given, sixth term ${{a}_{6}}=-22$. From (2) we get,

$-22=a+5d$  …..(4)

Solving (3) and (4) by subtracting (3) from (4) we get,

$-22-38=\left( a+5d \right)-\left( a+d \right)$

$\Rightarrow -60=4d$ 

$\therefore d=-15$  ….(5)

From (3) and (5) we get 

$38=a-15$

$\Rightarrow a=53$ ……(6)

Substituting the values from (5) and (6) in (2) we get,
${{a}_{n}}=53-15\left( n-1 \right)$   …..(7)

The first term, $a=53$, second term ${{a}_{3}}=23$, third term ${{a}_{3}}=8$ and fourth term ${{a}_{4}}=-7$

$\therefore $ The sequence is \[53,38,23,8,-7,-22\].


4. Which term of the A.P. \[3,8,13,18,...\] is \[78\]?

Ans: Given, the first Term, $a=3$  ….. (1)

Given, the common Difference, \[d=8-3=5\] …..(2)

Given, the ${{n}^{th}}$ term, \[{{a}_{n}}=78\] …..(3)

We know that the ${{n}^{th}}$ term of the A.P. with first term $a$ and common difference $d$ is given by ${{a}_{n}}=a+\left( n-1 \right)d$     …..(4)

Substituting the values from (1), (2) and (3) in (4) we get,

$78=3+5\left( n-1 \right)$

$\Rightarrow 75=5\left( n-1 \right)$

$\Rightarrow 15=\left( n-1 \right)$

$\therefore n=16$ 

Therefore, \[{{16}^{th}}\] term of this A.P. is \[78\].


5. Find the number of terms in each of the following A.P.

i. \[\text{7,13,19,}...\text{,205}\] 

Ans: Given, the first Term, $a=7$  ….. (1)

Given, the common Difference, \[d=13-7=6\] …..(2)

Given, the ${{n}^{th}}$ term, \[{{a}_{n}}=205\] …..(3)

We know that the ${{n}^{th}}$ term of the A.P. with first term $a$ and common difference $d$ is given by ${{a}_{n}}=a+\left( n-1 \right)d$     …..(4)

Substituting the values from (1), (2) and (3) in (4) we get,

$205=7+6\left( n-1 \right)$

$\Rightarrow 198=6\left( n-1 \right)$

$\Rightarrow 33=\left( n-1 \right)$

$\therefore n=34$ 

Therefore, given A.P. series has \[34\] terms.

ii. \[18,15\dfrac{1}{2},13,....,-47\] 

Ans: Given, the first Term, $a=18$  ….. (1)

Given, the common Difference, \[d=15\dfrac{1}{2}-18=-\dfrac{5}{2}\] …..(2)

Given, the ${{n}^{th}}$ term, \[{{a}_{n}}=-47\] …..(3)

We know that the ${{n}^{th}}$ term of the A.P. with first term $a$ and common difference $d$ is given by ${{a}_{n}}=a+\left( n-1 \right)d$     …..(4)

Substituting the values from (1), (2) and (3) in (4) we get,

$-47=18-\dfrac{5}{2}\left( n-1 \right)$

$\Rightarrow -65=-\dfrac{5}{2}\left( n-1 \right)$

$\Rightarrow 26=\left( n-1 \right)$

$\therefore n=27$ 

Therefore, given A.P. series has \[27\] terms.


6. Check whether \[-150\] is a term of the A.P. \[11,8,5,2,...\] 

Ans: Given, the first Term, $a=11$  ….. (1)

Given, the common Difference, \[d=8-11=-3\] …..(2)

Given, the ${{n}^{th}}$ term, \[{{a}_{n}}=-150\] …..(3)

We know that the ${{n}^{th}}$ term of the A.P. with first term $a$ and common difference $d$ is given by ${{a}_{n}}=a+\left( n-1 \right)d$     …..(4)

Substituting the values from (1), (2) and (3) in (4) we get,

$-150=11-3\left( n-1 \right)$

$\Rightarrow -161=-3\left( n-1 \right)$

$\Rightarrow \dfrac{161}{3}=\left( n-1 \right)$

$\therefore n=\dfrac{164}{3}$ 

Since $n$ is nor a natural number. Therefore, $-150$ is not a term of the given A.P. series.


7. Find the \[{{31}^{st}}\] term of an A.P. whose \[{{11}^{th}}\] term is \[38\] and the \[{{16}^{th}}\] term is \[73\].

Ans: Given, the \[{{11}^{th}}\] Term, ${{a}_{11}}=38$  ….. (1)

Given, the \[{{16}^{th}}\] Term, ${{a}_{16}}=73$  …..(2)

We know that the ${{n}^{th}}$ term of the A.P. with first term $a$ and common difference $d$ is given by ${{a}_{n}}=a+\left( n-1 \right)d$     …..(3)

Substituting the values from (1) in (3) we get,

$38=a+\left( 11-1 \right)d$

$\Rightarrow 38=a+10d$      …..(4)

Substituting the values from (2) in (3) we get,

$73=a+\left( 16-1 \right)d$

$\Rightarrow 73=a+15d$      …..(5)

Solving equations (4) and (5) by subtracting (4) from (5) we get,

$\Rightarrow 73-38=\left( a+15d \right)-\left( a+10d \right)$

$\Rightarrow 5=35d$

$\therefore d=7$   …..(6)

Substituting value from (6) in (4) we get,

$\Rightarrow 38=a+70$

$\therefore a=-32$   …..(7)

Again, substituting the values from (6) and (7) in (3) we get,

${{a}_{n}}=-32+7\left( n-1 \right)$  …..(8)

To find the ${{31}^{st}}$ term substitute $n=31$ in (8) we get, 

${{a}_{31}}=-32+7\left( 31-1 \right)$

$\Rightarrow {{a}_{31}}=-32+210$

$\therefore {{a}_{31}}=178$

Therefore, the \[{{31}^{st}}\] term of an A.P. whose \[{{11}^{th}}\] term is \[38\] and the \[{{16}^{th}}\] term is \[73\] is $178$. 


8. An A.P. consists of \[50\] terms of which \[{{3}^{rd}}\] term is \[12\] and the last term is \[106\]. Find the \[{{29}^{th}}\] term.

Ans: Given, the \[{{3}^{rd}}\] Term, ${{a}_{3}}=12$  ….. (1)

Given, the \[{{50}^{th}}\] Term, ${{a}_{50}}=106$  …..(2)

We know that the ${{n}^{th}}$ term of the A.P. with first term $a$ and common difference $d$ is given by ${{a}_{n}}=a+\left( n-1 \right)d$     …..(3)

Substituting the values from (1) in (3) we get,

$12=a+\left( 3-1 \right)d$

$\Rightarrow 12=a+2d$      …..(4)

Substituting the values from (2) in (3) we get,

$106=a+\left( 50-1 \right)d$

$\Rightarrow 106=a+49d$      …..(5)

Solving equations (4) and (5) by subtracting (4) from (5) we get,

$\Rightarrow 106-12=\left( a+49d \right)-\left( a+2d \right)$

$\Rightarrow 94=47d$

$\therefore d=2$   …..(6)

Substituting value from (6) in (4) we get,

$\Rightarrow 12=a+4$

$\therefore a=8$   …..(7)

Again, substituting the values from (6) and (7) in (3) we get,

${{a}_{n}}=8+2\left( n-1 \right)$  …..(8)

To find the ${{29}^{th}}$ term substitute $n=29$ in (8) we get, 

${{a}_{29}}=8+2\left( 29-1 \right)$

$\Rightarrow {{a}_{29}}=8+56$

$\therefore {{a}_{29}}=64$

Therefore, the ${{29}^{th}}$ term of the A.P. is $64$. 


9. If the \[{{3}^{rd}}\] and the \[{{9}^{th}}\] terms of an A.P. are $4$ and \[8\] respectively. Which term of this A.P. is zero.

Ans: Given, the \[{{3}^{rd}}\] Term, ${{a}_{3}}=4$  ….. (1)

Given, the \[{{9}^{th}}\] Term, ${{a}_{9}}=-8$  …..(2)

We know that the ${{n}^{th}}$ term of the A.P. with first term $a$ and common difference $d$ is given by ${{a}_{n}}=a+\left( n-1 \right)d$     …..(3)

Substituting the values from (1) in (3) we get,

$4=a+\left( 3-1 \right)d$

$\Rightarrow 4=a+2d$      …..(4)

Substituting the values from (2) in (3) we get,

$-8=a+\left( 9-1 \right)d$

$\Rightarrow -8=a+8d$      …..(5)

Solving equations (4) and (5) by subtracting (4) from (5) we get,

$\Rightarrow -8-4=\left( a+8d \right)-\left( a+2d \right)$

$\Rightarrow -12=6d$

$\therefore d=-2$   …..(6)

Substituting value from (6) in (4) we get,

$\Rightarrow 4=a-4$

$\therefore a=8$   …..(7)

Again, substituting the values from (6) and (7) in (3) we get,

${{a}_{n}}=8-2\left( n-1 \right)$  …..(8)

T find the term which is zero, substitute ${{a}_{n}}=0$ in (8)

$0=8-2\left( n-1 \right)$

$\Rightarrow 8=2\left( n-1 \right)$

$\Rightarrow 4=\left( n-1 \right)$

$\therefore n=5$ 

Therefore, given A.P. series has \[{{5}^{th}}\] term as zero.


10. If \[{{17}^{th}}\] term of an A.P. exceeds its \[{{10}^{th}}\] term by \[7\]. Find the common difference.

Ans: Given that the \[{{17}^{th}}\] term of an A.P. exceeds its \[{{10}^{th}}\] term by \[7\] i.e., 

${{a}_{17}}={{a}_{10}}+7$ …..(1)

We know that the ${{n}^{th}}$ term of the A.P. with first term $a$ and common difference $d$ is given by ${{a}_{n}}=a+\left( n-1 \right)d$     ….. (2)

For \[{{17}^{th}}\] term substitute $n=17$ in (2) i.e., ${{a}_{17}}=a+16d$  ….. (3)

For \[{{10}^{th}}\] term substitute $n=10$ in (2) i.e., ${{a}_{10}}=a+9d$  ….. (4)

Therefore, from (1), (3) and (4) we get, 

$a+16d=a+9d+7$

$\Rightarrow 7d=7$

$\therefore d=1$ 

Therefore, the common difference is $1$.


11. Which term of the A.P. \[3,15,27,39,...\] will be \[132\] more than its \[{{54}^{th}}\] term?

Ans: Let ${{n}^{th}}$ term of A.P. be \[132\] more than its \[{{54}^{th}}\] term i.e.,

${{a}_{n}}={{a}_{54}}+132$ …..(1)

We know that the ${{n}^{th}}$ term of the A.P. with first term $a$ and common difference $d$ is given by ${{a}_{n}}=a+\left( n-1 \right)d$     ….. (2)

For \[{{54}^{th}}\] term substitute $n=54$ in (2) i.e., ${{a}_{54}}=a+53d$  ….. (3)

Therefore, from (1), (2) and (3) we get, 

$a+\left( n-1 \right)d=a+53d+132$

$\Rightarrow \left( n-1 \right)d-53d=132$

$\therefore d=\dfrac{132}{n-54}$  ….. (4)

Now, given A.P. \[3,15,27,39,...\] 

Common difference $d=15-3=12$  ….. (5)

Hence, from (4) and (5) we get $12=\dfrac{132}{n-54}$

$\Rightarrow n-54=11$ 

$\therefore n=65$ 

Therefore, ${{65}^{th}}$ term of the given A.P. will be \[132\] more than its \[{{54}^{th}}\] term.


12. Two APs have the same common difference. The difference between their \[{{100}^{th}}\] term is \[100\], what is the difference between their \[{{1000}^{th}}\] terms?

Ans: Let $2$ A.P.’s be 

$a,a+d,a+2d,a+3d,....$   …..(1)

$b,b+d,b+2d,b+3d,....$    …..(2)

(Since common difference is same)

Given that the difference between their \[{{100}^{th}}\] term is \[100\] i.e., 

${{a}_{100}}-{{b}_{100}}=100$ …..(3)

We know that the ${{n}^{th}}$ term of the A.P. with first term $a$ and common difference $d$ is given by ${{a}_{n}}=a+\left( n-1 \right)d$     ….. (4)

Therefore, from (3) and (4) we get, 

$a+\left( 100-1 \right)d-\left( b+\left( 100-1 \right)d \right)=100$

$\Rightarrow a-b=100$  ….. (5)

Similarly, the difference between their \[{{1000}^{th}}\] terms is, 

${{a}_{1000}}-{{b}_{1000}}=\left[ a+\left( 1000-a \right)d \right]-\left[ b+\left( 1000-a \right)d \right]$

$\Rightarrow {{a}_{1000}}-{{b}_{1000}}=a-b$

$\therefore {{a}_{1000}}-{{b}_{1000}}=100$ 

Therefore, the difference between their \[{{1000}^{th}}\] terms is $100$.


13. How many three-digit numbers are divisible by $7$? 

Ans: First three-digit number that is divisible by $7$ is \[105\] then the next number will be \[105+7=112\]. 

Therefore, the series becomes \[105,112,119,....\] 

This is an A.P. having first term as \[105\] and common difference as \[7\].

Now, the largest $3$ digit number is $999$.

Leu us divide it by \[7\] , to get the remainder.

$999=142\times 7+5$ 

Therefore, \[999-5=994\] is the maximum possible three-digit number that is divisible by $7$.

Also, this will be the last term of the A.P. series.

Hence the final series is as follows: \[105,112,119,...,994\] 

Let 994 be the \[{{n}^{th}}\] term of this A.P.

Then, \[{{a}_{n}}=105+7\left( n-1 \right)\] 

\[\Rightarrow 994=105+7\left( n-1 \right)\]

\[\Rightarrow 889=7\left( n-1 \right)\]

\[\Rightarrow 127=\left( n-1 \right)\]

$\therefore n=128$ 

Therefore, $128$ three-digit numbers are divisible by $7$.


14. How many multiples of $4$ lie between $10$ and $250$?

Ans: First number that is divisible by $4$ and lie between $10$ and $250$ is $12$. The next number will be \[12+4=16\]. 

Therefore, the series becomes \[12,16,20,....\] 

This is an A.P. having first term as \[12\] and common difference as \[4\].

Now, the largest number in range is $250$.

Leu us divide it by \[4\] to get the remainder.

$250=62\times 4+2$ 

Therefore, \[250-2=248\] is the last term of the A.P. series.

Hence the final series is as follows: \[12,16,20,....,248\] 

Let $248$ be the \[{{n}^{th}}\] term of this A.P.

Then, \[{{a}_{n}}=12+4\left( n-1 \right)\] 

\[\Rightarrow 248=12+4\left( n-1 \right)\]

\[\Rightarrow 236=4\left( n-1 \right)\]

\[\Rightarrow 59=\left( n-1 \right)\]

$\therefore n=60$ 

Therefore, $60$ multiples of $4$ lie between $10$ and $250$.


15. For what value of $n$, are the ${{n}^{th}}$ terms of two APs \[63,65,67,....\] and \[3,10,17,....\] equal

 Ans: Given $2$ A.P.’s are

\[63,65,67,....\]   …..(1)

Its first term is $63$ and common difference is $65-63=2$ 

\[3,10,17,....\]    …..(2)

Its first term is $3$ and common difference is $10-3=7$ 

We know that the ${{n}^{th}}$ term of the A.P. with first term $a$ and common difference $d$ is given by ${{a}_{n}}=a+\left( n-1 \right)d$     ….. (3)

Therefore, from (1) and (3) we get the ${{n}^{th}}$ term of the first A.P. is

 ${{a}_{n}}=63+2\left( n-1 \right)$

$\Rightarrow {{a}_{n}}=61+2n$  ….. (4)

And from (2) and (3) we get the ${{n}^{th}}$ term of the second A.P. is

 ${{b}_{n}}=3+7\left( n-1 \right)$

$\Rightarrow {{b}_{n}}=-4+7n$  ….. (5)

If the ${{n}^{th}}$ terms of two APs \[63,65,67,....\] and \[3,10,17,....\] are equal the from (4) and (5),

\[{{a}_{n}}={{b}_{n}}\]

$\Rightarrow 61+2n=-4+7n$

$\Rightarrow 65=5n$

$\therefore n=13$ 

Therefore, the ${{13}^{th}}$ term of both the A.P.’s are equal.


16. Determine the A.P. whose third term is \[16\] and the \[{{7}^{th}}\] term exceeds the \[{{5}^{th}}\] term by $12$.

Ans: Given the ${{7}^{th}}$ term of A.P. is \[12\] more than its \[{{5}^{th}}\] term i.e.,

${{a}_{7}}={{a}_{5}}+12$ …..(1)

We know that the ${{n}^{th}}$ term of the A.P. with first term $a$ and common difference $d$ is given by ${{a}_{n}}=a+\left( n-1 \right)d$     ….. (2)

For \[{{5}^{th}}\] term substitute $n=5$ in (2) i.e., ${{a}_{5}}=a+4d$  ….. (3)

For \[{{7}^{th}}\] term substitute $n=7$ in (2) i.e., ${{a}_{7}}=a+6d$  ….. (4)

Therefore, from (1), (3) and (4) we get, 

$a+6d=a+4d+12$

$\Rightarrow 2d=12$

$\therefore d=6$   ….. (5)

Substituting (5) in (2) we get, ${{a}_{n}}=a+6\left( n-1 \right)$ ……(6)

Given the third term of the A.P. is \[16\]. Hence from (6),

$16=a+6\left( 3-1 \right)$

$\Rightarrow 16=a+12$

$\therefore a=4$   ….. (7)

Hence from (6), ${{a}_{n}}=4+6\left( n-1 \right)$

Therefore, the A.P. will be \[4,10,16,22,....\].


17. Find the \[{{20}^{th}}\] term from the last term of the A.P. \[3,8,13,...,253\] 

Ans: Given A.P. \[3,8,13,...,253\]. To find the \[{{20}^{th}}\] term from the last write the given A.P. in reverse order and then find its \[{{20}^{th}}\] term.

Required A.P. is $253,...,13,8,3$  ….. (1) 

Its first A.P. is $253$ and common difference is $8-13=-5$.  …..(2)

We know that the ${{n}^{th}}$ term of the A.P. with first term $a$ and common difference $d$ is given by ${{a}_{n}}=a+\left( n-1 \right)d$     ….. (3)

Hence from (2) and (3) we get, ${{a}_{n}}=253-5\left( n-1 \right)$   …..(4)

Substitute $n=20$ in (4) we get, 

${{a}_{20}}=253-5\left( 20-1 \right)$

$\Rightarrow {{a}_{20}}=158$.

Therefore, ${{20}^{th}}$ term from the last is $158$.


18. The sum of \[{{4}^{th}}\] and \[{{8}^{th}}\] terms of an A.P. is \[24\] and the sum of the \[{{6}^{th}}\] and \[{{10}^{th}}\] terms is \[44\]. Find the first three terms of the A.P.  

Ans: Given the sum of \[{{4}^{th}}\] and \[{{8}^{th}}\] terms of an A.P. is \[24\] i.e.,

${{a}_{4}}+{{a}_{8}}=24$ …..(1)

Given the sum of \[{{6}^{th}}\] and \[{{10}^{th}}\] terms is \[44\] i.e.,

${{a}_{6}}+{{a}_{10}}=44$ …..(2)

We know that the ${{n}^{th}}$ term of the A.P. with first term $a$ and common difference $d$ is given by ${{a}_{n}}=a+\left( n-1 \right)d$     ….. (3)

For \[{{4}^{th}}\] term substitute $n=4$ in (3) i.e., ${{a}_{4}}=a+3d$  ….. (4)

For \[{{6}^{th}}\] term substitute $n=6$ in (3) i.e., ${{a}_{6}}=a+5d$  ….. (5)

For \[{{8}^{th}}\] term substitute $n=8$ in (3) i.e., ${{a}_{8}}=a+7d$  ….. (6)

For \[{{10}^{th}}\] term substitute $n=10$ in (3) i.e., ${{a}_{10}}=a+9d$  ….. (7)

Therefore, from (1), (6) and (4) we get, 

$\left( a+3d \right)+\left( a+7d \right)=24$

$\Rightarrow 2a+10d=24$

$\Rightarrow a+5d=12$   ….. (8)

From (2), (5) and (7) we get, 

$\left( a+5d \right)+\left( a+9d \right)=44$

$\Rightarrow 2a+14d=44$

$\Rightarrow a+7d=22$   ….. (9)

Subtracting (8) from (9) we get,  

$\Rightarrow \left( a+7d \right)-\left( a+5d \right)=22-12$

$\Rightarrow 2d=10$

$\therefore d=5$ ….. (10)

Substituting this value from (10) in (9) we get,

$a+35=22$

$\therefore a=-13$ ….. (11)

Therefore from (10) and (11), the first three terms of the A.P. are $-13,-8,-3$.


19. Subba Rao started work in \[1995\] at an annual salary of Rs \[5000\] and received an increment of Rs \[~200\] each year. In which year did his income reach Rs \[7000\]? 

Ans: Given in the first year, annual salary is Rs $5000$.  

In the second year, annual salary is Rs $5000+200=5200$.  

In the third year, annual salary is Rs $5200+200=5400$. 

This series will form an A.P. with first term $5000$ and common difference $200$.  

We know that the ${{n}^{th}}$ term of the A.P. with first term $a$ and common difference $d$ is given by ${{a}_{n}}=a+\left( n-1 \right)d$  

Therefore, In the ${{n}^{th}}$ year, annual salary is ${{a}_{n}}=5000+200\left( n-1 \right)$

$\Rightarrow {{a}_{n}}=4800+200n$ …. (1)

To find the year in which his annual income reaches Rs \[7000\], substitute ${{a}_{n}}=7000$ in (1) and find the value of $n$i.e., 

  $7000=4800+200n$

$\Rightarrow 2200+200n$

$\therefore n=11$ 

Therefore, in ${{11}^{th}}$ year i.e., in $2005$ his salary will be Rs $7000$.


20. Ramkali saved Rs \[5\] in the first week of a year and then increased her weekly saving by Rs \[1.75\]. If in the ${{n}^{th}}$ week, her weekly savings become Rs \[20.75\], find $n$. 

Ans: Given in the first week the savings is Rs $5$.  

In the second week the savings is Rs $5+1.75=6.75$.  

In the third week the savings is Rs $6.75+1.75=8.5$. 

This series will form an A.P. with first term $5$ and common difference $1.75$.  

We know that the ${{n}^{th}}$ term of the A.P. with first term $a$ and common difference $d$ is given by ${{a}_{n}}=a+\left( n-1 \right)d$  

Therefore, In the ${{n}^{th}}$ week the savings is ${{a}_{n}}=5+1.75\left( n-1 \right)$

$\Rightarrow {{a}_{n}}=3.25+1.75n$ …. (1)

To find the week in which her savings reaches Rs \[20.75\], substitute ${{a}_{n}}=20.75$ in (1) and find the value of $n$i.e., 

  $20.75=3.25+1.75n$

$\Rightarrow 17.5=1.75n$

$\therefore n=10$ 

Therefore, in ${{10}^{th}}$ week her savings will be Rs $20.75$.


NCERT Solutions Class 10 Maths Chapter 5 Exercise 5.2

The best part about the Maths 5.2 Class 10 PDF solution is that it can be downloaded for free. All that the students need is an internet connection to download the NCERT solutions for Class 10 Maths EX 5.2 from the main website of Vedantu. Once downloaded, they can refer to the solution on the go. The 10 Class Math exercise 5.2 solution can be referred to just before the examination. Students can also print a hard copy of the Exercise 5.2 Maths Class 10 solutions if they want to keep it handy always.


Important Topics under NCERT Solutions for Class 10 Maths Chapter 5 Arithmetic Progression Exercise 5.2

NCERT Class 10 Maths Chapter 5 is on arithmetic progressions. This chapter, Arithmetic Progression, has 5 major parts that need to be covered to understand the concepts of arithmetic progression properly. The following table lists the 5 important topics that are covered under the chapter on Arithmetic Progression. We advise students to go through these individual topics carefully to get a precise understanding of the chapter.

Sl. No. 

Topics

1

An Introduction

2

Arithmetic Progressions

3

nth Term of an AP (Arithmetic Progression)

4

Sum of the First n Terms of an AP (Arithmetic Progression)

5

A Summary


Importance of Arithmetic Progressions

An arithmetic progression is basically a sequence of numbers where every number differs from its previous one by a specific quantity. The importance of arithmetic progressions lies in handing out the ability to work closely with patterns and systems, be it in school-level maths or in real life. Students are encouraged to learn all about arithmetic progressions in this chapter to be able to easily solve objective-type problems and word problems based on the same in their exams.


NCERT Solutions for Class 10 Maths Exercise 5.2 – Arithmetic Progression

5.2 Arithmetic Progression

Be it in nature or any company figures you will notice that data follows a particular pattern. This could be anything be it the pattern of the petals on a sunflower or the order in which the honeybee comb is designed and formed. When you notice a pattern you will notice that there is a formula between the succeeding and preceding term. It could be that the succeeding and the preceding terms are the sums or the difference of some number that follows a particular ratio. There are many such progressions when you go about studying mathematics. A very important one among them is the arithmetic progression.


Arithmetic progression or AP is a series where a pattern is formed when the succeeding term is formed by adding a particular number to the previous value. For example, if the first term is ‘a’ then and the next term is ‘a+d’, the number after that is ‘a+2d’ and then ‘a+3d’ and so on. When you notice a pattern of numbers that has d as the common difference between its two consecutive numbers, then this is an arithmetic progression.


nth Term of an AP

If you have been given a series and you figure out that it is in an arithmetic progression, then how do you go about finding out what could be the nth term of this series. This section helps students to derive the formula for the nth term of an AP series that in turn lets you find the nth term of any AP series.


The nth term of the AP series is calculated as: a(n) = a+ (n-1)d


Here ‘a’ is the first term of the series, ‘n’ is the term that you wish to find out, and ‘d’ is the common difference between two successive terms in the AP series. Students need to remember this formula and then need to find out what the n and the d values are. Apply it in the formula and get the nth term of the AP series.


Sum of the First N Terms of an AP

The section explains how on getting an AP series; you can go ahead and find the sum of n terms of an AP series. This is important to know because it makes no sense to use a calculator and add each term of the AP series to find out its sum. The section helps students to derive the formula of the n terms of an AP, and this formula can be used to find out the summation. All that the student needs to do is to remember the formula and then to apply the value correctly to the formula to get the right answers.


The sum of n terms an AP series is calculated as:


S = (n/2) (2a+ (n-1) d)


Also if you have an AP series where the first number is 1, then the sum of n terms of the particular AP series with the first number as one is calculated as:


S = (n/2) (a+1)


Summary

The section summarizes all the important formulas and explains how an AP pattern is formed and how to calculate the nth term and the sum of n terms of an AP series.


Key Features of NCERT Solutions for Class 10 Maths Exercise 5.2

The key features of Class 10 Maths Ex 5.2 solutions are:

  • The concept has been explained concisely and solves all the doubts that the student may have when he goes through the chapter.

  • The Class 10 Maths Exercise 5.2 Solutions problems are solved through various approaches that let students tackle all kinds of questions on this topic.

  • The language used in Exercise 5.2 Class 10 Solutions is easy, which means that anyone can go through these solutions and understand the topic.


NCERT Solutions for Class 10 Maths Chapter 5 Exercises

FAQs on NCERT Solutions Class 10 Maths Chapter 5 Exercise 5.2 - Arithmetic Progression

1. Where can you observe the AP series and its application in real life?

Suppose that you have got a new job and you have been told that you will be paid an amount A in the first year. You are then told, each year you will be given an increment of D. This will let you calculate your salary in the 2nd, 3rd, fourth and the consecutive years. This is nothing but an AP series which has A as its first value and D is a common difference. To know what your salary will be in the n years, all that you need to do is to apply the formula of the nth term. This will let you calculate what your salary will be in the nth year of your service.

2. Where can we use the sum of the AP series in real life?

Let us assume that your mother used to put Rs 50 in your piggy bank in year 1. Each year she puts in Rs 50 more than the previous year in your piggy bank on your birthday. So while you have Rs 50 in year 1. The second-year your mother puts in Rs 100 and Rs 150 in the third year and so on. You want to calculate what will be the total amount of money that you will have in your piggy bank once you reach 21 years of age. This is where you apply the formula of the sum of n terms in the AP series. It lets you calculate the total summation of the amount in your piggy bank for year 1 to year 21.

3. What is the overview of Exercise 5.2 of Class 10 Mathematics?

Questions in Exercise 5.2 of Class 10 Mathematics are based on all of the key formulas and how an AP pattern is created, as well as how to calculate an AP series' nth term and the sum of n terms. The exercise has various questions based on these topics and the solutions cover every topic in great detail, such that the students might be able to understand the topics clearly.

4. How to find the nth term in Class 10 Maths Exercise 5.2?

We calculate the nth term of the AP series by using the formula : a(n) = a+ (n-1)d. The initial term of the series is ‘a’, the term you want to find out is ‘n’ and the common difference between two consecutive terms in the AP series is ‘d’. Students must memorise this formula and then figure out what the n and d numbers are. They can then use it in the formula to get the nth term of the AP series.

5. How many questions are there in Class 10 Maths Chapter 5?

There are mainly three exercises in Class 10 Maths Chapter 5. In the first exercise, there are four questions. In the second exercise, there are twenty questions. In the third exercise, there are twenty questions. There is also an optional exercise, which has five questions. Apart from this, various solved examples are given in the chapter, that will help you understand the chapter better.

6. Do I need to practice all the questions provided in Class 10 Maths Chapter 5 NCERT Solutions?

Yes, all the questions are extremely important from the point of view of the board examination. Hence, one must solve them all to get the most out of the chapter. All the concepts and formulae must also be revised regularly to get a better hang of the chapter.

7. Where can I get the NCERT Solutions for Class 10 Maths Chapter 5?

All the NCERT Solutions for Class 10 Maths Chapter 5 are provided in great detail by Vedantu where they analyse the question and give the perfect answer which covers all the important steps and is aptly written such that it suits the pattern of board examination. The PDFs of these NCERT Solutions can be downloaded from the Vedantu website or from the Vedantu app at free of cost.