
You are given 7 different consonants and 3 different vowels. You have to form three letter words each containing 2 consonants and 1 vowel so that the vowel is always in between the two consonants. How many such words can be formed?
Answer
139.8k+ views
Hint: If we are required to select r things from n different things (n > r), then the number of ways in which we can select these are things is given by the formula ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$ . Also, if we are required to arrange these are things among themselves, the number of ways of arrangement is r!. Using this, we can solve this question.
Complete step-by-step solution -
Before proceeding with the question, we must know all the formulas that will be required to solve this question.
In permutations and combinations, if we are given n different things from which, we are required to select r things such that (n > r), then the number of ways in which we can do so is given by the formula,
${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$ . . . . . . . . . . . . . (1)
If we are required to arrange these ‘r’ things among themselves, the number of ways of arrangement is r! . . . . . . . . . (2)
In the question, we are given 7 different consonants and 3 different vowels. We are required to form three letter words each containing 2 consonants and 1 vowel so that the vowel is always in between the two consonants.
Using formula (1), the number of ways in which we can select 2 consonants from 7 different consonants is equal to,
$\begin{align}
& {}^{7}{{C}_{2}}=\dfrac{7!}{2!\left( 7-2 \right)!} \\
& \Rightarrow {}^{7}{{C}_{2}}=\dfrac{7\times 6\times 5!}{2\left( 5 \right)!} \\
& \Rightarrow {}^{7}{{C}_{2}}=21 \\
\end{align}$
Using formula (1), the number of ways in which we can select 1 vowel from 3 different vowels is equal to,
$\begin{align}
& {}^{3}{{C}_{1}}=\dfrac{3!}{1!\left( 3-1 \right)!} \\
& \Rightarrow {}^{1}{{C}_{1}}=\dfrac{3\times 2!}{\left( 2 \right)!} \\
& \Rightarrow {}^{3}{{C}_{1}}=3 \\
\end{align}$
So, the number of words containing 2 consonants and 1 vowel is given by multiplying the above two obtained number is equal to,
$21\times 3=63$
Now in these 63 words, we have to arrange the vowels and consonants in such a way that the consonants hold the first and the third place and the vowel holds the middle i.e. second place. Using formula (2), the number of ways in which the 2 consonants can be arranged within themselves is equal to 2! = 2.
Hence, the total number of words in which the vowel is always in between the two consonants is equal to $63\times 2=126$.
Note: There is a possibility that one may forget to arrange the two consonants after their selection which will lead us to an incorrect answer. Each arrangement of the two consonants will give us different words. That is why there is a need to arrange them within themselves.
Complete step-by-step solution -
Before proceeding with the question, we must know all the formulas that will be required to solve this question.
In permutations and combinations, if we are given n different things from which, we are required to select r things such that (n > r), then the number of ways in which we can do so is given by the formula,
${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$ . . . . . . . . . . . . . (1)
If we are required to arrange these ‘r’ things among themselves, the number of ways of arrangement is r! . . . . . . . . . (2)
In the question, we are given 7 different consonants and 3 different vowels. We are required to form three letter words each containing 2 consonants and 1 vowel so that the vowel is always in between the two consonants.
Using formula (1), the number of ways in which we can select 2 consonants from 7 different consonants is equal to,
$\begin{align}
& {}^{7}{{C}_{2}}=\dfrac{7!}{2!\left( 7-2 \right)!} \\
& \Rightarrow {}^{7}{{C}_{2}}=\dfrac{7\times 6\times 5!}{2\left( 5 \right)!} \\
& \Rightarrow {}^{7}{{C}_{2}}=21 \\
\end{align}$
Using formula (1), the number of ways in which we can select 1 vowel from 3 different vowels is equal to,
$\begin{align}
& {}^{3}{{C}_{1}}=\dfrac{3!}{1!\left( 3-1 \right)!} \\
& \Rightarrow {}^{1}{{C}_{1}}=\dfrac{3\times 2!}{\left( 2 \right)!} \\
& \Rightarrow {}^{3}{{C}_{1}}=3 \\
\end{align}$
So, the number of words containing 2 consonants and 1 vowel is given by multiplying the above two obtained number is equal to,
$21\times 3=63$
Now in these 63 words, we have to arrange the vowels and consonants in such a way that the consonants hold the first and the third place and the vowel holds the middle i.e. second place. Using formula (2), the number of ways in which the 2 consonants can be arranged within themselves is equal to 2! = 2.
Hence, the total number of words in which the vowel is always in between the two consonants is equal to $63\times 2=126$.
Note: There is a possibility that one may forget to arrange the two consonants after their selection which will lead us to an incorrect answer. Each arrangement of the two consonants will give us different words. That is why there is a need to arrange them within themselves.
Recently Updated Pages
Average fee range for JEE coaching in India- Complete Details

Difference Between Rows and Columns: JEE Main 2024

Difference Between Length and Height: JEE Main 2024

Difference Between Natural and Whole Numbers: JEE Main 2024

Algebraic Formula

Difference Between Constants and Variables: JEE Main 2024

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

Physics Average Value and RMS Value JEE Main 2025

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Main Chemistry Question Paper with Answer Keys and Solutions
