
Two short magnets have equal pole strengths but one is twice as long as the other. The shorter magnet is placed $20\,cm$ in $\tan \,A$ position from the compass needle. The longer magnet must be placed on the other side of the magnetometer for no deflection at a distance equal to
(A) $20\,cm$
(B) $20 \times {\left( 2 \right)^{1/3}}\,cm$
(C) $20 \times {\left( 2 \right)^{2/3}}\,cm$
(D) $20 \times {\left( 2 \right)^{3/3}}\,cm$
Answer
140.1k+ views
Hint: Use the condition for the no deflection between the magnets, frame the relation between the length and the distance of the magnet from the compass needle. Substitute the known values to find the value of the distance of the second magnet from the compass needle.
Useful formula:
The formula of the no deflection in the position of the $\tan \,A$ from the compass needle is
$\dfrac{{2{M_1}{\mu _0}}}{{4\pi {d_1}^3}} = \dfrac{{2{M_2}{\mu _0}}}{{4\pi {d_2}^3}}$
Where ${M_1}$ is the length of the first magnet, ${M_2}$ is the length of the first magnet, ${d_1}$ is the distance of the first magnet from the compass needle and ${d_2}$ is the distance of the second magnet from the compass needle.
Complete step by step solution:
It is given that the
The shorter magnet is placed at a distance from $\tan \,A$ , ${d_1} = 20\,cm$
The longer magnet is twice the length of the shorter magnet.
Using the formula of the no deflection,
$\dfrac{{2{M_1}{\mu _0}}}{{4\pi {d_1}^3}} = \dfrac{{2{M_2}{\mu _0}}}{{4\pi {d_2}^3}}$
By cancelling the similar terms on both sides,
$\dfrac{{{M_1}}}{{{d_1}^3}} = \dfrac{{{M_2}}}{{{d_2}^3}}$
By rearranging the terms in the above step, we get
$\dfrac{{{M_1}}}{{{M_2}}} = \dfrac{{{d_1}^3}}{{{d_2}^3}}$
Substituting the known values in the above equation,
$\dfrac{1}{2} = \dfrac{{{{20}^3}}}{{{d_2}^3}}$
By simplifying the above values,
${d_{{2^{}}}}^3 = 4000$
Hence the value of the distance of the second magnet from the compass needle is obtained as follows.
${d_2}^3 = 20 \times {\left( 2 \right)^{1/3}}\,cm$
Thus the option (B) is correct.
Note: In the question, it is given that the Two short magnets have equal pole strengths but one is twice as long as the other. Hence in the above calculation, the value of the length of the first magnet is taken as $1$ and that of the second magnet is $2\left( 1 \right) = 2$.
Useful formula:
The formula of the no deflection in the position of the $\tan \,A$ from the compass needle is
$\dfrac{{2{M_1}{\mu _0}}}{{4\pi {d_1}^3}} = \dfrac{{2{M_2}{\mu _0}}}{{4\pi {d_2}^3}}$
Where ${M_1}$ is the length of the first magnet, ${M_2}$ is the length of the first magnet, ${d_1}$ is the distance of the first magnet from the compass needle and ${d_2}$ is the distance of the second magnet from the compass needle.
Complete step by step solution:
It is given that the
The shorter magnet is placed at a distance from $\tan \,A$ , ${d_1} = 20\,cm$
The longer magnet is twice the length of the shorter magnet.
Using the formula of the no deflection,
$\dfrac{{2{M_1}{\mu _0}}}{{4\pi {d_1}^3}} = \dfrac{{2{M_2}{\mu _0}}}{{4\pi {d_2}^3}}$
By cancelling the similar terms on both sides,
$\dfrac{{{M_1}}}{{{d_1}^3}} = \dfrac{{{M_2}}}{{{d_2}^3}}$
By rearranging the terms in the above step, we get
$\dfrac{{{M_1}}}{{{M_2}}} = \dfrac{{{d_1}^3}}{{{d_2}^3}}$
Substituting the known values in the above equation,
$\dfrac{1}{2} = \dfrac{{{{20}^3}}}{{{d_2}^3}}$
By simplifying the above values,
${d_{{2^{}}}}^3 = 4000$
Hence the value of the distance of the second magnet from the compass needle is obtained as follows.
${d_2}^3 = 20 \times {\left( 2 \right)^{1/3}}\,cm$
Thus the option (B) is correct.
Note: In the question, it is given that the Two short magnets have equal pole strengths but one is twice as long as the other. Hence in the above calculation, the value of the length of the first magnet is taken as $1$ and that of the second magnet is $2\left( 1 \right) = 2$.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation

Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

Trending doubts
A point charge + 20mu C is at a distance 6cm directly class 12 physics JEE_Main

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

A conducting loop carrying a current is placed in a class 12 physics JEE_Main

Physics Average Value and RMS Value JEE Main 2025

Charging and Discharging of Capacitor

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Other Pages
Collision - Important Concepts and Tips for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

A transformer is used to light a 100W and 110V lamp class 12 physics JEE_Main

Determine the time spent by a particle in a magnetic class 12 physics JEE_Main

A planoconvex lens f20cm is silvered at the plane surface class 12 physics JEE_Main

A light wave is incident normally on a glass slab of class 12 physics JEE_Main
