
Two short magnets have equal pole strengths but one is twice as long as the other. The shorter magnet is placed $20\,cm$ in $\tan \,A$ position from the compass needle. The longer magnet must be placed on the other side of the magnetometer for no deflection at a distance equal to
(A) $20\,cm$
(B) $20 \times {\left( 2 \right)^{1/3}}\,cm$
(C) $20 \times {\left( 2 \right)^{2/3}}\,cm$
(D) $20 \times {\left( 2 \right)^{3/3}}\,cm$
Answer
139.5k+ views
Hint: Use the condition for the no deflection between the magnets, frame the relation between the length and the distance of the magnet from the compass needle. Substitute the known values to find the value of the distance of the second magnet from the compass needle.
Useful formula:
The formula of the no deflection in the position of the $\tan \,A$ from the compass needle is
$\dfrac{{2{M_1}{\mu _0}}}{{4\pi {d_1}^3}} = \dfrac{{2{M_2}{\mu _0}}}{{4\pi {d_2}^3}}$
Where ${M_1}$ is the length of the first magnet, ${M_2}$ is the length of the first magnet, ${d_1}$ is the distance of the first magnet from the compass needle and ${d_2}$ is the distance of the second magnet from the compass needle.
Complete step by step solution:
It is given that the
The shorter magnet is placed at a distance from $\tan \,A$ , ${d_1} = 20\,cm$
The longer magnet is twice the length of the shorter magnet.
Using the formula of the no deflection,
$\dfrac{{2{M_1}{\mu _0}}}{{4\pi {d_1}^3}} = \dfrac{{2{M_2}{\mu _0}}}{{4\pi {d_2}^3}}$
By cancelling the similar terms on both sides,
$\dfrac{{{M_1}}}{{{d_1}^3}} = \dfrac{{{M_2}}}{{{d_2}^3}}$
By rearranging the terms in the above step, we get
$\dfrac{{{M_1}}}{{{M_2}}} = \dfrac{{{d_1}^3}}{{{d_2}^3}}$
Substituting the known values in the above equation,
$\dfrac{1}{2} = \dfrac{{{{20}^3}}}{{{d_2}^3}}$
By simplifying the above values,
${d_{{2^{}}}}^3 = 4000$
Hence the value of the distance of the second magnet from the compass needle is obtained as follows.
${d_2}^3 = 20 \times {\left( 2 \right)^{1/3}}\,cm$
Thus the option (B) is correct.
Note: In the question, it is given that the Two short magnets have equal pole strengths but one is twice as long as the other. Hence in the above calculation, the value of the length of the first magnet is taken as $1$ and that of the second magnet is $2\left( 1 \right) = 2$.
Useful formula:
The formula of the no deflection in the position of the $\tan \,A$ from the compass needle is
$\dfrac{{2{M_1}{\mu _0}}}{{4\pi {d_1}^3}} = \dfrac{{2{M_2}{\mu _0}}}{{4\pi {d_2}^3}}$
Where ${M_1}$ is the length of the first magnet, ${M_2}$ is the length of the first magnet, ${d_1}$ is the distance of the first magnet from the compass needle and ${d_2}$ is the distance of the second magnet from the compass needle.
Complete step by step solution:
It is given that the
The shorter magnet is placed at a distance from $\tan \,A$ , ${d_1} = 20\,cm$
The longer magnet is twice the length of the shorter magnet.
Using the formula of the no deflection,
$\dfrac{{2{M_1}{\mu _0}}}{{4\pi {d_1}^3}} = \dfrac{{2{M_2}{\mu _0}}}{{4\pi {d_2}^3}}$
By cancelling the similar terms on both sides,
$\dfrac{{{M_1}}}{{{d_1}^3}} = \dfrac{{{M_2}}}{{{d_2}^3}}$
By rearranging the terms in the above step, we get
$\dfrac{{{M_1}}}{{{M_2}}} = \dfrac{{{d_1}^3}}{{{d_2}^3}}$
Substituting the known values in the above equation,
$\dfrac{1}{2} = \dfrac{{{{20}^3}}}{{{d_2}^3}}$
By simplifying the above values,
${d_{{2^{}}}}^3 = 4000$
Hence the value of the distance of the second magnet from the compass needle is obtained as follows.
${d_2}^3 = 20 \times {\left( 2 \right)^{1/3}}\,cm$
Thus the option (B) is correct.
Note: In the question, it is given that the Two short magnets have equal pole strengths but one is twice as long as the other. Hence in the above calculation, the value of the length of the first magnet is taken as $1$ and that of the second magnet is $2\left( 1 \right) = 2$.
Recently Updated Pages
JEE Mains 2025 April 2 Shift 1 Question Paper with Answer Key - Physics

JEE Main 2025 April 2 Shift 1 Maths Paper with Answers & Analysis

JEE Main 2025 April 2 Shift 1 Chemistry Paper with Answers - Detailed Analysis

Top Benefits of Vedantu's Online JEE Coaching for Success

Vedantu JEE Offline Coaching Fees & Discounts – Complete Details

Average fee range for JEE coaching in India- Complete Details

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

A point charge + 20mu C is at a distance 6cm directly class 12 physics JEE_Main

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main
