
Two short magnets have equal pole strengths but one is twice as long as the other. The shorter magnet is placed $20\,cm$ in $\tan \,A$ position from the compass needle. The longer magnet must be placed on the other side of the magnetometer for no deflection at a distance equal to
(A) $20\,cm$
(B) $20 \times {\left( 2 \right)^{1/3}}\,cm$
(C) $20 \times {\left( 2 \right)^{2/3}}\,cm$
(D) $20 \times {\left( 2 \right)^{3/3}}\,cm$
Answer
131.4k+ views
Hint: Use the condition for the no deflection between the magnets, frame the relation between the length and the distance of the magnet from the compass needle. Substitute the known values to find the value of the distance of the second magnet from the compass needle.
Useful formula:
The formula of the no deflection in the position of the $\tan \,A$ from the compass needle is
$\dfrac{{2{M_1}{\mu _0}}}{{4\pi {d_1}^3}} = \dfrac{{2{M_2}{\mu _0}}}{{4\pi {d_2}^3}}$
Where ${M_1}$ is the length of the first magnet, ${M_2}$ is the length of the first magnet, ${d_1}$ is the distance of the first magnet from the compass needle and ${d_2}$ is the distance of the second magnet from the compass needle.
Complete step by step solution:
It is given that the
The shorter magnet is placed at a distance from $\tan \,A$ , ${d_1} = 20\,cm$
The longer magnet is twice the length of the shorter magnet.
Using the formula of the no deflection,
$\dfrac{{2{M_1}{\mu _0}}}{{4\pi {d_1}^3}} = \dfrac{{2{M_2}{\mu _0}}}{{4\pi {d_2}^3}}$
By cancelling the similar terms on both sides,
$\dfrac{{{M_1}}}{{{d_1}^3}} = \dfrac{{{M_2}}}{{{d_2}^3}}$
By rearranging the terms in the above step, we get
$\dfrac{{{M_1}}}{{{M_2}}} = \dfrac{{{d_1}^3}}{{{d_2}^3}}$
Substituting the known values in the above equation,
$\dfrac{1}{2} = \dfrac{{{{20}^3}}}{{{d_2}^3}}$
By simplifying the above values,
${d_{{2^{}}}}^3 = 4000$
Hence the value of the distance of the second magnet from the compass needle is obtained as follows.
${d_2}^3 = 20 \times {\left( 2 \right)^{1/3}}\,cm$
Thus the option (B) is correct.
Note: In the question, it is given that the Two short magnets have equal pole strengths but one is twice as long as the other. Hence in the above calculation, the value of the length of the first magnet is taken as $1$ and that of the second magnet is $2\left( 1 \right) = 2$.
Useful formula:
The formula of the no deflection in the position of the $\tan \,A$ from the compass needle is
$\dfrac{{2{M_1}{\mu _0}}}{{4\pi {d_1}^3}} = \dfrac{{2{M_2}{\mu _0}}}{{4\pi {d_2}^3}}$
Where ${M_1}$ is the length of the first magnet, ${M_2}$ is the length of the first magnet, ${d_1}$ is the distance of the first magnet from the compass needle and ${d_2}$ is the distance of the second magnet from the compass needle.
Complete step by step solution:
It is given that the
The shorter magnet is placed at a distance from $\tan \,A$ , ${d_1} = 20\,cm$
The longer magnet is twice the length of the shorter magnet.
Using the formula of the no deflection,
$\dfrac{{2{M_1}{\mu _0}}}{{4\pi {d_1}^3}} = \dfrac{{2{M_2}{\mu _0}}}{{4\pi {d_2}^3}}$
By cancelling the similar terms on both sides,
$\dfrac{{{M_1}}}{{{d_1}^3}} = \dfrac{{{M_2}}}{{{d_2}^3}}$
By rearranging the terms in the above step, we get
$\dfrac{{{M_1}}}{{{M_2}}} = \dfrac{{{d_1}^3}}{{{d_2}^3}}$
Substituting the known values in the above equation,
$\dfrac{1}{2} = \dfrac{{{{20}^3}}}{{{d_2}^3}}$
By simplifying the above values,
${d_{{2^{}}}}^3 = 4000$
Hence the value of the distance of the second magnet from the compass needle is obtained as follows.
${d_2}^3 = 20 \times {\left( 2 \right)^{1/3}}\,cm$
Thus the option (B) is correct.
Note: In the question, it is given that the Two short magnets have equal pole strengths but one is twice as long as the other. Hence in the above calculation, the value of the length of the first magnet is taken as $1$ and that of the second magnet is $2\left( 1 \right) = 2$.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation

Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Clemmenson and Wolff Kishner Reductions for JEE

Sir C V Raman won the Nobel Prize in which year A 1928 class 12 physics JEE_Main

In Bohrs model of the hydrogen atom the radius of the class 12 physics JEE_Main

JEE Main 2025 Session 2 Registration Open – Apply Now! Form Link, Last Date and Fees

Other Pages
JEE Advanced 2024 Syllabus Weightage

CBSE Date Sheet 2025 Class 12 - Download Timetable PDF for FREE Now

JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF

CBSE Class 10 Hindi Sample Papers with Solutions 2024-25 FREE PDF

CBSE Board Exam Date Sheet Class 10 2025 (OUT): Download Exam Dates PDF

CBSE Class 10 Hindi Course-B Syllabus 2024-25 - Revised PDF Download
