
Determine the time spent by a particle in a magnetic field and change in its momentum.
Answer
131.7k+ views
Hint To find the time spent by a particle in a magnetic field we find the length of the arc (path taken by the particle in the magnetic field) by multiplying the angle made by the arc with the radius of the arc. Substituting the equation of radius in the equation of length of arc and dividing it by velocity of the particle, we get the time spent by the particle.
The change in momentum is the difference in momentum of the particle before entering the magnetic field and while leaving the magnetic field. The change in momentum is also called the impulse.
Formula used
Time spent by the particle is $t = \dfrac{l}{v}$
Change in momentum or impulse is $\Delta p = \Delta mv$
Here, Length of the arc is represented , Velocity of the particle is represented by , Time spent by the particle is given by , and Change in momentum is given by
Complete Step by step solution
The given diagram explains the path taken by the particle

Length of the arc (path taken by particle)
$ \Rightarrow l = 2\theta R$
Angle made by arc $\theta + \theta = 2\theta $
Substituting the value of radius in the length of the arc,
$ \Rightarrow R = \dfrac{{mv}}{{qB}} $
$ \Rightarrow l = \dfrac{{2\theta mv}}{{qB}} $
Here, $m,v,q,B$ represent the mass, velocity, charge of the particle, and the magnitude of the magnetic field into the plane respectively.
Dividing the length of the arc with the velocity we get the time spent by a particle in the magnetic field
$ \Rightarrow t = \dfrac{l}{v} $
$ \Rightarrow t = \dfrac{{2\theta m}}{{qB}} $
Time spent is $t = \dfrac{{2\theta m}}{{qB}}$

Momentum while entering the magnetic field is ${p_e} = mvcos\theta j + mv\sin \theta i$
Momentum while leaving the magnetic field is ${p_l} = mvcos\theta j - mv\sin \theta i$
The difference of these momentum gives us the change in momentum,
$ \Rightarrow {p_l} - {p_e} = \Delta p $
$ \Rightarrow \Delta p = (mvcos\theta j - mv\sin \theta i) - (mvcos\theta j + mv\sin \theta i) $
$ \Rightarrow \Delta p = - 2mv\sin \theta i $
The change in momentum is $\Delta p = - 2mv\sin \theta i$
Note Students may get confused with the angle with which the particle enters the magnetic field. Students may presume it as$90^\circ $. We should take the angle as $\theta $ and proceed. Time spent can also be found by dividing the angle made by an arc with angular velocity.
The change in momentum is the difference in momentum of the particle before entering the magnetic field and while leaving the magnetic field. The change in momentum is also called the impulse.
Formula used
Time spent by the particle is $t = \dfrac{l}{v}$
Change in momentum or impulse is $\Delta p = \Delta mv$
Here, Length of the arc is represented , Velocity of the particle is represented by , Time spent by the particle is given by , and Change in momentum is given by
Complete Step by step solution
The given diagram explains the path taken by the particle

Length of the arc (path taken by particle)
$ \Rightarrow l = 2\theta R$
Angle made by arc $\theta + \theta = 2\theta $
Substituting the value of radius in the length of the arc,
$ \Rightarrow R = \dfrac{{mv}}{{qB}} $
$ \Rightarrow l = \dfrac{{2\theta mv}}{{qB}} $
Here, $m,v,q,B$ represent the mass, velocity, charge of the particle, and the magnitude of the magnetic field into the plane respectively.
Dividing the length of the arc with the velocity we get the time spent by a particle in the magnetic field
$ \Rightarrow t = \dfrac{l}{v} $
$ \Rightarrow t = \dfrac{{2\theta m}}{{qB}} $
Time spent is $t = \dfrac{{2\theta m}}{{qB}}$

Momentum while entering the magnetic field is ${p_e} = mvcos\theta j + mv\sin \theta i$
Momentum while leaving the magnetic field is ${p_l} = mvcos\theta j - mv\sin \theta i$
The difference of these momentum gives us the change in momentum,
$ \Rightarrow {p_l} - {p_e} = \Delta p $
$ \Rightarrow \Delta p = (mvcos\theta j - mv\sin \theta i) - (mvcos\theta j + mv\sin \theta i) $
$ \Rightarrow \Delta p = - 2mv\sin \theta i $
The change in momentum is $\Delta p = - 2mv\sin \theta i$
Note Students may get confused with the angle with which the particle enters the magnetic field. Students may presume it as$90^\circ $. We should take the angle as $\theta $ and proceed. Time spent can also be found by dividing the angle made by an arc with angular velocity.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation

Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

Degree of Dissociation and Its Formula With Solved Example for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Diffraction of Light - Young’s Single Slit Experiment

Clemmenson and Wolff Kishner Reductions for JEE

Sir C V Raman won the Nobel Prize in which year A 1928 class 12 physics JEE_Main

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation
