
Determine the time spent by a particle in a magnetic field and change in its momentum.
Answer
226.2k+ views
Hint To find the time spent by a particle in a magnetic field we find the length of the arc (path taken by the particle in the magnetic field) by multiplying the angle made by the arc with the radius of the arc. Substituting the equation of radius in the equation of length of arc and dividing it by velocity of the particle, we get the time spent by the particle.
The change in momentum is the difference in momentum of the particle before entering the magnetic field and while leaving the magnetic field. The change in momentum is also called the impulse.
Formula used
Time spent by the particle is $t = \dfrac{l}{v}$
Change in momentum or impulse is $\Delta p = \Delta mv$
Here, Length of the arc is represented , Velocity of the particle is represented by , Time spent by the particle is given by , and Change in momentum is given by
Complete Step by step solution
The given diagram explains the path taken by the particle

Length of the arc (path taken by particle)
$ \Rightarrow l = 2\theta R$
Angle made by arc $\theta + \theta = 2\theta $
Substituting the value of radius in the length of the arc,
$ \Rightarrow R = \dfrac{{mv}}{{qB}} $
$ \Rightarrow l = \dfrac{{2\theta mv}}{{qB}} $
Here, $m,v,q,B$ represent the mass, velocity, charge of the particle, and the magnitude of the magnetic field into the plane respectively.
Dividing the length of the arc with the velocity we get the time spent by a particle in the magnetic field
$ \Rightarrow t = \dfrac{l}{v} $
$ \Rightarrow t = \dfrac{{2\theta m}}{{qB}} $
Time spent is $t = \dfrac{{2\theta m}}{{qB}}$

Momentum while entering the magnetic field is ${p_e} = mvcos\theta j + mv\sin \theta i$
Momentum while leaving the magnetic field is ${p_l} = mvcos\theta j - mv\sin \theta i$
The difference of these momentum gives us the change in momentum,
$ \Rightarrow {p_l} - {p_e} = \Delta p $
$ \Rightarrow \Delta p = (mvcos\theta j - mv\sin \theta i) - (mvcos\theta j + mv\sin \theta i) $
$ \Rightarrow \Delta p = - 2mv\sin \theta i $
The change in momentum is $\Delta p = - 2mv\sin \theta i$
Note Students may get confused with the angle with which the particle enters the magnetic field. Students may presume it as$90^\circ $. We should take the angle as $\theta $ and proceed. Time spent can also be found by dividing the angle made by an arc with angular velocity.
The change in momentum is the difference in momentum of the particle before entering the magnetic field and while leaving the magnetic field. The change in momentum is also called the impulse.
Formula used
Time spent by the particle is $t = \dfrac{l}{v}$
Change in momentum or impulse is $\Delta p = \Delta mv$
Here, Length of the arc is represented , Velocity of the particle is represented by , Time spent by the particle is given by , and Change in momentum is given by
Complete Step by step solution
The given diagram explains the path taken by the particle

Length of the arc (path taken by particle)
$ \Rightarrow l = 2\theta R$
Angle made by arc $\theta + \theta = 2\theta $
Substituting the value of radius in the length of the arc,
$ \Rightarrow R = \dfrac{{mv}}{{qB}} $
$ \Rightarrow l = \dfrac{{2\theta mv}}{{qB}} $
Here, $m,v,q,B$ represent the mass, velocity, charge of the particle, and the magnitude of the magnetic field into the plane respectively.
Dividing the length of the arc with the velocity we get the time spent by a particle in the magnetic field
$ \Rightarrow t = \dfrac{l}{v} $
$ \Rightarrow t = \dfrac{{2\theta m}}{{qB}} $
Time spent is $t = \dfrac{{2\theta m}}{{qB}}$

Momentum while entering the magnetic field is ${p_e} = mvcos\theta j + mv\sin \theta i$
Momentum while leaving the magnetic field is ${p_l} = mvcos\theta j - mv\sin \theta i$
The difference of these momentum gives us the change in momentum,
$ \Rightarrow {p_l} - {p_e} = \Delta p $
$ \Rightarrow \Delta p = (mvcos\theta j - mv\sin \theta i) - (mvcos\theta j + mv\sin \theta i) $
$ \Rightarrow \Delta p = - 2mv\sin \theta i $
The change in momentum is $\Delta p = - 2mv\sin \theta i$
Note Students may get confused with the angle with which the particle enters the magnetic field. Students may presume it as$90^\circ $. We should take the angle as $\theta $ and proceed. Time spent can also be found by dividing the angle made by an arc with angular velocity.
Recently Updated Pages
JEE Main 2025-26 Experimental Skills Mock Test – Free Practice

JEE Main 2025-26: Magnetic Effects of Current & Magnetism Mock Test

JEE Main 2025-26 Atoms and Nuclei Mock Test – Free Practice Online

JEE Main Mock Test 2025-26: Optics Chapter Practice Online

The work done in slowly moving an electron of charge class 12 physics JEE_Main

The value of the resistor RS needed in the DC voltage class 12 physics JEE_Main

Trending doubts
JEE Main 2026: City Intimation Slip and Exam Dates Released, Application Form Closed, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Atomic Structure for Beginners

Understanding Average and RMS Value in Electrical Circuits

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Gyroscope Explained: Principles, Working & Real-World Uses

