
The equilibrium constant in reversible reaction at a given temperature:
(A) Depends on the initial concentration of the reactants
(B) Depends on the concentration of products in equilibrium
(C) Does not depend on the initial concentrations
(D) It is not characteristic of the reaction.
Answer
221.1k+ views
Hint: Equilibrium constant is defined as the number which tells the relationship between the amount of products (concentration of product) and amount of reactants (concentration of product) at a given temperature during a reversible reaction (a reaction that can be reversed) when equilibrium reach.
Complete Step by Step Solution:
According to Le Chatelier's Principle, the equilibrium constant for any reversible reaction at a given temperature is always a fixed number. If you increase the concentration of reactant or product, the direction of equilibrium will change to revert the change but there will be no effect on the equilibrium constant value.
Let us assume a reversible reaction at a given temperature
\[A\text{ }+\text{ }B\rightleftharpoons 2C\text{ }+\text{ }D\]
Its equilibrium constant say Kc is defined as
\[Kc\text{ }=\text{ }\left[ C \right]{}^\text{2}\left[ D \right]/\left[ A \right]\left[ B \right]\]
Now, if we decrease the concentration of C, then the equilibrium constant value should decrease but the equilibrium shifts in forward direction to revert the change, and the concentration of product starts to decrease to increase the concentration of product as before. And the decrease in the concentration of reactant continues until the equilibrium constant attains the same value before changing the concentration of C.
Thus, only the direction of equilibrium changes to undo the change and we will get the same value of the equilibrium constant as before the change was made. So, the equilibrium constant does not depend on the initial concentration of product and reactant.
Thus, the correct option is C.
Note: It is important to note that Kp, the equilibrium constant of pressure also remains unchanged if we change the pressure of the whole reaction. On adding any catalyst the equilibrium remains the same. So what can change the equilibrium constant? It is the temperature that can affect the equilibrium constant. If we change the temperature of the system, the equilibrium constant value also changes. When forward reaction is exothermic then on increasing temperature value of equilibrium constant decreases otherwise (if forward reaction is endothermic) increases.
Complete Step by Step Solution:
According to Le Chatelier's Principle, the equilibrium constant for any reversible reaction at a given temperature is always a fixed number. If you increase the concentration of reactant or product, the direction of equilibrium will change to revert the change but there will be no effect on the equilibrium constant value.
Let us assume a reversible reaction at a given temperature
\[A\text{ }+\text{ }B\rightleftharpoons 2C\text{ }+\text{ }D\]
Its equilibrium constant say Kc is defined as
\[Kc\text{ }=\text{ }\left[ C \right]{}^\text{2}\left[ D \right]/\left[ A \right]\left[ B \right]\]
Now, if we decrease the concentration of C, then the equilibrium constant value should decrease but the equilibrium shifts in forward direction to revert the change, and the concentration of product starts to decrease to increase the concentration of product as before. And the decrease in the concentration of reactant continues until the equilibrium constant attains the same value before changing the concentration of C.
Thus, only the direction of equilibrium changes to undo the change and we will get the same value of the equilibrium constant as before the change was made. So, the equilibrium constant does not depend on the initial concentration of product and reactant.
Thus, the correct option is C.
Note: It is important to note that Kp, the equilibrium constant of pressure also remains unchanged if we change the pressure of the whole reaction. On adding any catalyst the equilibrium remains the same. So what can change the equilibrium constant? It is the temperature that can affect the equilibrium constant. If we change the temperature of the system, the equilibrium constant value also changes. When forward reaction is exothermic then on increasing temperature value of equilibrium constant decreases otherwise (if forward reaction is endothermic) increases.
Recently Updated Pages
Difference Between Alcohol and Phenol: Structure, Tests & Uses

Classification of Drugs in Chemistry: Types, Examples & Exam Guide

Class 12 Chemistry Mock Test Series for JEE Main – Free Online Practice

Is PPh3 a strong ligand class 12 chemistry JEE_Main

Full name of DDT is A 111trichloro22bispchlorophenyl class 12 chemistry JEE_Main

Sodium acetate on heating with soda lime produce A class 12 chemistry JEE_Main

Trending doubts
Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Average and RMS Value in Electrical Circuits

Understanding Entropy Changes in Different Processes

What Are Elastic Collisions in One Dimension?

Understanding Geostationary and Geosynchronous Satellites

Understanding How a Current Loop Acts as a Magnetic Dipole

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Test for Phenolic Group

NCERT Solutions For Class 12 Chemistry Chapter 2 Chapter 2 Solutions Hindi Medium in Hindi - 2025-26

Convert chloro benzene to phenol class 12 chemistry JEE_Main

NCERT Solutions For Class 12 Chemistry Chapter 10 Biomolecules - 2025-26

CBSE Class 12 Chemistry Question Paper Set 3 2025 with Answers

