Courses for Kids
Free study material
Offline Centres

Organic Compound Contains Oxygen Chapter - Chemistry JEE Main

Last updated date: 01st Dec 2023
Total views: 21.3k
Views today: 0.21k
hightlight icon
highlight icon
highlight icon
share icon
copy icon

Concepts of Organic Compound Contains Oxygen for JEE Main Chemistry

In JEE Main Chemistry, the topic Organic Compounds containing Oxygen is very essential. Under the wide category of General Organic Chemistry, it plays a critical role. From the Organic Compounds containing Oxygen chapter, at least one or two questions are asked, totalling roughly four marks.

As a result, the total weightage of this chapter in the JEE Main exams is up to 1-2 percent. If you thoroughly understand the theoretical section of this chapter, you will have no trouble answering the chapter's questions. Ethers, Alcohols, and the Cannizzaro Reaction are a few of the concepts investigated under the Organic Compounds containing Oxygen heading.

JEE Main Chemistry Chapters 2024 

Important Topics of Oxygen Containing Compound Chapter

  • Alcohols

  • Aldehydes

  • Ester 

  • Phenol

  • ketone

  • Acyl group

  • Ether 

  • Carboxylic acid

  • Amide 

Organic Compound Contains Oxygen Important Concept for JEE Main

Tollen’s test of aldehyde and ketone

The Tollens' test is a chemical reaction that distinguishes aldehydes from ketones because aldehydes may be oxidised to a carboxylic acid whereas ketones cannot.


The aromatic organic chemical phenol (also known as carbolic acid) has the molecular formula C6H5OH.

Acyl group

An acyl group is a moiety formed from an oxoacid, including inorganic acids, by removing one or more hydroxyl groups.


A form of an organic molecule with at least one hydroxyl functional group (OH) attached to a saturated carbon atom is known as alcohol.


Ethers are organic compounds with an ether group, which is an oxygen atom bonded to two alkyl or aryl groups.

Carboxylic Acid

A carboxylic acid is an organic molecule in which a carbon (C) atom is double bonded to an oxygen (O) atom and a hydroxyl group (OH) is single bonded.

Oxygen Containing Organic Compounds

There are four major oxygen containing compounds in organic chemistry: A carboxylic acid is an organic molecule with a carbon (C) atom double linked to an oxygen (O) atom and a single attached hydroxyl group (OH).

Important Reactions

1. Oxymercuration-Demercuration

seo images

2.  Hydroboration Oxidation

Alkene combines with diborane to generate trialkyl boranes, which then react with alkaline H2O2 to form alcohols, resulting in anti-water Markovnikov's addition.

seo images

3. By using esters

seo images

4. Hydrolysis of alkyl halides 

seo images

Physical Properties 

The OH group has a big influence on the alcohol's characteristics.

  • The boiling points of the lower members, such as methanol, ethanol, and 1propanol, are greater.

  • Alcohols with smaller alkyl groups are more water soluble, but as the size of the alkyl group grows larger, the solubility declines.

Chemical Properties of the Alcohols

1. Reaction with Hydrogen Halides

Substitution occurs when alcohols react with a hydrogen halide, resulting in an alkyl halide and water.

 R—OH + HX → R—X + H2

2. Reaction with PX3 and PX5

Alkyl halides are formed when alcohols combine with PX3 and PX5.  

3 ROH + PBr3 → 3RBr + H3PO3

(1° or 2° alcohol)

ROH + PCl5 → RCl + POCl3 + HCl

3. Reaction with SOCl2

ROH + SOCl2 → R — Cl + SO2 + HCl

4. Esterification

The creation of an ester is the third method of replacing hydroxyl hydrogen with an acyl group. Acid chloride, acid anhydride, or carboxylic acid are all frequent sources of acyl groups (RCO). Esters form when they react with alcohol.

seo images

5. Reaction with RMgX

Alcohol is a non-acidic substance. A Grignard reagent, which is a strong base, can remove hydrogen from an alcohol's (OH) group.

CH3OH + CH3MgI → CH3OMgI + CH4

6. Reaction with Ceric Ammonium Solution

With ceric ammonium nitrate solution, an organic molecule containing one oxygen produces a red hue. Any monohydric alcohol, including phenol, can give off a red colour when it contains one oxygen. 

Methods of Preparation of Phenols

1. Hydrolysis of Chlorobenzene

Chlorobenzene is heated at 350°C under high pressure with aqueous NaOH in this procedure. The reaction creates C6H5ONa+ (sodium phenoxide), which is converted to phenol by acidification. Dow's method is the name for this reaction.

seo images

2. Alkali Fusion of Sodium Benzene Sulphonate

This process involves melting sodium benzene sulphonate with sodium hydroxide to make sodium phenoxide, which is then acidified to produce phenol.

seo images

3. Hydrolysis of Diazonium Salts

Phenol is created when a diazonium sulphate solution is steam distilled. 

seo images

4. By Distillation of Phenolic Acid

Decarboxylation occurs when phenolic acids are heated with soda lime, resulting in phenols.

seo images

Physical Properties of the Phenols

  • Phenol (C6H5OH) is a colourless solid.

  • The m.p. is 41°C. 

  • The b.p. 182°C. 

  • It becomes coloured on exposure to air. 

  • It is fairly soluble in water.

Chemical Properties of the Phenols

1. Fries Rearrangement

The ortho and para hydroxy acetophenones are produced by the Fries rearrangement of phenyl acetate with AlCl3. The ortho isomer is removed from the mixture using steam distillation.

seo images

2. Schotten  Baumann Reaction

When an alkaline phenol solution is forcefully shaken with benzoyl chloride, phenyl benzoate is produced. It's known as the Schotten Baumann response.

seo images

3. Reaction with PCl5

Aryl chloride is generated when phenol is treated with PCl5 (poor yield). Triphenyl phosphate is the major product of this process. 

seo images

4. Reaction with NH3

When phenol is treated with ammonia at 300°C under high pressure in the presence of anhydrous AlCl3, ZnCl2, or CaCl2, aniline is produced. 

seo images

5. Reaction with Zn dust

When phenols are heated with Zn dust, aromatic hydrocarbons are formed.

seo images

6. Kolbe's Schmidt Reaction

When carbon dioxide gas is passed through sodium phenoxide at 400 degrees Celsius and 67 pounds per square inch of air pressure, sodium salicylate is created, which when acidified yields salicylic acid, but some para isomer is also produced.

seo images

7. Reimer Tiemann Reaction

seo images

seo images

Methods of Preparation of Ethers

1. Williamson's Continuous Etherification Process

2ROH + 2Na → 2RO-Na+ + H2

RO-Na+ + R’X → R-O-R’ + NaX

It involves sodium alkoxide reacting with an alkyl halide. The action of Na on alcohol produces sodium alkoxide.

2. Intermolecular Dehydration of Alcohols 

ROH + HOR → R-O-R + H2O      (at 140 degrees celsius temperature)

Physical Properties of the Ethers

  • Ethers boil at a substantially lower temperature than the alcohols from which they are formed or similar molecular weight alcohols.

  • The boiling points are very similar to those of similar molecular complexity substituted alkanes.

Chemical Properties of the Ethers

1. Salt formation

Though ethers are neutral compounds, these form oxonium salts with inorganic acids.

seo images

This reaction is due to lone pairs of electrons on oxygen of the ether functional group.

2. Cleavage by Acids

R-O-R + HX → RX + R’OH + R’X + H2O

Reactivity of HX : HI > HBr > HCl

Cleavage takes place only under vigorous conditions, i.e., concentrated acids (usually HI or HBr) and at high temperatures.

Action of HI

(a) At room temperature

seo images

(b) At 100° C (excess of HI) 

seo images

Thus, the metameric ethers can be easily identified by the cleavage with HI.

3. Action of PCl5 or SOCl2

seo images

Thus, the reaction of PCl5 or SOCl2 can be used to identify the metameric ethers.

Aldehydes & Ketones

Aldehydes and ketones belong to a class of compounds having general formula CnH2nO and are represented as RCHO and RR'CO, respectively.

Methods of Preparation of Aldehydes

1. Oxidation of primary alcohols

Oxidation can be affected with acidic K2Cr2O7 or with PCC (Pyridine Chlorochromate, mild oxidising agent) in CH2Cl2.

seo images

2. Oxidation of Methylbenzenes

seo images

3. By Heating a Mixture of the Calcium Salts of Formic Acid and any one of its Homologues

seo images

Methods of Preparation of Ketones

1. Oxidation of Secondary Alcohols

seo images

2. By Heating the Calcium Salt of any Monocarboxylic Acid other than Formic Acid

seo images

3. Friedel – Crafts Acylation

Used for the preparation of aliphatic aromatic ketones or aromatic ketones.

seo images

Physical Properties of Aldehydes and Ketones

The polar carbonyl group makes aldehydes and ketones polar compounds and hence they have higher boiling points than non-polar compounds of comparable molecular weights.

Chemical Properties of Aldehydes and Ketones

1. Oxidation


seo images

(b) Tollen's Reagent

 A specific oxidant for RCHO is Ag(NH3)2+. Ketones do not give this reaction.

seo images

(c) Strong Oxidants

Ketones resist mild oxidation, but with strong oxidants at high temperature, they undergo cleavage of C-C bond on either side of the carbonyl group.

seo images

(d) Haloform Reaction is shown by methyl ketones.

CH3COR are readily oxidised by NaOI (NaOH + I2) to iodoform, CHI3, and RCO2Na.

seo images

2. Reduction

(a) Reduction to alcohols

Reduction to alcohols can be achieved either by hydrogenation in the presence of Pt or Pd or by LiAlH4/NaBH4.

seo images

(b) Reduction to Hydrocarbons

seo images

3. Addition Reactions of Nucleophiles

The carbon of the carbonyl group is electrophilic and thus initially attacked by a nucleophile.

seo images

(a) Addition of Grignard Reagent 

seo images

(b) Addition of Hydrogen Cyanide

seo images

(c) Addition of Sodium Bisulfite

Bisulfite compound formation is confined to aldehydes, methyl ketones, and some cyclic ketones.

seo images

(d) Nucleophilic Addition of Derivatives of Ammonia

seo images

4. Addition of Alcohols

The carbonyl compounds react with alcohols, R'OH, to yield hemiacetals.

seo images

5. Cannizzaro Reaction

seo images

6. Aldol Condensation

seo images

7. Perkin Condensation

seo images

8. Beckmann Rearrangement

The acid catalysed conversion of ketoximes to N substituted amides is known as Beckmann rearrangement.

seo images

Methods of Preparation of Carboxylic Acids

1. By Oxidation of Primary Alcohol

seo images

2. By Hydrolysis of Cyanides

seo images

General Physical Properties of the Carboxylic Acids

  • The molecules of carboxylic acids are polar and exhibit hydrogen bonding. 

  • The first four members are miscible with water. The higher acids are virtually insoluble. The simplest aromatic acid, benzoic acid, contains too many carbon atoms to show appreciable solubility in water.

General Chemical Properties of the Carboxylic Acids

  • The carboxylic acids react with metal to liberate hydrogen and are soluble in NaOH and NaHCO3 solutions. 

  • Carboxylic acid reacts with halogenated compounds and forms acid halide.

seo images

  • Carboxylic acid gets reduced to alcohols.

seo images

  • Hell Volhard Zelinsky Reaction: Aliphatic carboxylic acids react with Br2 or Cl2 in presence of phosphorus (or phosphorus halides) to give haloacids.

seo images

  • Schmidt Reaction: Carboxylic acids react with hydrazoic acid in presence of concentrated H2SO4 to give amine.

  • Benzoic acid is attacked by the usual electrophilic reagents Chlorine, Bromine, Nitric and sulphuric acids to give m-derivatives.

seo images

Derivatives of Carboxylic Acids

Acid derivatives are the compounds in which OH group of carboxyl group has been replaced by Cl, COR, NH2, or OR'.

seo images

Reactions of Acyl Chloride

seo images

Reactions of Carboxylic Acid Anhydrides

seo images

Carboxylic Acids - Acidic Strength and Factors Affecting It

Carboxylic acids are a class of organic compounds that contain the carboxyl functional group (-COOH). They are known for their acidic properties due to the presence of the hydrogen atom attached to the oxygen atom of the hydroxyl group (-OH) within the carboxyl group. The acidic strength of carboxylic acids can vary, and it is influenced by several factors:

Electronegativity of the Atoms: The electronegativity of the atoms directly involved in the acidic hydrogen's bonding plays a crucial role. The greater the electronegativity of the atoms, the more acidic the compound. For example, in a series of carboxylic acids, the one with a more electronegative atom in the carboxyl group will be stronger. For instance, acetic acid ($CH_3COOH$) is less acidic than chloroacetic acid ($ClCH_2COOH$).

Resonance Stabilization: Carboxylic acids can exhibit resonance stabilization due to the delocalization of electrons in the carboxyl group. This resonance results in the dispersal of negative charge and enhances the stability of the conjugate base (carboxylate ion). The more stable the conjugate base, the stronger the acid. For example, benzoic acid ($C_6H_5COOH$) is stronger than acetic acid.

Inductive Effect: The inductive effect involves the polarization of sigma (σ) bonds, leading to the withdrawal or donation of electron density. In carboxylic acids, electronegative substituents that pull electron density away from the carboxyl group enhance acidity, while electron-donating groups decrease acidity. For example, chloroacetic acid is more acidic than methoxyacetic acid.

Substituent Effect: Substituents on the carbon adjacent to the carboxyl group can influence acidity. Electron-withdrawing groups like halogens increase acidity, while electron-donating groups decrease it. For example, trichloroacetic acid ($CCl_3COOH$) is stronger than acetic acid.

Hydrogen Bonding: The ability to form hydrogen bonds can enhance acidity. Carboxylic acids are capable of forming intermolecular hydrogen bonds due to the presence of the hydroxyl group. The stronger the hydrogen bonding, the more acidic the compound. Formic acid (HCOOH) and acetic acid ($CH_3COOH$) exhibit strong hydrogen bonding and are relatively strong acids.

Solvent Effects: The solvent in which the acid is dissolved can influence its acidity. In a highly polar solvent, acidic strength may increase because of enhanced ionization of the carboxylic acid.

Concentration: The concentration of the carboxylic acid in a solution affects its acidity. Higher concentrations typically result in stronger acidity.

Temperature: Temperature can influence the ionization of carboxylic acids. Higher temperatures can promote ionization and, therefore, increase acidity.

Preparation of Esters

1. Esters from Acyl Chlorides

seo images

seo images

2. From ketones (Baeyer-Villiger Oxidation)

seo images

Reactions of Esters

1. Base Promoted Hydrolysis of Esters: Saponification

The carboxylate ion is very unreactive towards nucleophilic substitution because it is negatively charged, hence the reaction is essentially irreversible.

seo images

2. Reaction with Grignard Reagent

seo images

Preparation of Acid Amides

1. By Heating Ammonium Carboxylate

RCOONH4 → RCONH2 + H2O       (on heating)

Reactions of Acid Amides

1. Hydrolysis

seo images

2. Hoffmann’s Bromamide Reaction

Amides (having a primary nitrogen atom) react with bromine in the presence of alkali to form a primary amine having one carbon atom less than the parent amide.

seo images

Solved Examples/Problems from the Chapter: Organic Compound Containing Oxygen

1. Give the structures and IUPAC names of the products expected from the given reaction: catalytic reduction of butanal.

Solution: The catalytic reduction of butanal takes in the presence of a reducing agent. This reaction of butanal will lead to the formation of butanol. 

seo images

Key Points: Aldehyde is reduced to give alcohols.

2. Write structures of the products of the given reaction.

seo images

Solution: The product formed in the above reaction will be 2-Methylbutanol. The structure of this compound is given below.

seo images

Key Points: Aldehyde group is reduced to alcohols. The chain with which the functional group is attached is considered as the parent chain. 

Solved Problems of Previous Year Question from the Organic Compound Contains Oxygen


seo images



seo images


seo images


seo images


seo images

Ans: The correct answer is option b. 

seo images

Trick: The given reaction is dependent on the formation of stable carbocation. 

2. Predominant product is

seo images



seo images


seo images


seo images


seo images

Ans: The correct answer is option b.

seo images

Trick: OH group is activating in nature. So, NO2 will attack at ortho and para position, but para position is already blocked; therefore, NO2 is only attached at ortho position w.r.t. OH group.

3. The structure of the starting compound P used in the reaction given below is:

seo images

seo images

seo images

seo images

seo images

Ans: The correct answer is option B.

seo images

Trick: The given reaction is chloroform (CHCl3) reaction. 

Practice Questions

1. Arrange the sets of compounds in order of their increasing boiling points:

Pentan-1-ol, butan-1-ol, butan-2-ol, ethanol, propan-1-ol, methanol 

Ans: Methanol, ethanol, propan-1-ol, butan-2-ol, butan-1-ol, pentan-1-ol.

2. What will be the product formed in dinitration of 3-methylphenol?


seo images

JEE Main Chemistry Organic Compound Contains Oxygen Study Materials

Here, you'll find a comprehensive collection of study resources for Organic Compound Contains Oxygen designed to help you excel in your JEE Main preparation. These materials cover various topics, providing you with a range of valuable content to support your studies. Simply click on the links below to access the study materials of Organic Compound Contains Oxygen and enhance your preparation for this challenging exam.

JEE Main Organic Compound Contains Oxygen Study Materials

JEE Main Organic Compound Contains Oxygen Notes

JEE Main Organic Compound Contains Oxygen Important Questions

JEE Main Organic Compound Contains Oxygen Practice Paper

JEE Main Chemistry Study and Practice Materials

Explore an array of resources in the JEE Main Chemistry Study and Practice Materials section. Our practice materials offer a wide variety of questions, comprehensive solutions, and a realistic test experience to elevate your preparation for the JEE Main exam. These tools are indispensable for self-assessment, boosting confidence, and refining problem-solving abilities, guaranteeing your readiness for the test. Explore the links below to enrich your Chemistry preparation.


The JEE Main chapter on "Organic Compounds Containing Oxygen" is a fundamental component of organic chemistry. It provides students with a comprehensive understanding of the diverse and essential compounds that contain oxygen functionalities. This knowledge is invaluable for grasping the intricate structures, nomenclature, reactions, and applications of these compounds. Additionally, it lays the foundation for advanced studies in organic chemistry and is pivotal in understanding the vast array of organic compounds encountered in various fields, from pharmaceuticals to petrochemicals. Mastery of this chapter equips JEE Main students with the necessary skills to excel in organic chemistry, enabling them to tackle complex organic reactions and syntheses effectively.

FAQs on Organic Compound Contains Oxygen Chapter - Chemistry JEE Main

1. In the JEE Main examination, how important is the alcohol chapter?

Nearly 1-2 questions arise in the exam from this chapter covering about 8 marks which makes about 2% of the total marks.

2. What are the main points to remember while tackling problems involving halogen-containing organic compounds?

Students should practise writing the mechanism of the reaction for solving the questions from the JEE Main Chemistry Organic Compounds Containing Halogens.

3. Are previous year question papers enough for scoring good marks in JEE Main?

NCERT and previous year JEE Main papers are adequate to score good marks (200+) in JEE Main. Solving previous 10-year IIT-JEE exams gives us a significant edge because 3-4 questions with the same answers are sure to be repeated every year.