
A body of mass 10 kg is attached to a wire 0.3m long. Its breaking stress is \[4.8 \times {10^7}\,N{m^2}\]. The area of cross-section of the wire is \[{10^{ - 6}}{m^2}\]. Find the maximum angular velocity with which it can be rotated in a horizontal circle without breaking.
A. \[2\,rad{s^{ - 1}}\]
B. \[4\,rad{s^{ - 1}}\]
C. \[6\,rad{s^{ - 1}}\]
D. \[8\,rad{s^{ - 1}}\]
Answer
163.8k+ views
Hint:Before we start addressing the problem, we need to know about the stress. The stress of an object is defined as the force applied per unit area. Here, we find the force using the equation of stress and thereby calculate the maximum angular velocity.
Formula Used:
To find the stress the formula is,
\[Stress = \dfrac{F}{A}\]
Where, F is force and A is cross-sectional area.
Complete step by step solution:
Consider a body of mass 10 kg that is attached to a wire of 0.3m long. Its breaking stress is \[4.8 \times {10^7}N{m^2}\] and the area of cross-section of the wire is \[{10^{ - 6}}{m^2}\]. We need to find the maximum angular velocity with which it can be rotated in a horizontal circle without breaking.To find the stress,
\[\text{Stress} = \dfrac{\text{Force}}{\text{Area}}\]
\[\text{Force} = \text{Stress} \times \text{Area}\]
Substitute the value of stress and area, we get,
\[F = 4.8 \times {10^7} \times {10^{ - 6}}\]
\[\Rightarrow F = 48\,N\]
Now, Force=Tension in the wire. That is,
\[F = m{\omega ^2}r\]
Rearrange the above equation for \[\omega \], we get,
\[{\omega ^2} = \dfrac{F}{{mr}}\]
Substitute the value of \[m = 10kg\] , \[r = 0.3m\] and \[F = 48N\] in above equation then, we get,
\[{\omega ^2} = \dfrac{{48}}{{10 \times 0.3}}\]
\[\Rightarrow {\omega ^2} = 16\]
\[\therefore \omega = 4rad{s^{ - 1}}\]
Therefore, the maximum angular velocity with which it can be rotated in a horizontal circle without breaking is \[4\,rad{s^{ - 1}}\].
Hence, option B is the correct answer.
Note: In this problem it is important to remember the equation for stress and the relation between the force and the tension in the wire then it will be easy to solve this problem.
Formula Used:
To find the stress the formula is,
\[Stress = \dfrac{F}{A}\]
Where, F is force and A is cross-sectional area.
Complete step by step solution:
Consider a body of mass 10 kg that is attached to a wire of 0.3m long. Its breaking stress is \[4.8 \times {10^7}N{m^2}\] and the area of cross-section of the wire is \[{10^{ - 6}}{m^2}\]. We need to find the maximum angular velocity with which it can be rotated in a horizontal circle without breaking.To find the stress,
\[\text{Stress} = \dfrac{\text{Force}}{\text{Area}}\]
\[\text{Force} = \text{Stress} \times \text{Area}\]
Substitute the value of stress and area, we get,
\[F = 4.8 \times {10^7} \times {10^{ - 6}}\]
\[\Rightarrow F = 48\,N\]
Now, Force=Tension in the wire. That is,
\[F = m{\omega ^2}r\]
Rearrange the above equation for \[\omega \], we get,
\[{\omega ^2} = \dfrac{F}{{mr}}\]
Substitute the value of \[m = 10kg\] , \[r = 0.3m\] and \[F = 48N\] in above equation then, we get,
\[{\omega ^2} = \dfrac{{48}}{{10 \times 0.3}}\]
\[\Rightarrow {\omega ^2} = 16\]
\[\therefore \omega = 4rad{s^{ - 1}}\]
Therefore, the maximum angular velocity with which it can be rotated in a horizontal circle without breaking is \[4\,rad{s^{ - 1}}\].
Hence, option B is the correct answer.
Note: In this problem it is important to remember the equation for stress and the relation between the force and the tension in the wire then it will be easy to solve this problem.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Charging and Discharging of Capacitor

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
