Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 12 Maths Chapter 5: Continuity and Differentiability - Exercise 5.3

ffImage
Last updated date: 17th Apr 2024
Total views: 574.5k
Views today: 9.74k

NCERT Solutions for Class 12th Maths Chapter 5 continuity and differentiability (Ex 5.3)

The solutions for the Class 12 Maths Chapter 5 Exercise 5.3 and all the exercises of the same chapter are there in one place. Experts at Vedantu have prepared all the answers for the Maths solutions in a very simplified yet detailed manner. While going through them, you will be able to locate all the questions quickly from the Class 12 Maths Ex 5.3. These solutions will help the students in learning smartly as well as understanding the continuity and differentiability Exercise 5.3.


Class:

NCERT Solutions for Class 12

Subject:

Class 12 Maths

Chapter Name:

Chapter 5 - Continuity and Differentiability

Exercise:

Exercise - 5.3

Content-Type:

Text, Videos, Images and PDF Format

Academic Year:

2024-25

Medium:

English and Hindi

Available Materials:

  • Chapter Wise

  • Exercise Wise

Other Materials

  • Important Questions

  • Revision Notes

Competitive Exams after 12th Science

Access NCERT Solutions for Mathematics Chapter 5 – Continuity and Differentiability

Exercise 5.3

1. Find  $ \frac{dy}{dx}:2x+3y=\sin x $ 

Ans: The given relationship is  $ 2x+3y=\sin x $  

Differentiating the above relationship with respect to $ x $ , 

We get

  $ \Rightarrow \text{  } $  $ \frac{d}{dy}(2x+3y)=\frac{d}{dx}(\sin x) $ 

 $ \Rightarrow     \frac{d}{dx}(2x)+\frac{d}{dx}(3y)=\cos x $ 

 $ \Rightarrow     2+3\frac{dy}{dx}=\cos x $ 

 $ \Rightarrow 3\frac{dy}{dx}=\cos x-2 $ 

 $ \therefore \frac{dx}{dy}=\frac{\cos x-2}{3} $ 


2. Find  $ \frac{dy}{dx}:2x+3y=\sin y $ 

Ans: The given relationship is  $ 2x+3y=\sin y $  

Differentiating the above relationship with respect to $ x $ , We obtain

 $ \Rightarrow \text{  } $   $ \frac{d}{dx}(2x)+\frac{d}{dx}(3y)=\frac{d}{dx}(\sin y) $ 

 $ \Rightarrow 2+3\frac{dy}{dx}=\cos y\frac{dy}{dx}\quad [ $  By using chain rule]

 $ \Rightarrow 2=(cosy $  $ -3)\frac{dy}{dx} $ 

 $ \therefore \frac{dy}{dx}=\frac{2}{\cos y-3} $ 


3. Find  $ \frac{dy}{dx}:ax+b{{y}^{2}}=\cos y $ 

Ans: The given relationship is $ ax+b{{y}^{2}}=\cos y $ .

Differentiating the above relationship with respect to $ x $ , we obtain

 $ \Rightarrow \text{  } $  $ \frac{d}{dx}(\alpha x)+\frac{d}{dx}\left( b{{y}^{2}} \right)=\frac{d}{dx}(\cos y) $ 

 $ \Rightarrow a+b\frac{d}{dx}\left( {{y}^{2}} \right)=\frac{d}{dx}(\cos y) $ 

 $ \frac{d}{dx}\left( {{y}^{2}} \right)=2y\frac{dy}{dx} $  and  $ \frac{d}{dx}(\cos y)=-\sin y\frac{dy}{dx} $ 

Using the chain rule, 

We get,

  $ \Rightarrow \text{  } $  $ a+b\times 2y\frac{dy}{dx}=-\sin y\frac{dy}{dx} $ 

 $ \Rightarrow (2by+\sin y)\frac{dy}{dx}=-a $ 

 $ \therefore \frac{dy}{dx}=\frac{-a}{2by+\sin y} $ 


4. Find  $ \frac{dy}{dx}:xy+{{y}^{2}}=\tan x+y $ 

Ans:  The given relationship is  $ xy+{{y}^{2}}=\tan x+y $ 

 Differentiating the above relationship with respect to $ x $ , We obtain

  $ \Rightarrow \text{  } $  $ \frac{d}{dx}\left( xy+{{y}^{2}} \right)=\frac{d}{dx}(\tan x+y) $ 

 $ \Rightarrow \frac{d}{dx}(xy)+\frac{d}{dx}\left( {{y}^{2}} \right)=\frac{d}{dx}(\tan x)+\frac{dy}{dx} $ 

 $ \Rightarrow \left[ y\cdot \frac{d}{dx}(x)+x\cdot \frac{dy}{dx} \right]+2y\frac{dy}{dx}={{\sec }^{2}}x+\frac{dy}{dx}\quad  $  [Using product rule and chain rule]

 $ \Rightarrow y\cdot 1+x\frac{dy}{dx}+2y\frac{dy}{dx}={{\sec }^{2}}x+\frac{dy}{dx} $ 

 $ \Rightarrow (x+2y-1)\frac{dy}{dx}={{\sec }^{2}}x-y $ 

 $ \therefore \frac{dy}{dx}=\frac{{{\sec }^{2}}x-y}{(x+2y-1)} $ 


5. Find  $ \frac{dy}{dx}:{{x}^{2}}+xy+{{y}^{2}}=100 $ 

Ans:  The given relationship is $ {{x}^{2}}+xy+{{y}^{2}}=100 $ .

Differentiating the above relationship with respect to $ x $ , We obtain

 $ \Rightarrow \text{  } $   $ \frac{d}{dx}\left( {{x}^{2}}+xy+{{y}^{2}} \right)=\frac{d}{dx}(100) $                   Derivative of the constant function is  0 

 $ \Rightarrow \frac{d}{dx}\left( {{x}^{2}} \right)+\frac{d}{dx}(xy)+\frac{d}{dx}\left( {{y}^{2}} \right)=0 $ 

 $ \Rightarrow 2x+\left[ y\cdot \frac{d}{dx}(x)+x\cdot \frac{dy}{dx} \right]+2y\frac{dy}{dx}=0 $   Using product rule and chain rule

 $ \Rightarrow 2x+y.1+x\cdot \frac{dy}{dx}+2y\frac{dy}{dx}=0 $ 

 $ \Rightarrow 2x+y+(x+2y)\frac{dy}{dx}=0 $ 

 $ \therefore \frac{dy}{dx}=-\frac{2x+y}{x+2y} $ 


6. Find  $ \frac{dy}{dx}:{{x}^{3}}+{{x}^{2}}y+x{{y}^{2}}+{{y}^{3}}=81 $ 

Ans: The given relationship is  $ {{x}^{3}}+{{x}^{2}}y+x{{y}^{2}}+{{y}^{3}}=81 $  .

Differentiating the above relationship with respect to  $ x $ , 

We get,

 $ \Rightarrow \text{  } $   $ \frac{d}{dx}\left( {{x}^{3}}+{{x}^{2}}y+x{{y}^{2}}+{{y}^{3}} \right)=\frac{d}{dx}(81) $ 

 $ \Rightarrow \frac{d}{dx}\left( {{x}^{3}} \right)+\frac{d}{dx}\left( {{x}^{2}}y \right)+\frac{d}{dx}{x{y}^{2}}+\frac{d}{dx}\left( {{y}^{3}} \right)=0 $ 

 $ \Rightarrow 3{{x}^{2}}+\left[ y\frac{d}{dx}\left( {{x}^{2}} \right)+{{x}^{2}}\frac{dy}{dx} \right]+\left[ {{y}^{2}}\frac{d}{dx}(x)+x\frac{d}{dx}\left( {{y}^{2}} \right) \right]+3{{y}^{2}}\frac{dy}{dx}=0 $ 

 $ \Rightarrow 3{{x}^{2}}+\left[ y\cdot 2x+{{x}^{2}}\frac{dy}{dx} \right]+\left[ {{y}^{2}}\cdot 1+x\cdot 2y\cdot \frac{dy}{dx} \right]+3{{y}^{2}}\frac{dy}{dx}=0 $ 

 $ \Rightarrow \left( {{x}^{2}}+2xy+3{{y}^{2}} \right)\frac{dy}{dx}+\left( 3{{x}^{2}}+2xy+{{y}^{2}} \right)=0 $ 

 $ \therefore \frac{dy}{dx}=\frac{-\left( 3{{x}^{2}}+2xy+{{y}^{2}} \right)}{\left( {{x}^{2}}+2xy+3{{y}^{2}} \right)} $ 


7. Find  $ \frac{dx}{dy}:{{\sin }^{2}}y+\cos xy=k $ 

Ans:   The given relationship is  $ {{\sin }^{2}}y+\cos xy=k  $ 

Differentiating the above relationship with respect to $ x $ , 

We get,

 $ \Rightarrow \text{  } $   $ \frac{d}{dx}\left( {{\sin }^{2}}y+\cos xy \right)=\frac{d}{dx}(k ) $ 

 $ \Rightarrow \frac{d}{dx}\left( {{\sin }^{2}}y \right)+\frac{d}{dx}(\cos xy)=0 $ 

Using the chain rule, 

We get  $ \frac{d}{dx}\left( {{\sin }^{2}}y \right)=2\sin y\frac{d}{dx}(\sin y)=2\sin y\cos y\frac{dy}{dx} $ 

 $ \frac{d}{dx}(\cos xy)=-\sin xy\frac{d}{dx}(xy)=-\sin xy\left[ y\frac{d}{dx}(x)+x\frac{dy}{dx} \right] $ 

 $ =-\sin xy\left[ y\cdot 1+x\frac{dy}{dx} \right]=-y\sin xy-x\sin xy\frac{dy}{dx} $ 

From the above equations we get  $ 2\sin y\cos y\frac{dy}{dx}-y\sin xy-x\sin xy\frac{dy}{dx}=0 $ 

 $ \Rightarrow (2\sin y\cos y-x\sin xy)\frac{dy}{dx}=y\sin xy $ 

 $ \Rightarrow (\sin 2y-x\sin xy)\frac{dx}{dy}=y\sin xy $ 

 $ \frac{dx}{dy}=\frac{y\sin xy}{\sin 2y-x\sin xy} $ 


8. Find  $ \frac{dy}{dx}={{\sin }^{2}}x+{{\cos }^{2}}y=1 $ 

Ans:  The given relationship is  $ {{\sin }^{2}}x+{{\cos }^{2}}y=1 $ 

Differentiating the above relationship with respect to  $ x $ ,

 We get  $ \frac{dy}{dx}\left( {{\sin }^{2}}x+{{\cos }^{2}}y \right)=\frac{d}{dx}(1) $ 

 $ \Rightarrow \frac{d}{dx}\left( {{\sin }^{2}}x \right)+\frac{d}{dx}\left( {{\cos }^{2}}y \right)=0 $ 

 $ \Rightarrow 2\sin x\cdot \frac{d}{dx}(\sin x)+2\cos y\cdot \frac{d}{dx}(\cos y)=0 $ 

 $ \Rightarrow 2\sin x\cos x+2\cos y(-\sin y)\cdot \frac{dy}{dx}=0 $ 

 $ \sin 2x-\sin 2y\frac{dy}{dx}=0 $ 

 $ \frac{dx}{dy}=\frac{\sin 2x}{\sin 2y} $ 


9. Find  $ \frac{dy}{dx}=y={{\sin }^{-1}}\left( \frac{2x}{1+{{x}^{2}}} \right) $ 

Ans:  The given relationship is  $ y={{\sin }^{-1}}\left( \frac{2x}{1+{{x}^{2}}} \right) $ 

 $ y={{\sin }^{-1}}\left( \frac{2x}{1+{{x}^{2}}} \right) $ 

 $ \Rightarrow \sin y=\frac{2x}{1+{{x}^{2}}} $ 

Differentiating the above relationship with respect to  $ x $ , 

We get,

 $ \Rightarrow \text{  } $  $ \frac{d}{dx}(\sin y)=\frac{d}{dx}\left( \frac{2x}{1+{{x}^{2}}} \right) $ 

 $ \Rightarrow \cos y\frac{dy}{dx}=\frac{d}{dx}\left( \frac{2x}{1+{{x}^{2}}} \right) $ 

The function $ \frac{2x}{1+{{x}^{2}}} $  is of the form of $ \frac{u}{v} $ . Therefore, by quotient rule, we get  $ \frac{d}{dx}\left( \frac{2x}{1+{{x}^{2}}} \right)=\frac{\left( 1+{{x}^{2}} \right)\frac{d}{dx}(2x)-2x\cdot \frac{d}{dx}\left( 1+{{x}^{2}} \right)}{{{\left( 1+{{x}^{2}} \right)}^{2}}}$

 $ =\frac{\left( 1+{{x}^{2}} \right)\cdot 2-2x[0+2x]}{{{\left( 1+{{x}^{2}} \right)}^{2}}}=\frac{2+2{{x}^{2}}-4{{x}^{2}}}{{{\left( 1+{{x}^{2}} \right)}^{2}}}=\frac{2\left( 1-{{x}^{2}} \right)}{{{\left( 1+{{x}^{2}} \right)}^{2}}} $ 

Also,  $ \sin y=\frac{2x}{1+{{x}^{2}}} $ 

 $ \Rightarrow \cos y=\sqrt{1-{{\sin }^{2}}y}=\sqrt{1-{{\left( \frac{2x}{1+{{x}^{2}}} \right)}^{2}}}=\sqrt{\frac{{{\left( 1+{{x}^{2}} \right)}^{2}}-4{{x}^{2}}}{{{\left( 1+{{x}^{2}} \right)}^{2}}}} $ 

 $ =\sqrt{\frac{{{\left( 1-{{x}^{2}} \right)}^{2}}}{{{\left( 1-{{x}^{2}} \right)}^{2}}}}=\frac{1-{{x}^{2}}}{1+{{x}^{2}}} $ 

From above equations , we get

 $ \Rightarrow \text{  } $   $ \frac{1-{{x}^{2}}}{1+{{x}^{2}}}\times \frac{dy}{dx}=\frac{2\left( 1-{{x}^{2}} \right)}{{{\left( 1+{{x}^{2}} \right)}^{2}}} $ 

 $ \Rightarrow \frac{dy}{dx}=\frac{2}{1+{{x}^{2}}} $ 


10. Find $\dfrac{d y}{d x} \text { in, } y=\tan ^{-1}\left(\dfrac{3 x-x^{3}}{1-3 x^{2}}\right),-\dfrac{1}{\sqrt{3}} < x < \dfrac{1}{\sqrt{3}}$

Ans: $y=\tan ^{-1}\left(\dfrac{3 x-x^{3}}{1-3 x^{2}}\right)$

Putting $\mathrm{x}=\tan \theta$

$y=\tan ^{-1}\left(\dfrac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}\right) \\$

$y=\tan ^{-1}(\tan 3 \theta) \quad\left(\tan 3 \theta=\dfrac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}\right) \\$

$y=3 \theta$

Differentiating both sides w.r.t. $x$.

$\dfrac{d(y)}{d x}=\dfrac{d 3\left(\tan ^{-1} x\right)}{d x} \\$

$\dfrac{d y}{d x}=3 \dfrac{d\left(\tan ^{-1} x\right)}{d x} \\$

$\dfrac{d y}{d x}=3\left(\dfrac{1}{1+x^{2}}\right) \quad\left(\left(\tan ^{-1} x\right)^{\prime}=\dfrac{1}{1+x^{2}}\right) \\$

$\dfrac{d y}{d x}=\dfrac{3}{1+x^{2}}$


11. Find  $ \frac{dy}{dx}:y={{\cos }^{-1}}\left( \frac{1-{{x}^{2}}}{1+{{x}^{2}}} \right),0 < x < 1 $ 

Ans: The given relationship is,

 $ y={{\cos }^{-1}}\left( \frac{1-{{x}^{2}}}{1+{{x}^{2}}} \right) $ 

 $ \Rightarrow \cos y=\frac{1-{{x}^{2}}}{1+{{x}^{2}}} $ 

 $ \Rightarrow \frac{1-{{\tan }^{2}}\frac{y}{2}}{1+{{\tan }^{2}}\frac{y}{2}}=\frac{1-{{x}^{2}}}{1+{{x}^{2}}} $ 

On comparing L.H.S. and R.H.S. of the above relationship, 

We get 

 $ \Rightarrow \text{  } $  $ \tan \frac{y}{2}=x $ 

Differentiating the above relationship with respect to $ x $ , 

We get

 $ \Rightarrow \text{  } $   $ {{\sec }^{2}}\frac{y}{2}\cdot \frac{d}{dx}\left( \frac{y}{2} \right)=\frac{d}{dx}(x) $ 

 $ \Rightarrow {{\sec }^{2}}\frac{y}{2}\text{x}\frac{1}{2}\frac{dy}{dx}=1 $ 

 $ \Rightarrow \frac{dy}{dx}=\frac{2}{{{\sec }^{2}}\frac{y}{2}} $ 

 $ \Rightarrow \frac{dy}{dx}=\frac{2}{1+{{\tan }^{2}}\frac{y}{2}} $ 

 $ \therefore \frac{dy}{dx}=\frac{1}{1+{{x}^{2}}} $ 


12. Find  $ \frac{dy}{dx}:y={{\sin }^{-1}}\left( \frac{1-{{x}^{2}}}{1+{{x}^{2}}} \right),0 < x < 1 $ 

Ans: The given relationship is  $ y={{\sin }^{-1}}\left( \frac{1-{{x}^{2}}}{1+{{x}^{2}}} \right) $ 

 $ y={{\sin }^{-1}}\left( \frac{1-{{x}^{2}}}{1+{{x}^{2}}} \right) $ 

 $ \Rightarrow \sin y=\frac{1-{{x}^{2}}}{1+{{x}^{2}}} $ 

 $ \Rightarrow \left( 1+{{x}^{2}} \right)\sin y=1-{{x}^{2}} $ 

 $ \Rightarrow (1+\sin y){{x}^{2}}=1-\sin y $ 

 $ \Rightarrow {{x}^{2}}=\frac{1-\sin y}{1+\sin y} $ 

 $ \Rightarrow {{x}^{2}}=\frac{{{\left( \cos \frac{y}{2}-\sin \frac{y}{2} \right)}^{2}}}{{{\left( \cos \frac{y}{2}+\sin \frac{y}{x} \right)}^{2}}} $ 

 $ \Rightarrow x=\frac{\cos \frac{y}{2}-\sin \frac{y}{2}}{\cos \frac{y}{2}+\sin \frac{y}{2}} $ 

 $ \Rightarrow x=\frac{1-\tan \frac{y}{2}}{1+\tan \frac{y}{2}} $ 

 $ \Rightarrow x=\tan \left( \frac{\pi }{4}-\frac{\pi }{2} \right) $ 

Differentiating the above relationship with respect to $ x $ , 

We get,

 $ \Rightarrow \text{  } $   $ \frac{d}{dx}(x)=\frac{d}{dx}\left[ \tan \left( \frac{\pi }{4}-\frac{y}{2} \right) \right] $ 

 $ \Rightarrow 1={{\sec }^{2}}\left( \frac{\pi }{4}-\frac{y}{2} \right)\cdot \frac{d}{dt}\left( \frac{\pi }{4}-\frac{y}{2} \right) $ 

 $ \Rightarrow 1=\left[ 1+{{\tan }^{2}}\left( \frac{\pi }{4}-\frac{y}{2} \right)\left( -\frac{1}{2}\frac{dy}{dx} \right) \right. $ 

 $ \Rightarrow 1=\left( 1+{{x}^{2}} \right)\left( -\frac{1}{2}\frac{dy}{dx} \right) $ 

 $ \Rightarrow \frac{dy}{dx}=\frac{-2}{1+{{x}^{2}}} $ 


13. Find  $ \frac{dy}{dx}=y={{\cos }^{-1}}\left( \frac{2x}{1+{{x}^{2}}} \right),-1 < x < 1 $ 

Ans: The given relationship is 

 $ y={{\cos }^{-1}}\left( \frac{2x}{1+{{x}^{2}}} \right) $ 

 $ y={{\cos }^{-1}}\left( \frac{2x}{1+{{x}^{2}}} \right) $ 

 $ \Rightarrow \cos y=\frac{2x}{1+{{x}^{2}}} $ 

Differentiating the above relationship with respect to $ \text{x} $ , 

We get,

  $ \Rightarrow \text{  } $  $ \frac{d}{dx}(\cos y)=\frac{d}{dx}\left( \frac{2x}{1+{{x}^{2}}} \right) $ 

 $ \Rightarrow -\sin y\frac{dy}{dx}=\frac{\left( 1+{{x}^{2}} \right)\cdot \frac{d}{dx}(2x)-2x\cdot \frac{d}{dt}\left( 1+{{x}^{2}} \right)}{{{\left( 1+{{x}^{2}} \right)}^{2}}} $ 

 $ \Rightarrow -\sqrt{1-{{\cos }^{2}}y}\frac{dy}{dx}=\frac{\left( 1+{{x}^{2}} \right)\times 2- 2x\cdot 2x}{{{\left( 1+{{x}^{2}} \right)}^{2}}} $ 

 $ \Rightarrow \left[ \sqrt{1-{{\left( \frac{2x}{1+{{x}^{2}}} \right)}^{2}}} \right]\frac{dy}{dx}=-\left[ \frac{2{{(1-{{x}^{2}})}}}{{{\left( 1+{{x}^{2}} \right)}^{2}}} \right] $ 

 $ \Rightarrow \sqrt{\frac{{{\left( 1+{{x}^{2}} \right)}^{2}}-4{{x}^{2}}}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}\frac{dy}{dx}=\frac{-2\left( 1-{{x}^{2}} \right)}{{{\left( 1+{{x}^{2}} \right)}^{2}}} $ 

 $ =\sqrt{\frac{{{\left( 1-{{x}^{2}} \right)}^{2}}}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}\frac{dy}{dx}=\frac{-2\left( 1-{{x}^{2}} \right)}{{{\left( 1+{{x}^{2}} \right)}^{2}}} $ 

 $ \Rightarrow \frac{1-{{x}^{2}}}{1+{{x}^{2}}}\cdot \frac{dy}{dx}=\frac{-2\left( 1-{{x}^{2}} \right)}{{{\left( 1+{{x}^{2}} \right)}^{2}}} $ 

 $ \Rightarrow \frac{dy}{dx}=\frac{-2}{1+{{x}^{2}}} $ 


14. Find  $ \frac{dy}{dx}:y={{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right),-\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}} $ 

Ans:  Relationship is  $ y={{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right) $ 

 $ y={{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right) $ 

 $ \Rightarrow \sin y=2x\sqrt{1-{{x}^{2}}} $ 

Differentiating the above relationship with respect to  $ x $ , we get  $ \cos y \frac{dy}{dx}=2\left[ x\frac{d}{dx}\left( \sqrt{1-{{x}^{2}}} \right)+\sqrt{1-{{x}^{2}}}\frac{dx}{dx} \right] $ 

 $ =\sqrt{1-{{\sin }^{2}}y}\frac{dy}{dx}=2\left[ \frac{x}{2}\cdot \frac{-2x}{\sqrt{1-{{x}^{2}}}}+\sqrt{1-{{x}^{2}}} \right] $ 

 $ =\sqrt{1-{\left( 2x\sqrt{1-{{x}^{2}}}\right)}^{2}}\frac{dy}{dx}=2\left[ \frac{-{{x}^{2}}+1-{{x}^{2}}}{\sqrt{1-{{x}^{2}}}} \right] $ 

 $ =\sqrt{1-4{{x}^{2}}\left( 1-{{x}^{2}} \right)}\frac{dy}{dx}=2\left[ \frac{1-2{{x}^{2}}}{\sqrt{1-{{x}^{2}}}} \right] $ 

 $ =\sqrt{{{(1-2{x}^{2})}^{2}}}\frac{dy}{dx}=2\left[ \frac{1-2{{x}^{2}}}{\sqrt{1-{{x}^{2}}}} \right] $ 

 $ =\left( 1-2{{x}^{2}} \right)\frac{dy}{dx}=2\left[ \frac{1-2{{x}^{2}}}{\sqrt{1-{{x}^{2}}}} \right] $ 

 $ \Rightarrow \frac{dy}{dx}=\frac{2}{\sqrt{1-{{x}^{2}}}} $ 


15. Find  $ \frac{dy}{dx}:y={{\sec }^{-1}}\left( \frac{1}{2{{x}^{2}}-1} \right),0 < x < \frac{1}{\sqrt{2}} $ 

Ans:  The given relationship is  $ y={{\sec }^{-1}}\left( \frac{1}{2{{x}^{2}}-1} \right) $ 

 $ y={{\sec }^{-1}}\left( \frac{1}{2{{x}^{2}}-1} \right) $ 

 $ \Rightarrow \sec y=\frac{1}{2{{x}^{2}}-1} $ 

 $ \Rightarrow \cos y=2{{x}^{2}}-1 $ 

 $ \Rightarrow 2{{x}^{2}}=1+\cos y $ 

 $ \Rightarrow 2{{x}^{2}}=2{{\cos }^{2}}\frac{y}{2} $ 

 $ \Rightarrow x=\cos \frac{y}{2} $ 

Differentiating the above relationship with respect to $ x $ , 

We get,

  $ \Rightarrow \text{  } $  $ \frac{d}{dx}(x)=\frac{d}{dx}\left( \cos \frac{y}{2} \right) $ 

 $ \Rightarrow 1=-\sin \frac{y}{2}\cdot \frac{d}{dx}\left( \frac{y}{2} \right) $ 

 $ \Rightarrow \frac{-1}{\sin \frac{y}{2}}=\frac{1}{2}\frac{dy}{dx} $ 

 $ \Rightarrow \frac{dy}{dx}=\frac{-2}{\sin \frac{y}{2}}=\frac{-2}{\sqrt{1-{{\cos }^{2}}\frac{y}{2}}} $ 

 $ \Rightarrow \frac{dy}{dx}=\frac{-2}{\sqrt{1-{{x}^{2}}}} $ 


Important Points

  • Defination of Continuity: A function f(x) is referred to as continuous at x=a; where a∈ domain of f(x), if

$\lim _{x \rightarrow a^{-1}} f(x)=\lim _{x \rightarrow a^{+1}} f(x)=f(a)$

i.e., Left Hand Limit = Right Hand Limit= Value of a function at x=a

or $\lim _{x \rightarrow a} f(x)=f(a)$

  • Properties of Continous Fuctions are as follows.

If g and h are two real functions, continuous at real number c then,

(i) g + h is continuous at x = c.

(ii) g – h is continuous at x = c.

(iii) g.h is continuous at x = c.

(iv) cg is continuous, where c is any constant.

(v) (gh) is continuous at x = c, (provide g(c) ≠ 0)

  • Definition of Differentianlity: A function f(x) is called differentiable at a point x = a, if LHD at (x = a) = RHD at (x = a)

i.e. Left hand derivative at (x = a) = Right hand derivative (at x = a)

Right Hand Derivative,$R f^{\prime}(a)=\lim _{h \rightarrow 0}\frac{f(a+h)-f(a)}{h}$

Left Hand Derivative, $\operatorname{Lf}^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a-h)-f(a)}{-h}$

  • Rolle’s Theorem: Let f : [p, q] → R is continuous on [p, q] and differentiable on (p, q) such that f(p) = f(q), where a and b are some real numbers. Then, there exists at least one number c in (p, q) such that f'(c) = 0.

  • Mean Value Theorem: Let f : [p, q] → R be a continuous function on [p, q] and differentiable on (p, q). Then, there exists at least one number c in (p, q) such that

$f^{\prime}(c)=\frac{f(p)-f(q)}{q-p}$


What are the Benefits of Studying Continuity and Differentiability Exercise 5.3 from Vedantu?

We have a team of teachers that are expert in Maths and have provided and will continue to provide detailed answers to all the questions of the Maths NCERT Solutions Class 12 Maths. These answers will help you in understanding the steps that are involved in solving the questions asked in the question paper. This essential factor will help you in scoring marks in the exams and assist you in passing your 12th with flying colours. Our team also provides sample problems that will help the student in tackling all the new questions and their situations efficiently while giving the exams. The significant benefits of studying NCERT Solutions for the Class 12 Maths paper chapters are mentioned below.


Our team of experts formulates all the answers and the sample questions which are based on the current academia of NCERT. The emphasis and give importance to the NCERT solutions for the students who are appearing in the CBSE examinations. This is so because NCERT gives out detailed and significant knowledge of all the subjects. So our solutions for the Maths NCERT Class 12 Chapter 5 Exercise 5.3, will help the students in writing the answers that will meet the expectations of CBSE.


We will provide you with high-quality answers from the Maths NCERT Solutions Class 12 Chapter 5 Exercise 5.3, which will help you in explaining the answers accurately, which will be to the point. Our specialists authorize all the answers for you so that not only you understand the basic concept but will also be able to provide all the solutions effectively and stepwise.


The steps by step answers provided by Vedantu are accurate and correct, plus are explained in a language that is easy for everyone to understand. All you have to do is solve them correctly by understanding the concept. By doing all this, you will be able to score more marks and also will be able to blend the solutions and write all the appropriate answers.


NCERT Solutions for Class 12 Mathematics Chapter 5 Exercises

Chapter 5 - Continuity and Differentiability in PDF Format

Exercise 5.1

10 Short Questions and 24 Long Questions

Exercise 5.2

2 Short Questions 8 Long Questions

Exercise 5.3

9 short Questions and 6 long Questions

Exercise 5.4

5 Short Questions and 5 Long Questions

Exercise 5.5

4 Short Questions and 14 Long Questions

Exercise 5.6

1 Short Question and 1 Long Questions

Exercise 5.7

10 Short Questions and 7 Long Questions

Exercise 5.8

Questions with Solutions

 


Look for the NCERT Solutions for Class 12th Maths Chapter 5 Exercise 5.3

Based on the directions and instructions provided by the NCERT, the students will be able to learn about the chapter and everything using the solutions that are provided by the Vedantu.


This way you will be to answer all the solutions stepwise by utilizing the solutions of the Maths Class 12 Chapter 5 Exercise 5.3.


So, once you start learning with Vedantu, so that you can easily download all the PDF solutions of the Class 12 Maths NCERT Solutions Chapter 5 Exercise 5.3.


We at Vedantu offer a user-friendly interface that will allow you to search for the relevant materials that will quickly help you while using the keywords. All the answers provided by us are written exclusively by the professionals that will help the children in learning quickly and enhancing their Maths.


Why Vedantu?

We all know that technology is advancing rapidly. We, at Vedantu, have implemented new tools and techniques that have generated a smart way of learning. The students can easily download the app and get quick access. Moreover, they will be able to subscribe to the web portal so that they can get the latest updates and then prepare according to the standards and guidelines set by the NCERT. So if you are someone who is interested in learning new concepts, and moreover receive study materials, we advise you to take live online classes that will provide you with descriptive solutions and make you smarter as well as sharper. So what are you waiting for? Sign up and learn efficiently as well as effectively.