
Which of the following is correct?
1. $n\left( {S \cup T} \right)$ is maximum when $n\left( {S \cap T} \right)$ is minimum.
2. If $n\left( U \right) = 1000$, $n\left( S \right) = 720$, $n\left( T \right) = 450$, then the last value of $n\left( {S \cap T} \right) = 170$.
A. Only 1 is true
B. Only 2 is true
C. Both 1 and 2 are true
D. Both 1 and 2 are false
Answer
233.1k+ views
Hint: We will use the formula cardinal numbers of the union of sets to check statement 1. As we know, $U$ denotes the universal set and $S \cup T$ is a subset of $U$. So, the cardinal of the union of two sets is less than the cardinal of the universal set. Then by using the formula cardinal numbers of the union of sets, we will calculate $n\left( {S \cap T} \right)$ and check the second statement.
Formula Used:
$n\left( {A \cup B} \right) = n\left( A \right) + n\left( B \right) - n\left( {A \cap B} \right)$
Complete step by step solution:
We know that, $n\left( {A \cup B} \right) = n\left( A \right) + n\left( B \right) - n\left( {A \cap B} \right)$.
For $S$ and $T$ we can say, $n\left( {S \cup T} \right) = n\left( S \right) + n\left( T \right) - n\left( {S \cap T} \right)$.
Let $n\left( {S \cap T} \right) \ge x$.
Then $n\left( {S \cap T} \right) = n\left( S \right) + n\left( T \right) - n\left( {S \cup T} \right)$.
$n\left( {S \cap T} \right) = n\left( S \right) + n\left( T \right) - n\left( {S \cup T} \right) \ge x$
$ - n\left( {S \cup T} \right) \ge x - n\left( S \right) - n\left( T \right)$
$n\left( {S \cup T} \right) \le - x + n\left( S \right) + n\left( T \right)$
So, the least value of $n\left( {S \cap T} \right)$ we get the maximum value of $n\left( {S \cup T} \right)$.
Hence statement 1 is correct.
Now we will put the values of $n\left( S \right) = 720$, $n\left( T \right) = 450$ in the $n\left( {S \cup T} \right) = n\left( S \right) + n\left( T \right) - n\left( {S \cap T} \right)$
$n\left( {S \cup T} \right) = 720 + 450 - n\left( {S \cap T} \right)$
Since $S \cup T$ is a subset of $U$. So, $n\left( {S \cup T} \right) \le n\left( U \right)$.
Putting $720 + 450 - n\left( {S \cap T} \right)$ in place $n\left( {S \cup T} \right)$ and $n\left( U \right) = 1000$ in the inequality $n\left( {S \cup T} \right) \le n\left( U \right)$.
$720 + 450 - n\left( {S \cap T} \right) \le 1000$
Solve the above inequality
$1170 - n\left( {S \cap T} \right) \le 1000$
Subtract $1170$ from both sides
$ \Rightarrow 1170 - n\left( {S \cap T} \right) - 1170 \le 1000 - 1170$
$ \Rightarrow - n\left( {S \cap T} \right) \le - 170$
Multiply both sides by -1 and change the direction of the inequality
$ \Rightarrow n\left( {S \cap T} \right) \ge 170$
So, the least value of $n\left( {S \cap T} \right)$ is 170.
Thus statement 2 is correct.
Option ‘C’ is correct
Note: The formula of the cardinal of the union of two sets will help to check statement 1. By using the formula we get the maximum value of $n\left( {S \cup T} \right)$ .
Remember the cardinal of the union of two sets must be less than or equal to the cardinal of the universal set.
Using the formula $n\left( {A \cup B} \right) = n\left( A \right) + n\left( B \right) - n\left( {A \cap B} \right)$ and $n\left( {S \cup T} \right) \le n\left( U \right)$ , we check statement 2.
Formula Used:
$n\left( {A \cup B} \right) = n\left( A \right) + n\left( B \right) - n\left( {A \cap B} \right)$
Complete step by step solution:
We know that, $n\left( {A \cup B} \right) = n\left( A \right) + n\left( B \right) - n\left( {A \cap B} \right)$.
For $S$ and $T$ we can say, $n\left( {S \cup T} \right) = n\left( S \right) + n\left( T \right) - n\left( {S \cap T} \right)$.
Let $n\left( {S \cap T} \right) \ge x$.
Then $n\left( {S \cap T} \right) = n\left( S \right) + n\left( T \right) - n\left( {S \cup T} \right)$.
$n\left( {S \cap T} \right) = n\left( S \right) + n\left( T \right) - n\left( {S \cup T} \right) \ge x$
$ - n\left( {S \cup T} \right) \ge x - n\left( S \right) - n\left( T \right)$
$n\left( {S \cup T} \right) \le - x + n\left( S \right) + n\left( T \right)$
So, the least value of $n\left( {S \cap T} \right)$ we get the maximum value of $n\left( {S \cup T} \right)$.
Hence statement 1 is correct.
Now we will put the values of $n\left( S \right) = 720$, $n\left( T \right) = 450$ in the $n\left( {S \cup T} \right) = n\left( S \right) + n\left( T \right) - n\left( {S \cap T} \right)$
$n\left( {S \cup T} \right) = 720 + 450 - n\left( {S \cap T} \right)$
Since $S \cup T$ is a subset of $U$. So, $n\left( {S \cup T} \right) \le n\left( U \right)$.
Putting $720 + 450 - n\left( {S \cap T} \right)$ in place $n\left( {S \cup T} \right)$ and $n\left( U \right) = 1000$ in the inequality $n\left( {S \cup T} \right) \le n\left( U \right)$.
$720 + 450 - n\left( {S \cap T} \right) \le 1000$
Solve the above inequality
$1170 - n\left( {S \cap T} \right) \le 1000$
Subtract $1170$ from both sides
$ \Rightarrow 1170 - n\left( {S \cap T} \right) - 1170 \le 1000 - 1170$
$ \Rightarrow - n\left( {S \cap T} \right) \le - 170$
Multiply both sides by -1 and change the direction of the inequality
$ \Rightarrow n\left( {S \cap T} \right) \ge 170$
So, the least value of $n\left( {S \cap T} \right)$ is 170.
Thus statement 2 is correct.
Option ‘C’ is correct
Note: The formula of the cardinal of the union of two sets will help to check statement 1. By using the formula we get the maximum value of $n\left( {S \cup T} \right)$ .
Remember the cardinal of the union of two sets must be less than or equal to the cardinal of the universal set.
Using the formula $n\left( {A \cup B} \right) = n\left( A \right) + n\left( B \right) - n\left( {A \cap B} \right)$ and $n\left( {S \cup T} \right) \le n\left( U \right)$ , we check statement 2.
Recently Updated Pages
Mutually Exclusive vs Independent Events: Key Differences Explained

Area vs Volume: Key Differences Explained for Students

Area of an Octagon Formula Explained Simply

Absolute Pressure Formula Explained: Key Equation & Examples

Central Angle of a Circle Formula Explained Quickly

Difference Between Vapor and Gas: JEE Main 2026

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Jan 21 Shift 1 Question Papers with Solutions & Answer Keys – Detailed Day 1 Analysis

JEE Main Response Sheet 2026 Released – Key Dates and Official Updates by NTA

JEE Main 2026 Answer Key OUT – Download Session 1 PDF, Response Sheet & Challenge Link

JEE Main Marks vs Percentile 2026: Calculate Percentile and Rank Using Marks

JEE Main 2026 Jan 22 Shift 1 Today Paper Live Analysis With Detailed Solutions

Other Pages
Pregnancy Week and Due Date Calculator: Find How Far Along You Are

NCERT Solutions For Class 10 Maths Chapter 11 Areas Related to Circles (2025-26)

NCERT Solutions For Class 10 Maths Chapter 12 Surface Areas and Volumes (2025-26)

All Mensuration Formulas with Examples and Quick Revision

Complete List of Class 10 Maths Formulas (Chapterwise)

NCERT Solutions for Class 10 Maths Chapter 13 Statistics

