
Find the value of \[\sin \,{50^ \circ } - \sin \,{70^ \circ } + \sin \,{10^ \circ }\]
A. \[0\]
B. \[1\]
C. \[\dfrac{1}{2}\]
D. \[\dfrac{1}{{\sqrt 2 }}\]
Answer
218.7k+ views
Hint: In this question, we use the \[\sin \,A + \sin \,B\] formula. First, we take \[\sin \,{50^ \circ } + \sin \,{10^ \circ }\]then simplify it with the formula, and then re-insert it into the equation. To solve the remaining problems, we use trigonometry's cosine function.
Formula used:
1. \[\sin \,A + \sin \,B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\]
2. \[\cos \left( {{{90}^ \circ } - \theta } \right) = \sin \theta \]
3. \[\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B\]
4. \[\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B\]
Complete step-by-step solution:
We are given that \[\sin \,{50^ \circ } - \sin \,{70^ \circ } + \sin \,{10^ \circ }...\left( 1 \right)\]
We are asked to find the value of \[\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ }\]
Now we know the formula of \[\sin \,A + \sin \,B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\]
Now we take \[\sin \,{50^ \circ } + \sin \,{10^ \circ }\]where \[A = {50^ \circ },B = {10^ \circ }\]
By the above formula, we have
\[
\sin {50^ \circ } + \sin {10^ \circ } = 2\sin \left( {\dfrac{{{{50}^ \circ } + {{10}^ \circ }}}{2}} \right)\cos \left( {\dfrac{{{{50}^ \circ } - {{10}^ \circ }}}{2}} \right) \\
= 2\sin \left( {\dfrac{{{{60}^ \circ }}}{2}} \right)\cos \left( {\dfrac{{{{40}^ \circ }}}{2}} \right) \\
= 2\sin \left( {{{30}^ \circ }} \right)\cos \left( {{{20}^ \circ }} \right)
\]
Now we know that \[\sin \,{30^ \circ } = \dfrac{1}{2}\]
Therefore,
\[
\sin {50^ \circ } + \sin {10^ \circ } = 2 \times \dfrac{1}{2}\,\cos \left( {{{20}^ \circ }} \right) \\
= \cos \left( {{{20}^ \circ }} \right)...\left( 2 \right)
\]
Now re-insert this value in equation (1) and we get
\[\cos \,{20^ \circ } - \sin \,{70^ \circ }...\left( 3 \right)\]
Now we know that \[\cos \left( {{{90}^ \circ } - \theta } \right) = \sin \theta \]
\[
\cos \,{20^ \circ } = \cos \left( {{{90}^ \circ } - {{70}^ \circ }} \right) \\
= \sin \,{70^ \circ }
\]
When we substitute the above value in equation (4), we get
\[\sin \,{70^ \circ } - \sin \,{70^ \circ } = 0\]
Therefore, the value of \[\sin \,{50^ \circ } - \sin \,{70^ \circ } + \sin \,{10^ \circ }\] is \[0\].
Hence, option (A) is the correct answer.
Additional information: Trigonometric identities are used in mathematics when a trigonometric function is involved with an expression or an equation. When using trigonometry in geometry, the identities are involved with the function or the angles. Many trigonometric identities involve the angle of the triangle and the side length of the triangle. The trigonometric identities are only applicable to right-angled triangles. Trigonometric identity is represented with the help of an equation that has trigonometric ratios.
Note: We can also solve this question by an alternate method:
Given that \[\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ }\]
Now we know that
\[
\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B \\
\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B
\]
Now, \[\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ }\] can be written as
\[
\sin \left( {{{70}^ \circ }} \right) = \sin {60^ \circ }\cos {10^ \circ } + \cos {60^ \circ }\sin {10^ \circ } \\
\sin \left( {{{50}^ \circ }} \right) = \sin {60^ \circ }\cos {10^ \circ } - \cos {60^ \circ }\sin {10^ \circ }
\]
Therefore,
\[
\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ } = \sin {60^ \circ }\cos {10^ \circ } - \cos {60^ \circ }\sin {10^ \circ } - \left[ {\sin {{60}^ \circ }\cos {{10}^ \circ } + \cos {{60}^ \circ }\sin {{10}^ \circ }} \right] + \sin {10^ \circ } \\
= \sin {60^ \circ }\cos {10^ \circ } - \cos {60^ \circ }\sin {10^ \circ } - \sin {60^ \circ }\cos {10^ \circ } - \cos {60^ \circ }\sin {10^ \circ } + \sin {10^ \circ }
\]
Now, by canceling out the like terms, we get
\[\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ } = - 2\cos {60^ \circ }\sin {10^ \circ } + \sin {10^ \circ }\]
Now we know that \[\cos {60^ \circ } = \dfrac{1}{2}\]
Therefore,
\[
\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ } = - 2 \times \dfrac{1}{2}\,\sin {10^ \circ } + \sin {10^ \circ } \\
= - \sin {10^ \circ } + \sin {10^ \circ } \\
= 0
\]
Hence, the value of \[\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ }\]is \[0\].
Formula used:
1. \[\sin \,A + \sin \,B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\]
2. \[\cos \left( {{{90}^ \circ } - \theta } \right) = \sin \theta \]
3. \[\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B\]
4. \[\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B\]
Complete step-by-step solution:
We are given that \[\sin \,{50^ \circ } - \sin \,{70^ \circ } + \sin \,{10^ \circ }...\left( 1 \right)\]
We are asked to find the value of \[\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ }\]
Now we know the formula of \[\sin \,A + \sin \,B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\]
Now we take \[\sin \,{50^ \circ } + \sin \,{10^ \circ }\]where \[A = {50^ \circ },B = {10^ \circ }\]
By the above formula, we have
\[
\sin {50^ \circ } + \sin {10^ \circ } = 2\sin \left( {\dfrac{{{{50}^ \circ } + {{10}^ \circ }}}{2}} \right)\cos \left( {\dfrac{{{{50}^ \circ } - {{10}^ \circ }}}{2}} \right) \\
= 2\sin \left( {\dfrac{{{{60}^ \circ }}}{2}} \right)\cos \left( {\dfrac{{{{40}^ \circ }}}{2}} \right) \\
= 2\sin \left( {{{30}^ \circ }} \right)\cos \left( {{{20}^ \circ }} \right)
\]
Now we know that \[\sin \,{30^ \circ } = \dfrac{1}{2}\]
Therefore,
\[
\sin {50^ \circ } + \sin {10^ \circ } = 2 \times \dfrac{1}{2}\,\cos \left( {{{20}^ \circ }} \right) \\
= \cos \left( {{{20}^ \circ }} \right)...\left( 2 \right)
\]
Now re-insert this value in equation (1) and we get
\[\cos \,{20^ \circ } - \sin \,{70^ \circ }...\left( 3 \right)\]
Now we know that \[\cos \left( {{{90}^ \circ } - \theta } \right) = \sin \theta \]
\[
\cos \,{20^ \circ } = \cos \left( {{{90}^ \circ } - {{70}^ \circ }} \right) \\
= \sin \,{70^ \circ }
\]
When we substitute the above value in equation (4), we get
\[\sin \,{70^ \circ } - \sin \,{70^ \circ } = 0\]
Therefore, the value of \[\sin \,{50^ \circ } - \sin \,{70^ \circ } + \sin \,{10^ \circ }\] is \[0\].
Hence, option (A) is the correct answer.
Additional information: Trigonometric identities are used in mathematics when a trigonometric function is involved with an expression or an equation. When using trigonometry in geometry, the identities are involved with the function or the angles. Many trigonometric identities involve the angle of the triangle and the side length of the triangle. The trigonometric identities are only applicable to right-angled triangles. Trigonometric identity is represented with the help of an equation that has trigonometric ratios.
Note: We can also solve this question by an alternate method:
Given that \[\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ }\]
Now we know that
\[
\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B \\
\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B
\]
Now, \[\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ }\] can be written as
\[
\sin \left( {{{70}^ \circ }} \right) = \sin {60^ \circ }\cos {10^ \circ } + \cos {60^ \circ }\sin {10^ \circ } \\
\sin \left( {{{50}^ \circ }} \right) = \sin {60^ \circ }\cos {10^ \circ } - \cos {60^ \circ }\sin {10^ \circ }
\]
Therefore,
\[
\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ } = \sin {60^ \circ }\cos {10^ \circ } - \cos {60^ \circ }\sin {10^ \circ } - \left[ {\sin {{60}^ \circ }\cos {{10}^ \circ } + \cos {{60}^ \circ }\sin {{10}^ \circ }} \right] + \sin {10^ \circ } \\
= \sin {60^ \circ }\cos {10^ \circ } - \cos {60^ \circ }\sin {10^ \circ } - \sin {60^ \circ }\cos {10^ \circ } - \cos {60^ \circ }\sin {10^ \circ } + \sin {10^ \circ }
\]
Now, by canceling out the like terms, we get
\[\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ } = - 2\cos {60^ \circ }\sin {10^ \circ } + \sin {10^ \circ }\]
Now we know that \[\cos {60^ \circ } = \dfrac{1}{2}\]
Therefore,
\[
\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ } = - 2 \times \dfrac{1}{2}\,\sin {10^ \circ } + \sin {10^ \circ } \\
= - \sin {10^ \circ } + \sin {10^ \circ } \\
= 0
\]
Hence, the value of \[\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ }\]is \[0\].
Recently Updated Pages
The angle of depression of the top and the bottom of class 10 maths JEE_Main

Find the value of sin 50 circ sin 70 circ + sin 10 class 10 maths JEE_Main

The amount of work in a leather factory is increased class 10 maths JEE_Main

The side BC of a triangle ABC is bisected at D O is class 10 maths JEE_Main

The circumference of the base of a 24 m high conical class 10 maths JEE_Main

Mutually Exclusive vs Independent Events: Key Differences Explained

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Syllabus 2026: Download Detailed Subject-wise PDF

JEE Main Previous Year Question Papers (2014–2025) with Answer Keys and Solutions

Exothermic Reactions: Real-Life Examples, Equations, and Uses

Marks vs Percentile JEE Mains 2026: Calculate Percentile Marks

Understanding Newton’s Laws of Motion

Other Pages
NCERT Solutions For Class 10 Maths Chapter 12 Surface Area And Volume

NCERT Solutions for Class 10 Maths Chapter Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related to Circles 2025-26

Pregnancy Week and Due Date Calculator: Find How Far Along You Are

Complete List of Class 10 Maths Formulas (Chapterwise)

NCERT Solutions for Class 10 Maths Chapter 15 Probability

