
Find the value of \[\sin \,{50^ \circ } - \sin \,{70^ \circ } + \sin \,{10^ \circ }\]
A. \[0\]
B. \[1\]
C. \[\dfrac{1}{2}\]
D. \[\dfrac{1}{{\sqrt 2 }}\]
Answer
164.1k+ views
Hint: In this question, we use the \[\sin \,A + \sin \,B\] formula. First, we take \[\sin \,{50^ \circ } + \sin \,{10^ \circ }\]then simplify it with the formula, and then re-insert it into the equation. To solve the remaining problems, we use trigonometry's cosine function.
Formula used:
1. \[\sin \,A + \sin \,B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\]
2. \[\cos \left( {{{90}^ \circ } - \theta } \right) = \sin \theta \]
3. \[\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B\]
4. \[\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B\]
Complete step-by-step solution:
We are given that \[\sin \,{50^ \circ } - \sin \,{70^ \circ } + \sin \,{10^ \circ }...\left( 1 \right)\]
We are asked to find the value of \[\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ }\]
Now we know the formula of \[\sin \,A + \sin \,B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\]
Now we take \[\sin \,{50^ \circ } + \sin \,{10^ \circ }\]where \[A = {50^ \circ },B = {10^ \circ }\]
By the above formula, we have
\[
\sin {50^ \circ } + \sin {10^ \circ } = 2\sin \left( {\dfrac{{{{50}^ \circ } + {{10}^ \circ }}}{2}} \right)\cos \left( {\dfrac{{{{50}^ \circ } - {{10}^ \circ }}}{2}} \right) \\
= 2\sin \left( {\dfrac{{{{60}^ \circ }}}{2}} \right)\cos \left( {\dfrac{{{{40}^ \circ }}}{2}} \right) \\
= 2\sin \left( {{{30}^ \circ }} \right)\cos \left( {{{20}^ \circ }} \right)
\]
Now we know that \[\sin \,{30^ \circ } = \dfrac{1}{2}\]
Therefore,
\[
\sin {50^ \circ } + \sin {10^ \circ } = 2 \times \dfrac{1}{2}\,\cos \left( {{{20}^ \circ }} \right) \\
= \cos \left( {{{20}^ \circ }} \right)...\left( 2 \right)
\]
Now re-insert this value in equation (1) and we get
\[\cos \,{20^ \circ } - \sin \,{70^ \circ }...\left( 3 \right)\]
Now we know that \[\cos \left( {{{90}^ \circ } - \theta } \right) = \sin \theta \]
\[
\cos \,{20^ \circ } = \cos \left( {{{90}^ \circ } - {{70}^ \circ }} \right) \\
= \sin \,{70^ \circ }
\]
When we substitute the above value in equation (4), we get
\[\sin \,{70^ \circ } - \sin \,{70^ \circ } = 0\]
Therefore, the value of \[\sin \,{50^ \circ } - \sin \,{70^ \circ } + \sin \,{10^ \circ }\] is \[0\].
Hence, option (A) is the correct answer.
Additional information: Trigonometric identities are used in mathematics when a trigonometric function is involved with an expression or an equation. When using trigonometry in geometry, the identities are involved with the function or the angles. Many trigonometric identities involve the angle of the triangle and the side length of the triangle. The trigonometric identities are only applicable to right-angled triangles. Trigonometric identity is represented with the help of an equation that has trigonometric ratios.
Note: We can also solve this question by an alternate method:
Given that \[\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ }\]
Now we know that
\[
\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B \\
\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B
\]
Now, \[\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ }\] can be written as
\[
\sin \left( {{{70}^ \circ }} \right) = \sin {60^ \circ }\cos {10^ \circ } + \cos {60^ \circ }\sin {10^ \circ } \\
\sin \left( {{{50}^ \circ }} \right) = \sin {60^ \circ }\cos {10^ \circ } - \cos {60^ \circ }\sin {10^ \circ }
\]
Therefore,
\[
\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ } = \sin {60^ \circ }\cos {10^ \circ } - \cos {60^ \circ }\sin {10^ \circ } - \left[ {\sin {{60}^ \circ }\cos {{10}^ \circ } + \cos {{60}^ \circ }\sin {{10}^ \circ }} \right] + \sin {10^ \circ } \\
= \sin {60^ \circ }\cos {10^ \circ } - \cos {60^ \circ }\sin {10^ \circ } - \sin {60^ \circ }\cos {10^ \circ } - \cos {60^ \circ }\sin {10^ \circ } + \sin {10^ \circ }
\]
Now, by canceling out the like terms, we get
\[\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ } = - 2\cos {60^ \circ }\sin {10^ \circ } + \sin {10^ \circ }\]
Now we know that \[\cos {60^ \circ } = \dfrac{1}{2}\]
Therefore,
\[
\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ } = - 2 \times \dfrac{1}{2}\,\sin {10^ \circ } + \sin {10^ \circ } \\
= - \sin {10^ \circ } + \sin {10^ \circ } \\
= 0
\]
Hence, the value of \[\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ }\]is \[0\].
Formula used:
1. \[\sin \,A + \sin \,B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\]
2. \[\cos \left( {{{90}^ \circ } - \theta } \right) = \sin \theta \]
3. \[\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B\]
4. \[\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B\]
Complete step-by-step solution:
We are given that \[\sin \,{50^ \circ } - \sin \,{70^ \circ } + \sin \,{10^ \circ }...\left( 1 \right)\]
We are asked to find the value of \[\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ }\]
Now we know the formula of \[\sin \,A + \sin \,B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\]
Now we take \[\sin \,{50^ \circ } + \sin \,{10^ \circ }\]where \[A = {50^ \circ },B = {10^ \circ }\]
By the above formula, we have
\[
\sin {50^ \circ } + \sin {10^ \circ } = 2\sin \left( {\dfrac{{{{50}^ \circ } + {{10}^ \circ }}}{2}} \right)\cos \left( {\dfrac{{{{50}^ \circ } - {{10}^ \circ }}}{2}} \right) \\
= 2\sin \left( {\dfrac{{{{60}^ \circ }}}{2}} \right)\cos \left( {\dfrac{{{{40}^ \circ }}}{2}} \right) \\
= 2\sin \left( {{{30}^ \circ }} \right)\cos \left( {{{20}^ \circ }} \right)
\]
Now we know that \[\sin \,{30^ \circ } = \dfrac{1}{2}\]
Therefore,
\[
\sin {50^ \circ } + \sin {10^ \circ } = 2 \times \dfrac{1}{2}\,\cos \left( {{{20}^ \circ }} \right) \\
= \cos \left( {{{20}^ \circ }} \right)...\left( 2 \right)
\]
Now re-insert this value in equation (1) and we get
\[\cos \,{20^ \circ } - \sin \,{70^ \circ }...\left( 3 \right)\]
Now we know that \[\cos \left( {{{90}^ \circ } - \theta } \right) = \sin \theta \]
\[
\cos \,{20^ \circ } = \cos \left( {{{90}^ \circ } - {{70}^ \circ }} \right) \\
= \sin \,{70^ \circ }
\]
When we substitute the above value in equation (4), we get
\[\sin \,{70^ \circ } - \sin \,{70^ \circ } = 0\]
Therefore, the value of \[\sin \,{50^ \circ } - \sin \,{70^ \circ } + \sin \,{10^ \circ }\] is \[0\].
Hence, option (A) is the correct answer.
Additional information: Trigonometric identities are used in mathematics when a trigonometric function is involved with an expression or an equation. When using trigonometry in geometry, the identities are involved with the function or the angles. Many trigonometric identities involve the angle of the triangle and the side length of the triangle. The trigonometric identities are only applicable to right-angled triangles. Trigonometric identity is represented with the help of an equation that has trigonometric ratios.
Note: We can also solve this question by an alternate method:
Given that \[\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ }\]
Now we know that
\[
\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B \\
\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B
\]
Now, \[\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ }\] can be written as
\[
\sin \left( {{{70}^ \circ }} \right) = \sin {60^ \circ }\cos {10^ \circ } + \cos {60^ \circ }\sin {10^ \circ } \\
\sin \left( {{{50}^ \circ }} \right) = \sin {60^ \circ }\cos {10^ \circ } - \cos {60^ \circ }\sin {10^ \circ }
\]
Therefore,
\[
\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ } = \sin {60^ \circ }\cos {10^ \circ } - \cos {60^ \circ }\sin {10^ \circ } - \left[ {\sin {{60}^ \circ }\cos {{10}^ \circ } + \cos {{60}^ \circ }\sin {{10}^ \circ }} \right] + \sin {10^ \circ } \\
= \sin {60^ \circ }\cos {10^ \circ } - \cos {60^ \circ }\sin {10^ \circ } - \sin {60^ \circ }\cos {10^ \circ } - \cos {60^ \circ }\sin {10^ \circ } + \sin {10^ \circ }
\]
Now, by canceling out the like terms, we get
\[\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ } = - 2\cos {60^ \circ }\sin {10^ \circ } + \sin {10^ \circ }\]
Now we know that \[\cos {60^ \circ } = \dfrac{1}{2}\]
Therefore,
\[
\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ } = - 2 \times \dfrac{1}{2}\,\sin {10^ \circ } + \sin {10^ \circ } \\
= - \sin {10^ \circ } + \sin {10^ \circ } \\
= 0
\]
Hence, the value of \[\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ }\]is \[0\].
Recently Updated Pages
Trigonometry Formulas: Complete List, Table, and Quick Revision

Difference Between Distance and Displacement: JEE Main 2024

IIT Full Form

Uniform Acceleration - Definition, Equation, Examples, and FAQs

Difference Between Metals and Non-Metals: JEE Main 2024

Newton’s Laws of Motion – Definition, Principles, and Examples

Trending doubts
JEE Main Marks Vs Percentile Vs Rank 2025: Calculate Percentile Using Marks

JEE Mains 2025 Cutoff: Expected and Category-Wise Qualifying Marks for NITs, IIITs, and GFTIs

NIT Cutoff Percentile for 2025

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025 CutOff for NIT - Predicted Ranks and Scores

Other Pages
NCERT Solutions for Class 10 Maths Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related To Circles

NCERT Solutions for Class 10 Maths Chapter 12 Surface Area and Volume

NCERT Solutions for Class 10 Maths Chapter 14 Probability

NCERT Solutions for Class 10 Maths In Hindi Chapter 15 Probability

Total MBBS Seats in India 2025: Government and Private Medical Colleges
