
The angle of depression of the top and the bottom of a building 50m high are observed from the top of a tower are \[30^\circ \] and \[60^\circ \] respectively. Find the height of the tower and also the horizontal distance between the building and the tower.
Answer
515.9k+ views
Hint: Draw the diagram of the given problem statement for a better understanding of the situation. Use the trigonometric ratios, that are $\sin \theta = \dfrac{{{\text{Opposite}}}}{{{\text{Hypotenuse}}}}$ and $\tan \theta = \dfrac{{{\text{Perpendicular}}}}{{{\text{Base}}}}$ in the physical triangle formed to find the height of the tower and horizontal distance between the building and the tower.
Complete step by step answer:
Since it is given that the angle observed from the top of the tower to the top and bottom of the building are \[30^\circ \] and \[60^\circ \]respectively, we can draw a diagram representing the condition.

In the diagram, A represents the top of the tower, AB represents the height of the tower, DC represents the building of height 50 metres.
It is given in the question that the angle $\angle TAD$ is \[30^\circ \] and the angle $\angle TAC$ is \[60^\circ \].
By the property of the corresponding angles of the parallel lines, we can say that the angle $\angle ADE$is \[30^\circ \] and the angle $\angle ACB$ is \[60^\circ \].
In the triangle $ADE$, we can say
\[\tan {30^ \circ } = \dfrac{{{\text{AE}}}}{{DE}}\]
On further simplifying
$
\dfrac{1}{{\sqrt 3 }} = \dfrac{{{\text{AE}}}}{{DE}} \\
\sqrt 3 {\text{AE = DE}} \\
$
Similarly, in the triangle ${\text{ACB}}$
\[\tan {60^ \circ } = \dfrac{{{\text{AB}}}}{{{\text{BC}}}}\]
On further simplifying
$
\sqrt 3 = \dfrac{{{\text{AB}}}}{{{\text{BC}}}} \\
\sqrt 3 {\text{BC = AB}} \\
$
From the figure we infer that,
${\text{BC = DE}}$
$
{\text{AB = AE + EB}} \\
{\text{EB = CD = 50}} \\
{\text{AB = AE + 50}} \\
$
Substituting the value ${\text{AE + 50}}$ for ${\text{AB}}$ and ${\text{DE}}$ for ${\text{BC}}$ in the equation \[\sqrt 3 {\text{BC = AB}}\], we get
\[\sqrt 3 {\text{DE = AE + 50}}\]
Also, \[\sqrt 3 {\text{AE = DE}}\]
Thus the expression becomes \[\sqrt 3 \left( {\sqrt 3 {\text{AE}}} \right){\text{ = AE + 50}}\]
We can solve the expression to find the value of ${\text{AE}}$
$
3{\text{AE = AE + 50}} \\
{\text{2AE = 50}} \\
{\text{AE = 25}} \\
$
Substituting the value 25 for ${\text{AE}}$ in the equation ${\text{AB = AE + 50}}$ to find the height of the tower, and in the equation \[\sqrt 3 {\text{AE = DE}}\] to find the horizontal distance between the building and the tower.
$
{\text{AB = 25 + 50}} \\
{\text{AB = 75}} \\
$
\[{\text{DE}} = \sqrt 3 \left( {25} \right)\]
Thus the height of the tower is 75 m, and the horizontal distance between the building and the tower is $25\sqrt 3 $m.
Note: In a right angled triangle, the $\tan \theta $ is the equal to $\dfrac{{{\text{Perpendicular}}}}{{{\text{Base}}}}$, where perpendicular is the side opposite to the angle $\theta $, and $\sin \theta $ is the equal to $\dfrac{{{\text{Perpendicular}}}}{{{\text{Hypotenuse}}}}$, where perpendicular is the side opposite to the angle $\theta $.
Complete step by step answer:
Since it is given that the angle observed from the top of the tower to the top and bottom of the building are \[30^\circ \] and \[60^\circ \]respectively, we can draw a diagram representing the condition.

In the diagram, A represents the top of the tower, AB represents the height of the tower, DC represents the building of height 50 metres.
It is given in the question that the angle $\angle TAD$ is \[30^\circ \] and the angle $\angle TAC$ is \[60^\circ \].
By the property of the corresponding angles of the parallel lines, we can say that the angle $\angle ADE$is \[30^\circ \] and the angle $\angle ACB$ is \[60^\circ \].
In the triangle $ADE$, we can say
\[\tan {30^ \circ } = \dfrac{{{\text{AE}}}}{{DE}}\]
On further simplifying
$
\dfrac{1}{{\sqrt 3 }} = \dfrac{{{\text{AE}}}}{{DE}} \\
\sqrt 3 {\text{AE = DE}} \\
$
Similarly, in the triangle ${\text{ACB}}$
\[\tan {60^ \circ } = \dfrac{{{\text{AB}}}}{{{\text{BC}}}}\]
On further simplifying
$
\sqrt 3 = \dfrac{{{\text{AB}}}}{{{\text{BC}}}} \\
\sqrt 3 {\text{BC = AB}} \\
$
From the figure we infer that,
${\text{BC = DE}}$
$
{\text{AB = AE + EB}} \\
{\text{EB = CD = 50}} \\
{\text{AB = AE + 50}} \\
$
Substituting the value ${\text{AE + 50}}$ for ${\text{AB}}$ and ${\text{DE}}$ for ${\text{BC}}$ in the equation \[\sqrt 3 {\text{BC = AB}}\], we get
\[\sqrt 3 {\text{DE = AE + 50}}\]
Also, \[\sqrt 3 {\text{AE = DE}}\]
Thus the expression becomes \[\sqrt 3 \left( {\sqrt 3 {\text{AE}}} \right){\text{ = AE + 50}}\]
We can solve the expression to find the value of ${\text{AE}}$
$
3{\text{AE = AE + 50}} \\
{\text{2AE = 50}} \\
{\text{AE = 25}} \\
$
Substituting the value 25 for ${\text{AE}}$ in the equation ${\text{AB = AE + 50}}$ to find the height of the tower, and in the equation \[\sqrt 3 {\text{AE = DE}}\] to find the horizontal distance between the building and the tower.
$
{\text{AB = 25 + 50}} \\
{\text{AB = 75}} \\
$
\[{\text{DE}} = \sqrt 3 \left( {25} \right)\]
Thus the height of the tower is 75 m, and the horizontal distance between the building and the tower is $25\sqrt 3 $m.
Note: In a right angled triangle, the $\tan \theta $ is the equal to $\dfrac{{{\text{Perpendicular}}}}{{{\text{Base}}}}$, where perpendicular is the side opposite to the angle $\theta $, and $\sin \theta $ is the equal to $\dfrac{{{\text{Perpendicular}}}}{{{\text{Hypotenuse}}}}$, where perpendicular is the side opposite to the angle $\theta $.
Recently Updated Pages
The angle of depression of the top and the bottom of class 10 maths JEE_Main

Find the value of sin 50 circ sin 70 circ + sin 10 class 10 maths JEE_Main

The amount of work in a leather factory is increased class 10 maths JEE_Main

The side BC of a triangle ABC is bisected at D O is class 10 maths JEE_Main

The circumference of the base of a 24 m high conical class 10 maths JEE_Main

Mutually Exclusive vs Independent Events: Key Differences Explained

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Syllabus 2026: Download Detailed Subject-wise PDF

JEE Main Previous Year Question Papers (2014–2025) with Answer Keys and Solutions

Exothermic Reactions: Real-Life Examples, Equations, and Uses

Marks vs Percentile JEE Mains 2026: Calculate Percentile Marks

Understanding Newton’s Laws of Motion

Other Pages
NCERT Solutions For Class 10 Maths Chapter 12 Surface Area And Volume

NCERT Solutions for Class 10 Maths Chapter Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related to Circles 2025-26

Pregnancy Week and Due Date Calculator: Find How Far Along You Are

Complete List of Class 10 Maths Formulas (Chapterwise)

NCERT Solutions for Class 10 Maths Chapter 15 Probability

