
What is the value of \[\left( {\dfrac{1}{{8{1^n}}}} \right) - \left( {\dfrac{{10}}{{81^{n}}}} \right){}^{2n}{C_1} + \left( {\dfrac{{10^{2}}}{{81^{n}}}} \right){}^{2n}{C_2} - \left( {\dfrac{{10^{3}}}{{81^{n}}}} \right){}^{2n}{C_3} + .... + \left( {\dfrac{{10^{2n}}}{{81^{n}}}} \right)\]?
A. 2
B. 0
C. \[\dfrac{1}{2}\]
D. 1
Answer
232.8k+ views
Hint: First we will take common \[\left( {\dfrac{1}{{8{1^n}}}} \right)\] from the given expression \[\left( {\dfrac{1}{{8{1^n}}}} \right) - \left( {\dfrac{{10}}{{8{1^n}}}} \right){}^{2n}{C_1} + \left( {\dfrac{{1{0^2}}}{{8{1^n}}}} \right){}^{2n}{C_2} - \left( {\dfrac{{1{0^3}}}{{8{1^n}}}} \right){}^{2n}{C_3} + .... + \left( {\dfrac{{1{0^{2n}}}}{{8{1^n}}}} \right)\]. Then we apply reverse binomial theorem that is \[1 - {}^n{C_1}x + {}^n{C_2}{x^2} + \cdots \cdots + {}^n{C_n}{x^n} = {\left( {1 - x} \right)^n}\]. Then simplify the expression to get the value of the given expression.
Formula used :
Binomial expansion of \[{\left( {1 - x} \right)^n}\]:
\[{\left( {1 - x} \right)^n} = 1 - nx + \dfrac{{n\left( {n - 1} \right)}}{{2!}}{x^2} - \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)}}{{3!}}{x^3} + .....\]
\[{a^{mn}} = {\left( {{a^m}} \right)^n}\]
Complete step by step solution:
The given expression is \[\left( {\dfrac{1}{{81^{n}}}} \right) - \left( {\dfrac{{10}}{{81^{n}}}} \right){}^{2n}{C_1} + \left( {\dfrac{{10^{2}}}{{81^{n}}}} \right){}^{2n}{C_2} - \left( {\dfrac{{10^{3}}}{{81^{n}}}} \right){}^{2n}{C_3} + .... + \left( {\dfrac{{10^{2n}}}{{81^{n}}}} \right)\].
Let’s simplify the given expression.
Let \[V\] be the value of the above expression.
\[V = \left( {\dfrac{1}{{81^{n}}}} \right) - \left( {\dfrac{{10}}{{81^{n}}}} \right){}^{2n}{C_1} + \left( {\dfrac{{10^{2}}}{{81^{n}}}} \right){}^{2n}{C_2} - \left( {\dfrac{{10^{3}}}{{81^{n}}}} \right){}^{2n}{C_3} + .... + \left( {\dfrac{{10^{2n}}}{{81^{n}}}} \right)\]
Factor out the common factor from each term.
\[V = \dfrac{1}{{81^{n}}}\left[ {1 - 10 \cdot {}^{2n}{C_1} + 10^{2} \cdot {}^{2n}{C_2} - 10^{3} \cdot {}^{2n}{C_3} + .... + 10^{2n}} \right]\]
Now apply the reverse formula of binomial expansion \[{\left( {1 - x} \right)^n}\].
The terms present in the square bracket are the binomial expansion of \[{\left( {1 - 10} \right)^{2n}}\].
Then,
\[V = \dfrac{1}{{81^{n}}}{\left[ {1 - 10} \right]^{2n}}\]
\[V = \dfrac{1}{{81^{n}}}{\left[ { - 9} \right]^{2n}}\]
Since \[2n\] is an even number and the value of even power of any negative number is positive.
So, \[{\left[ { - 9} \right]^{2n}} = {\left[ 9 \right]^{2n}}\]
\[V = \dfrac{1}{{81^{n}}}{\left[ 9 \right]^{2n}}\]
Now apply the property of powers \[{a^{mn}} = {\left( {{a^m}} \right)^n}\].
\[V = \dfrac{{{{\left[ {{9^2}} \right]}^n}}}{{81^{n}}}\]
\[ \Rightarrow \]\[V = \dfrac{{81^{n}}}{{81^{n}}}\] [ Since \[{9^2} = 81\]]
\[ \Rightarrow \]\[V = 1\]
Hence the correct option is D
Note: Students often do a common mistake that is \[{\left( { - 9} \right)^{2n}} = - {81^n}\] which is wrong. Since \[2n\] is an even number. So the value of \[{\left( { - 9} \right)^{2n}}\] must be a positive number.
Formula used :
Binomial expansion of \[{\left( {1 - x} \right)^n}\]:
\[{\left( {1 - x} \right)^n} = 1 - nx + \dfrac{{n\left( {n - 1} \right)}}{{2!}}{x^2} - \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)}}{{3!}}{x^3} + .....\]
\[{a^{mn}} = {\left( {{a^m}} \right)^n}\]
Complete step by step solution:
The given expression is \[\left( {\dfrac{1}{{81^{n}}}} \right) - \left( {\dfrac{{10}}{{81^{n}}}} \right){}^{2n}{C_1} + \left( {\dfrac{{10^{2}}}{{81^{n}}}} \right){}^{2n}{C_2} - \left( {\dfrac{{10^{3}}}{{81^{n}}}} \right){}^{2n}{C_3} + .... + \left( {\dfrac{{10^{2n}}}{{81^{n}}}} \right)\].
Let’s simplify the given expression.
Let \[V\] be the value of the above expression.
\[V = \left( {\dfrac{1}{{81^{n}}}} \right) - \left( {\dfrac{{10}}{{81^{n}}}} \right){}^{2n}{C_1} + \left( {\dfrac{{10^{2}}}{{81^{n}}}} \right){}^{2n}{C_2} - \left( {\dfrac{{10^{3}}}{{81^{n}}}} \right){}^{2n}{C_3} + .... + \left( {\dfrac{{10^{2n}}}{{81^{n}}}} \right)\]
Factor out the common factor from each term.
\[V = \dfrac{1}{{81^{n}}}\left[ {1 - 10 \cdot {}^{2n}{C_1} + 10^{2} \cdot {}^{2n}{C_2} - 10^{3} \cdot {}^{2n}{C_3} + .... + 10^{2n}} \right]\]
Now apply the reverse formula of binomial expansion \[{\left( {1 - x} \right)^n}\].
The terms present in the square bracket are the binomial expansion of \[{\left( {1 - 10} \right)^{2n}}\].
Then,
\[V = \dfrac{1}{{81^{n}}}{\left[ {1 - 10} \right]^{2n}}\]
\[V = \dfrac{1}{{81^{n}}}{\left[ { - 9} \right]^{2n}}\]
Since \[2n\] is an even number and the value of even power of any negative number is positive.
So, \[{\left[ { - 9} \right]^{2n}} = {\left[ 9 \right]^{2n}}\]
\[V = \dfrac{1}{{81^{n}}}{\left[ 9 \right]^{2n}}\]
Now apply the property of powers \[{a^{mn}} = {\left( {{a^m}} \right)^n}\].
\[V = \dfrac{{{{\left[ {{9^2}} \right]}^n}}}{{81^{n}}}\]
\[ \Rightarrow \]\[V = \dfrac{{81^{n}}}{{81^{n}}}\] [ Since \[{9^2} = 81\]]
\[ \Rightarrow \]\[V = 1\]
Hence the correct option is D
Note: Students often do a common mistake that is \[{\left( { - 9} \right)^{2n}} = - {81^n}\] which is wrong. Since \[2n\] is an even number. So the value of \[{\left( { - 9} \right)^{2n}}\] must be a positive number.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

