
The value of ${\sec^{ - 1}}\left( {\dfrac{1}{4}\sum\limits_{k = 0}^{10} {\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)} } \right)$ in the interval $\left[ { - \dfrac{\pi }{4},\dfrac{{3\pi }}{4}} \right]$ equals
Answer
233.1k+ views
Hint: Here we have to find the value of the given function. For that, we first simplify the given function and then apply formula $\sec \left( {\dfrac{\pi }{2}} \right) = - {\text{cosec}}\theta $ and multiply 2 in the numerator and denominator and convert ${\text{cosec}}\theta$ to $\dfrac{1}{{\sin \theta }}$ in the denominator and simplify it to calculate the desired result.
Formula Used:
We have been using the following formulas:
1. $\sec \left( {\dfrac{\pi }{2}} \right) = - {\text{cosec}}\theta $
2. $2\sin \theta \cos \theta = \sin 2\theta $
3. ${\text{cosec}}\theta = \dfrac{1}{{\sin \theta }}$
4. $\sec \theta = \dfrac{1}{{\cos \theta }}$
Complete step by step solution:
Given that ${\sec^{ - 1}}\left( {\dfrac{1}{4}\sum\limits_{k = 0}^{10} {\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)} } \right)$
By simplifying the given function, we get
${\sec^{ - 1}}\left( {\dfrac{1}{4}\sum\limits_{k = 0}^{10} {\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)} } \right) = {\sec^{ - 1}}\left( {\dfrac{1}{4}\sum\limits_{k = 0}^{10} {\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi + \pi }}{2}} \right)} } \right) \\ \Rightarrow {\sec^{ - 1}}\left( {\dfrac{1}{4}\sum\limits_{k = 0}^{10} {\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2} + \dfrac{\pi }{2}} \right)} } \right) \\ $
W.K.T $\sec \left( {\dfrac{\pi }{2}} \right) = - {\text{cosec}}\theta $
So, by applying this formula, we get
${\sec^{ - 1}}\left( {\dfrac{1}{4}\sum\limits_{k = 0}^{10} {\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)} } \right) = {\sec^{ - 1}}\left( { - \dfrac{1}{4}\sum\limits_{k = 0}^{10} {\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right){\text{cosec}}\left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)} } \right)$
Here, $\theta = \dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}$
We know that $\sec \theta = \dfrac{1}{{\cos \theta }}$ and ${\text{cosec}}\theta = \dfrac{1}{{\sin \theta }}$
So, our function becomes
${\sec^{ - 1}}\left( {\dfrac{1}{4}\sum\limits_{k = 0}^{10} {\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)} } \right) = {\sec^{ - 1}}\left( { - \dfrac{1}{4}\sum\limits_{k = 0}^{10} {\dfrac{1}{{\cos \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\sin \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)}}} } \right)$
Multiply 2 in both numerator and denominator, we get
${\sec^{ - 1}}\left( {\dfrac{1}{4}\sum\limits_{k = 0}^{10} {\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)} } \right) = {\sec^{ - 1}}\left( { - \dfrac{1}{4}\sum\limits_{k = 0}^{10} {\dfrac{{1 \times 2}}{{2\cos \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\sin \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)}}} } \right)$
We know that $2\sin \theta \cos \theta = \sin 2\theta $
Applying this formula in the denominator of the function, we get
${\sec^{ - 1}}\left( {\dfrac{1}{4}\sum\limits_{k = 0}^{10} {\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)} } \right) = {\sec^{ - 1}}\left( { - \dfrac{1}{2}\sum\limits_{k = 0}^{10} {\dfrac{1}{{\sin 2\left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)}}} } \right) \\ \Rightarrow {\sec^{ - 1}}\left( { - \dfrac{1}{2}\sum\limits_{k = 0}^{10} {\dfrac{1}{{\sin \left( {\dfrac{{7\pi }}{6} + k\pi } \right)}}} } \right) \\ \Rightarrow {\sec^{ - 1}}\left( { - \dfrac{1}{2}\dfrac{1}{{\sin \left( {k\pi + \pi + \dfrac{\pi }{6}} \right)}}} \right) \\ \Rightarrow {\sec^{ - 1}}\left( { - \dfrac{1}{2}\dfrac{1}{{\sin \left( {\left( {k + 1} \right)\pi + \dfrac{\pi }{6}} \right)}}} \right) \\ $
Further simplifying, we get
${\sec^{ - 1}}\left( {\dfrac{1}{4}\sum\limits_{k = 0}^{10} {\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)} } \right) = {\sec^{ - 1}}\left( { - \dfrac{1}{2}\sum\limits_{k = 0}^{10} {\dfrac{1}{{{{\left( { - 1} \right)}^{k + 1}}\sin \left( {\dfrac{\pi }{6}} \right)}}} } \right) \\ \Rightarrow {\sec^{ - 1}}\left( { - \dfrac{1}{2}\sum\limits_{k = 0}^{10} {\dfrac{1}{{{{\left( { - 1} \right)}^{k + 1}} \times \dfrac{1}{2}}}} } \right) \\ \Rightarrow {\sec^{ - 1}}\left( { - \dfrac{1}{2}\sum\limits_{k = 0}^{10} {\dfrac{{1 \times 2}}{{{{\left( { - 1} \right)}^{k + 1}} \times 1}}} } \right) \\ \Rightarrow {\sec^{ - 1}}\left( { - 1\sum\limits_{k = 0}^{10} {\dfrac{1}{{{{\left( { - 1} \right)}^{k + 1}}}}} } \right) \\ $
Furthermore simplifying, we get
$ {\sec^{ - 1}}\left( {\dfrac{1}{4}\sum\limits_{k = 0}^{10} {\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)} } \right) = {\sec^{ - 1}}\left( 1 \right) \\ \Rightarrow {\sec^{ - 1}}\left( {\sec {0^ \circ }} \right) $
Hence, the value of ${\sec^{ - 1}}\left( {\dfrac{1}{4}\sum\limits_{k = 0}^{10} {\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)} } \right)$ is equal to $0$
Note: Alternative method to solve the above problem:
Given that ${\sec^{ - 1}}\left( {\dfrac{1}{4}\sum\limits_{k = 0}^{10} {\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)} } \right)...\left( 1 \right)$
First solve $\sum\limits_{k = 0}^{10} {\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)} ...\left( 2 \right)$
W.K.T $\sec \theta = \dfrac{1}{{\cos \theta }}$
Applying the above formula in equation (2), we get
$\sum\limits_{k = 0}^{10} {\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)} = \sum\limits_{k = 0}^{10} {\dfrac{1}{{\cos \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\cos \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)}}} \\ \Rightarrow \sum\limits_{k = 1}^{10} {\dfrac{{\sin \left[ {\left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right) - \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)} \right]}}{{\cos \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\cos \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)}}} \\ $
$\left[ \because \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right) - \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right) = \dfrac{\pi }{2} \\ \sin \left( {\dfrac{\pi }{2}} \right) = 1 \\ \right]$
We know that $\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B$
By applying above formula, we get
$ \sum\limits_{k = 0}^{10} {\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)} = \sum\limits_{k = 0}^{10} {\dfrac{{\sin \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)\cos \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right) - \cos \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)\sin \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)}}{{\cos \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\cos \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)}}} \\ \Rightarrow \sum\limits_{k = 0}^{10} {\dfrac{{\sin \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)\cos \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)}}{{\cos \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\cos \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)}}} - \dfrac{{\cos \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)\sin \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)}}{{\cos \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\cos \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)}} \\ \Rightarrow \sum\limits_{k = 0}^{10} {\dfrac{{\sin \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)}}{{\cos \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)}}} - \dfrac{{\sin \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)}}{{\cos \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)}}$
We know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$
By applying above formula, we get
$\sum\limits_{k = 0}^{10} {\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)} = \sum\limits_{k = 0}^{10} {\left[ {\tan \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right) - \tan \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)} \right]} \\ \Rightarrow \tan \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2} + \dfrac{\pi }{2}} \right) - \tan \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right) \\ \Rightarrow \tan \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right) + \tan \left( {\dfrac{\pi }{2}} \right) - \tan \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right) \\ \Rightarrow \tan \left( {\dfrac{\pi }{2}} \right)$
Further solving, we get
$\sum\limits_{k = 0}^{10} {\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)} = 0$
Substitute this value in equation (1), we get
${\sec^{ - 1}}\left( {\dfrac{1}{4}\sum\limits_{k = 0}^{10} {\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)} } \right) = {\sec^{ - 1}}\left( {\dfrac{1}{4} \times 0} \right) \\ \Rightarrow {\sec^{ - 1}}\left( 0 \right) = 0$
Formula Used:
We have been using the following formulas:
1. $\sec \left( {\dfrac{\pi }{2}} \right) = - {\text{cosec}}\theta $
2. $2\sin \theta \cos \theta = \sin 2\theta $
3. ${\text{cosec}}\theta = \dfrac{1}{{\sin \theta }}$
4. $\sec \theta = \dfrac{1}{{\cos \theta }}$
Complete step by step solution:
Given that ${\sec^{ - 1}}\left( {\dfrac{1}{4}\sum\limits_{k = 0}^{10} {\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)} } \right)$
By simplifying the given function, we get
${\sec^{ - 1}}\left( {\dfrac{1}{4}\sum\limits_{k = 0}^{10} {\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)} } \right) = {\sec^{ - 1}}\left( {\dfrac{1}{4}\sum\limits_{k = 0}^{10} {\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi + \pi }}{2}} \right)} } \right) \\ \Rightarrow {\sec^{ - 1}}\left( {\dfrac{1}{4}\sum\limits_{k = 0}^{10} {\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2} + \dfrac{\pi }{2}} \right)} } \right) \\ $
W.K.T $\sec \left( {\dfrac{\pi }{2}} \right) = - {\text{cosec}}\theta $
So, by applying this formula, we get
${\sec^{ - 1}}\left( {\dfrac{1}{4}\sum\limits_{k = 0}^{10} {\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)} } \right) = {\sec^{ - 1}}\left( { - \dfrac{1}{4}\sum\limits_{k = 0}^{10} {\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right){\text{cosec}}\left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)} } \right)$
Here, $\theta = \dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}$
We know that $\sec \theta = \dfrac{1}{{\cos \theta }}$ and ${\text{cosec}}\theta = \dfrac{1}{{\sin \theta }}$
So, our function becomes
${\sec^{ - 1}}\left( {\dfrac{1}{4}\sum\limits_{k = 0}^{10} {\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)} } \right) = {\sec^{ - 1}}\left( { - \dfrac{1}{4}\sum\limits_{k = 0}^{10} {\dfrac{1}{{\cos \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\sin \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)}}} } \right)$
Multiply 2 in both numerator and denominator, we get
${\sec^{ - 1}}\left( {\dfrac{1}{4}\sum\limits_{k = 0}^{10} {\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)} } \right) = {\sec^{ - 1}}\left( { - \dfrac{1}{4}\sum\limits_{k = 0}^{10} {\dfrac{{1 \times 2}}{{2\cos \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\sin \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)}}} } \right)$
We know that $2\sin \theta \cos \theta = \sin 2\theta $
Applying this formula in the denominator of the function, we get
${\sec^{ - 1}}\left( {\dfrac{1}{4}\sum\limits_{k = 0}^{10} {\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)} } \right) = {\sec^{ - 1}}\left( { - \dfrac{1}{2}\sum\limits_{k = 0}^{10} {\dfrac{1}{{\sin 2\left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)}}} } \right) \\ \Rightarrow {\sec^{ - 1}}\left( { - \dfrac{1}{2}\sum\limits_{k = 0}^{10} {\dfrac{1}{{\sin \left( {\dfrac{{7\pi }}{6} + k\pi } \right)}}} } \right) \\ \Rightarrow {\sec^{ - 1}}\left( { - \dfrac{1}{2}\dfrac{1}{{\sin \left( {k\pi + \pi + \dfrac{\pi }{6}} \right)}}} \right) \\ \Rightarrow {\sec^{ - 1}}\left( { - \dfrac{1}{2}\dfrac{1}{{\sin \left( {\left( {k + 1} \right)\pi + \dfrac{\pi }{6}} \right)}}} \right) \\ $
Further simplifying, we get
${\sec^{ - 1}}\left( {\dfrac{1}{4}\sum\limits_{k = 0}^{10} {\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)} } \right) = {\sec^{ - 1}}\left( { - \dfrac{1}{2}\sum\limits_{k = 0}^{10} {\dfrac{1}{{{{\left( { - 1} \right)}^{k + 1}}\sin \left( {\dfrac{\pi }{6}} \right)}}} } \right) \\ \Rightarrow {\sec^{ - 1}}\left( { - \dfrac{1}{2}\sum\limits_{k = 0}^{10} {\dfrac{1}{{{{\left( { - 1} \right)}^{k + 1}} \times \dfrac{1}{2}}}} } \right) \\ \Rightarrow {\sec^{ - 1}}\left( { - \dfrac{1}{2}\sum\limits_{k = 0}^{10} {\dfrac{{1 \times 2}}{{{{\left( { - 1} \right)}^{k + 1}} \times 1}}} } \right) \\ \Rightarrow {\sec^{ - 1}}\left( { - 1\sum\limits_{k = 0}^{10} {\dfrac{1}{{{{\left( { - 1} \right)}^{k + 1}}}}} } \right) \\ $
Furthermore simplifying, we get
$ {\sec^{ - 1}}\left( {\dfrac{1}{4}\sum\limits_{k = 0}^{10} {\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)} } \right) = {\sec^{ - 1}}\left( 1 \right) \\ \Rightarrow {\sec^{ - 1}}\left( {\sec {0^ \circ }} \right) $
Hence, the value of ${\sec^{ - 1}}\left( {\dfrac{1}{4}\sum\limits_{k = 0}^{10} {\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)} } \right)$ is equal to $0$
Note: Alternative method to solve the above problem:
Given that ${\sec^{ - 1}}\left( {\dfrac{1}{4}\sum\limits_{k = 0}^{10} {\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)} } \right)...\left( 1 \right)$
First solve $\sum\limits_{k = 0}^{10} {\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)} ...\left( 2 \right)$
W.K.T $\sec \theta = \dfrac{1}{{\cos \theta }}$
Applying the above formula in equation (2), we get
$\sum\limits_{k = 0}^{10} {\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)} = \sum\limits_{k = 0}^{10} {\dfrac{1}{{\cos \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\cos \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)}}} \\ \Rightarrow \sum\limits_{k = 1}^{10} {\dfrac{{\sin \left[ {\left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right) - \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)} \right]}}{{\cos \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\cos \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)}}} \\ $
$\left[ \because \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right) - \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right) = \dfrac{\pi }{2} \\ \sin \left( {\dfrac{\pi }{2}} \right) = 1 \\ \right]$
We know that $\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B$
By applying above formula, we get
$ \sum\limits_{k = 0}^{10} {\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)} = \sum\limits_{k = 0}^{10} {\dfrac{{\sin \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)\cos \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right) - \cos \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)\sin \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)}}{{\cos \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\cos \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)}}} \\ \Rightarrow \sum\limits_{k = 0}^{10} {\dfrac{{\sin \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)\cos \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)}}{{\cos \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\cos \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)}}} - \dfrac{{\cos \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)\sin \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)}}{{\cos \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\cos \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)}} \\ \Rightarrow \sum\limits_{k = 0}^{10} {\dfrac{{\sin \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)}}{{\cos \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)}}} - \dfrac{{\sin \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)}}{{\cos \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)}}$
We know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$
By applying above formula, we get
$\sum\limits_{k = 0}^{10} {\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)} = \sum\limits_{k = 0}^{10} {\left[ {\tan \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right) - \tan \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)} \right]} \\ \Rightarrow \tan \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2} + \dfrac{\pi }{2}} \right) - \tan \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right) \\ \Rightarrow \tan \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right) + \tan \left( {\dfrac{\pi }{2}} \right) - \tan \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right) \\ \Rightarrow \tan \left( {\dfrac{\pi }{2}} \right)$
Further solving, we get
$\sum\limits_{k = 0}^{10} {\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)} = 0$
Substitute this value in equation (1), we get
${\sec^{ - 1}}\left( {\dfrac{1}{4}\sum\limits_{k = 0}^{10} {\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{k\pi }}{2}} \right)\sec \left( {\dfrac{{7\pi }}{{12}} + \dfrac{{\left( {k + 1} \right)\pi }}{2}} \right)} } \right) = {\sec^{ - 1}}\left( {\dfrac{1}{4} \times 0} \right) \\ \Rightarrow {\sec^{ - 1}}\left( 0 \right) = 0$
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

