
The value of $\dfrac{5}{{1 \cdot 2 \cdot 3}} + \dfrac{7}{{3 \cdot 4 \cdot 5}} + \dfrac{9}{{5 \cdot 6 \cdot 7}} + ...$
A. $\log \left( {\dfrac{8}{e}} \right)$
B. $\log (8e)$
C. $\log \left( {\dfrac{e}{8}} \right)$
D. None of these
Answer
233.1k+ views
Hint: Find the general term of the given series and then use the rule of partial sum fraction. After that use the expansion of $\log (1 + x)$.
Formula Used:
$n^{th}$-term of an A.P. is $a + \left( {n - 1} \right)d$, where a is the first term and d is the common difference of the A.P.
The expansion of $\log (1 + x)$ is $x - \dfrac{{{x^2}}}{2} + \dfrac{{{x^3}}}{3} - \dfrac{{{x^4}}}{4} + ...$
Complete step by step solution:
Let the sum of the given series be S.
Then
$S=\frac{5}{1\cdot \:2\:\cdot \:3}+\frac{7}{3\cdot \:4\cdot \:5}+\frac{9}{5\cdot \:6\cdot \:7}$
We have to find the general term i.e. the n-th term of the series.
Clearly, the numerators of the given fractions are in A.P.
Find n-th term of the A.P. $5,7,9,...$
The first term of this A.P. is 5 and the common difference is $7 - 5 = 9 - 7 = 2$
So, n-th term is $5 + \left( {n - 1} \right) \times 2 = 5 + 2n - 2 = 2n + 3$
The denominators of the given fractions are $\left( {1 \cdot 2 \cdot 3} \right),\left( {3 \cdot 4 \cdot 5} \right),\left( {5 \cdot 6 \cdot 7} \right),...$
The first components $1,3,5,...$ are in A.P., where the first term is 1 and the common difference i$3 - 1 = 5 - 3 = 2$
So, the n-th term is $1 + \left( {n - 1} \right) \times 2 = 1 + 2n - 2 = 2n - 1$
The second components $2,4,6,...$ are in A.P., where the first term is 2 and the common difference is $4 - 2 = 6 - 4 = 2$
So, the n-th term is $2 + \left( {n - 1} \right) \times 2 = 2 + 2n - 2 = 2n$
The third components $3,5,7,...$ are in A.P., where the first term is 3 and the common difference is $5 - 3 = 7 - 5 = 2$
So, the n-th term is $3 + \left( {n - 1} \right) \times 2 = 3 + 2n - 2 = 2n + 1$
Finally, we get the n-th term i.e. the general term of the given series as $\dfrac{{2n + 3}}{{\left( {2n - 1} \right)\left( {2n} \right)\left( {2n + 1} \right)}}$
We have to find the value of the infinite series$S = \sum\limits_{n = 1}^\infty {\dfrac{{2n + 3}}{{(2n - 1)(2n)(2n + 1)}}} ......(i)$
Let $\dfrac{{2n + 3}}{{\left( {2n - 1} \right)\left( {2n} \right)\left( {2n + 1} \right)}} = \dfrac{A}{{2n - 1}} + \dfrac{B}{{2n}} + \dfrac{C}{{2n + 1}}.....(ii)$
Then
$\dfrac{{2n + 3}}{{\left( {2n - 1} \right)\left( {2n} \right)\left( {2n + 1} \right)}} = \dfrac{{A(2n)(2n + 1) + B(2n - 1)(2n + 1) + C(2n - 1)(2n)}}{{(2n - 1)(2n)(2n + 1)}}\\ \Rightarrow 2n + 3 = A(4{n^{^2}} + 2n) + B(4{n^2} - 1) + C(4{n^2} - 2n)\\ \Rightarrow 2n + 3 = 4A{n^2} + 2An + 4B{n^2} - B + 4C{n^2} - 2Cn\\ \Rightarrow 2n + 3 = 4(A + B + C){n^2} + 2(A - C)n - B$
Equating the coefficients of like terms, we get
$A + B + C = 0.....(iii)\\2(A - C) = 2.....(iv)\\ - B = 3.....(v)$
From $(v)$, we get $B = - 3$
From $(iv)$, we get $A - C = 1 \Rightarrow A = 1 + C.....(vi)$
Putting the value of B and substituting $A = 1 + C$ in $(iii)$, we get
$1 + C - 3 + C = 0\\ \Rightarrow - 2 + 2C = 0\\ \Rightarrow 2C = 2\\ \Rightarrow C = 1$
Putting the value of $C$ in $(vi)$, we get A=1+1=2
Now, we have A=2, B=-3, C=1
Putting the values of A, B and C in equation i, we get
$\dfrac{{2n + 3}}{{(2n - 1)(2n)(2n + 1)}} = \dfrac{2}{{2n - 1}} - \dfrac{3}{{2n}} + \dfrac{1}{{2n + 1}}$
$ = \dfrac{2}{{2n - 1}} - \dfrac{2}{{2n}} - \dfrac{1}{{2n}} + \dfrac{1}{{2n + 1}}\\ \Rightarrow 2\left( {\dfrac{1}{{2n - 1}} - \dfrac{1}{{2n}}} \right) - \left( {\dfrac{1}{{2n}} - \dfrac{1}{{2n + 1}}} \right)$
Now, substitute the above expression in $(i)$, we get
$S = \sum\limits_{n = 1}^\infty {\left[ {2\left( {\dfrac{1}{{2n - 1}} - \dfrac{1}{{2n}}} \right) - \left( {\dfrac{1}{{2n}} - \dfrac{1}{{2n + 1}}} \right)} \right]} $
Now, we can write $\sum\limits_n {\left\{ {a{f_n}\left( x \right) + b{g_n}\left( x \right)} \right\} = a\sum\limits_n {{f_n}\left( x \right)} + b\sum\limits_n {{g_n}\left( x \right)} } $
So, $S = 2\sum\limits_{n = 1}^\infty {\left( {\dfrac{1}{{2n - 1}} - \dfrac{1}{{2n}}} \right) - \sum\limits_{n = 1}^\infty {\left( {\dfrac{1}{{2n}} - \dfrac{1}{{2n + 1}}} \right)} } $
Put $n = 1,2,3,......$ successively
$S = 2\left\{ {\left( {1 - \dfrac{1}{2}} \right) + \left( {\dfrac{1}{3} - \dfrac{1}{4}} \right) + \left( {\dfrac{1}{5} - \dfrac{1}{6}} \right) + ......} \right\} - \left\{ {\left( {\dfrac{1}{2} - \dfrac{1}{3}} \right) + \left( {\dfrac{1}{4} - \dfrac{1}{5}} \right) + \left( {\dfrac{1}{6} - \dfrac{1}{7}} \right) + ......} \right\}.....(vii)$
The expansion of $\log (1 + x)$ is $x - \dfrac{{{x^2}}}{2} + \dfrac{{{x^3}}}{3} - \dfrac{{{x^4}}}{4} + ...$
Put $x = 1$
$\log (2) = 1 - \dfrac{1}{2} + \dfrac{1}{3} - \dfrac{1}{4} + .....\\ \Rightarrow 1 - \log (2) = \dfrac{1}{2} - \dfrac{1}{3} + \dfrac{1}{4} - .....$
Substitute the above expansions in the series $(vii)$
$S = 2\log (2) - (1 - \log 2)\\ \Rightarrow \log 4 - 1 + \log 2\\ \Rightarrow \log 4 + \log 2 - 1\\ \Rightarrow \log 8 - \log e\\ \Rightarrow \log \left( {\dfrac{8}{e}} \right)$
Option ‘A’ is correct
Note: In this problem, the numerators and the components of the denominators are in A.P. because the difference between the terms are equal. Instead of A.P. it may be given as G.P. or H.P. For G.P., the ratios of the successive terms must be equal and for H.P. the differences of the reciprocals of the successive terms must be equal. You should be aware of the expansions of some special functions.
Formula Used:
$n^{th}$-term of an A.P. is $a + \left( {n - 1} \right)d$, where a is the first term and d is the common difference of the A.P.
The expansion of $\log (1 + x)$ is $x - \dfrac{{{x^2}}}{2} + \dfrac{{{x^3}}}{3} - \dfrac{{{x^4}}}{4} + ...$
Complete step by step solution:
Let the sum of the given series be S.
Then
$S=\frac{5}{1\cdot \:2\:\cdot \:3}+\frac{7}{3\cdot \:4\cdot \:5}+\frac{9}{5\cdot \:6\cdot \:7}$
We have to find the general term i.e. the n-th term of the series.
Clearly, the numerators of the given fractions are in A.P.
Find n-th term of the A.P. $5,7,9,...$
The first term of this A.P. is 5 and the common difference is $7 - 5 = 9 - 7 = 2$
So, n-th term is $5 + \left( {n - 1} \right) \times 2 = 5 + 2n - 2 = 2n + 3$
The denominators of the given fractions are $\left( {1 \cdot 2 \cdot 3} \right),\left( {3 \cdot 4 \cdot 5} \right),\left( {5 \cdot 6 \cdot 7} \right),...$
The first components $1,3,5,...$ are in A.P., where the first term is 1 and the common difference i$3 - 1 = 5 - 3 = 2$
So, the n-th term is $1 + \left( {n - 1} \right) \times 2 = 1 + 2n - 2 = 2n - 1$
The second components $2,4,6,...$ are in A.P., where the first term is 2 and the common difference is $4 - 2 = 6 - 4 = 2$
So, the n-th term is $2 + \left( {n - 1} \right) \times 2 = 2 + 2n - 2 = 2n$
The third components $3,5,7,...$ are in A.P., where the first term is 3 and the common difference is $5 - 3 = 7 - 5 = 2$
So, the n-th term is $3 + \left( {n - 1} \right) \times 2 = 3 + 2n - 2 = 2n + 1$
Finally, we get the n-th term i.e. the general term of the given series as $\dfrac{{2n + 3}}{{\left( {2n - 1} \right)\left( {2n} \right)\left( {2n + 1} \right)}}$
We have to find the value of the infinite series$S = \sum\limits_{n = 1}^\infty {\dfrac{{2n + 3}}{{(2n - 1)(2n)(2n + 1)}}} ......(i)$
Let $\dfrac{{2n + 3}}{{\left( {2n - 1} \right)\left( {2n} \right)\left( {2n + 1} \right)}} = \dfrac{A}{{2n - 1}} + \dfrac{B}{{2n}} + \dfrac{C}{{2n + 1}}.....(ii)$
Then
$\dfrac{{2n + 3}}{{\left( {2n - 1} \right)\left( {2n} \right)\left( {2n + 1} \right)}} = \dfrac{{A(2n)(2n + 1) + B(2n - 1)(2n + 1) + C(2n - 1)(2n)}}{{(2n - 1)(2n)(2n + 1)}}\\ \Rightarrow 2n + 3 = A(4{n^{^2}} + 2n) + B(4{n^2} - 1) + C(4{n^2} - 2n)\\ \Rightarrow 2n + 3 = 4A{n^2} + 2An + 4B{n^2} - B + 4C{n^2} - 2Cn\\ \Rightarrow 2n + 3 = 4(A + B + C){n^2} + 2(A - C)n - B$
Equating the coefficients of like terms, we get
$A + B + C = 0.....(iii)\\2(A - C) = 2.....(iv)\\ - B = 3.....(v)$
From $(v)$, we get $B = - 3$
From $(iv)$, we get $A - C = 1 \Rightarrow A = 1 + C.....(vi)$
Putting the value of B and substituting $A = 1 + C$ in $(iii)$, we get
$1 + C - 3 + C = 0\\ \Rightarrow - 2 + 2C = 0\\ \Rightarrow 2C = 2\\ \Rightarrow C = 1$
Putting the value of $C$ in $(vi)$, we get A=1+1=2
Now, we have A=2, B=-3, C=1
Putting the values of A, B and C in equation i, we get
$\dfrac{{2n + 3}}{{(2n - 1)(2n)(2n + 1)}} = \dfrac{2}{{2n - 1}} - \dfrac{3}{{2n}} + \dfrac{1}{{2n + 1}}$
$ = \dfrac{2}{{2n - 1}} - \dfrac{2}{{2n}} - \dfrac{1}{{2n}} + \dfrac{1}{{2n + 1}}\\ \Rightarrow 2\left( {\dfrac{1}{{2n - 1}} - \dfrac{1}{{2n}}} \right) - \left( {\dfrac{1}{{2n}} - \dfrac{1}{{2n + 1}}} \right)$
Now, substitute the above expression in $(i)$, we get
$S = \sum\limits_{n = 1}^\infty {\left[ {2\left( {\dfrac{1}{{2n - 1}} - \dfrac{1}{{2n}}} \right) - \left( {\dfrac{1}{{2n}} - \dfrac{1}{{2n + 1}}} \right)} \right]} $
Now, we can write $\sum\limits_n {\left\{ {a{f_n}\left( x \right) + b{g_n}\left( x \right)} \right\} = a\sum\limits_n {{f_n}\left( x \right)} + b\sum\limits_n {{g_n}\left( x \right)} } $
So, $S = 2\sum\limits_{n = 1}^\infty {\left( {\dfrac{1}{{2n - 1}} - \dfrac{1}{{2n}}} \right) - \sum\limits_{n = 1}^\infty {\left( {\dfrac{1}{{2n}} - \dfrac{1}{{2n + 1}}} \right)} } $
Put $n = 1,2,3,......$ successively
$S = 2\left\{ {\left( {1 - \dfrac{1}{2}} \right) + \left( {\dfrac{1}{3} - \dfrac{1}{4}} \right) + \left( {\dfrac{1}{5} - \dfrac{1}{6}} \right) + ......} \right\} - \left\{ {\left( {\dfrac{1}{2} - \dfrac{1}{3}} \right) + \left( {\dfrac{1}{4} - \dfrac{1}{5}} \right) + \left( {\dfrac{1}{6} - \dfrac{1}{7}} \right) + ......} \right\}.....(vii)$
The expansion of $\log (1 + x)$ is $x - \dfrac{{{x^2}}}{2} + \dfrac{{{x^3}}}{3} - \dfrac{{{x^4}}}{4} + ...$
Put $x = 1$
$\log (2) = 1 - \dfrac{1}{2} + \dfrac{1}{3} - \dfrac{1}{4} + .....\\ \Rightarrow 1 - \log (2) = \dfrac{1}{2} - \dfrac{1}{3} + \dfrac{1}{4} - .....$
Substitute the above expansions in the series $(vii)$
$S = 2\log (2) - (1 - \log 2)\\ \Rightarrow \log 4 - 1 + \log 2\\ \Rightarrow \log 4 + \log 2 - 1\\ \Rightarrow \log 8 - \log e\\ \Rightarrow \log \left( {\dfrac{8}{e}} \right)$
Option ‘A’ is correct
Note: In this problem, the numerators and the components of the denominators are in A.P. because the difference between the terms are equal. Instead of A.P. it may be given as G.P. or H.P. For G.P., the ratios of the successive terms must be equal and for H.P. the differences of the reciprocals of the successive terms must be equal. You should be aware of the expansions of some special functions.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

