
The Solution set of $x - \sqrt {1 - \left| x \right|} < 0$ is
1. $\left[ { - 1,\dfrac{{\left( { - 1 + \sqrt 5 } \right)}}{2}} \right]$
2. $\left[ { - 1,1} \right]$
3. $\left[ { - 1,\dfrac{{\left( {1 + \sqrt 5 } \right)}}{2}} \right]$
4. $\left[ {1, - 1} \right]$
Answer
233.1k+ views
Hint:Start by solving the square root condition of the given inequality. Now Solving inequality till the required equation will be a quadratic equation. Find the roots and compare both situations and write the values.
Formula Used:
Quadratic inequality –
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Complete step by step Solution:
Given that,
$x - \sqrt {1 - \left| x \right|} < 0 - - - - - (1)$
From above inequality,
$1 + \left| x \right| \geqslant 0$
$1 \geqslant \left| x \right|$
$1 \geqslant \pm x$
$ \Rightarrow - 1 \leqslant x \leqslant 1 - - - - - (2)$
Now from equation (1),
$x < \sqrt {1 - \left| x \right|} $
${x^2} > 1 - \left| x \right|$
${x^2} > 1 - x$
${x^2} + x - 1 > 0$
Compare the required quadratic inequality with general quadratic equation $a{x^2} + bx + c$
$ \Rightarrow a = 1,b = 1,c = - 1$
Using quadratic formula,
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
$x = \dfrac{{ - 1 \pm \sqrt {{{\left( 1 \right)}^2} - 4\left( 1 \right)\left( { - 1} \right)} }}{{2\left( 1 \right)}}$
$x = \dfrac{{ - 1 \pm \sqrt 5 }}{2}$
$x = \dfrac{{ - 1 + \sqrt 5 }}{2}\left( {x \ne \dfrac{{ - 1 - \sqrt 5 }}{2} < - 1} \right) - - - - - (3)$
From equation (2) and (3)
$x \in \left[ { - 1,\dfrac{{\left( { - 1 + \sqrt 5 } \right)}}{2}} \right]$
$ \Rightarrow $Option (1) is the correct .
Therefore, the correct option is 1.
Note: In such type of question, the value inside the square root should be greater than or equal to zero. Solve the inequality the same as equality but multiplying and dividing any number in inequality change the sign of inequality. If the required values are equal also use the square(closed) bracket and if the values are only less or greater then apply a circular(open) bracket.
Formula Used:
Quadratic inequality –
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Complete step by step Solution:
Given that,
$x - \sqrt {1 - \left| x \right|} < 0 - - - - - (1)$
From above inequality,
$1 + \left| x \right| \geqslant 0$
$1 \geqslant \left| x \right|$
$1 \geqslant \pm x$
$ \Rightarrow - 1 \leqslant x \leqslant 1 - - - - - (2)$
Now from equation (1),
$x < \sqrt {1 - \left| x \right|} $
${x^2} > 1 - \left| x \right|$
${x^2} > 1 - x$
${x^2} + x - 1 > 0$
Compare the required quadratic inequality with general quadratic equation $a{x^2} + bx + c$
$ \Rightarrow a = 1,b = 1,c = - 1$
Using quadratic formula,
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
$x = \dfrac{{ - 1 \pm \sqrt {{{\left( 1 \right)}^2} - 4\left( 1 \right)\left( { - 1} \right)} }}{{2\left( 1 \right)}}$
$x = \dfrac{{ - 1 \pm \sqrt 5 }}{2}$
$x = \dfrac{{ - 1 + \sqrt 5 }}{2}\left( {x \ne \dfrac{{ - 1 - \sqrt 5 }}{2} < - 1} \right) - - - - - (3)$
From equation (2) and (3)
$x \in \left[ { - 1,\dfrac{{\left( { - 1 + \sqrt 5 } \right)}}{2}} \right]$
$ \Rightarrow $Option (1) is the correct .
Therefore, the correct option is 1.
Note: In such type of question, the value inside the square root should be greater than or equal to zero. Solve the inequality the same as equality but multiplying and dividing any number in inequality change the sign of inequality. If the required values are equal also use the square(closed) bracket and if the values are only less or greater then apply a circular(open) bracket.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

